馬亮軍
在數(shù)學(xué)教學(xué)中,發(fā)展思維能力是培養(yǎng)能力的核心。這就是說(shuō)數(shù)學(xué)的課堂教學(xué)不僅是數(shù)學(xué)知識(shí)的傳授,更重要的是利用數(shù)學(xué)知識(shí)這個(gè)載體來(lái)發(fā)展學(xué)生的思維能力。數(shù)學(xué)思維的創(chuàng)新是思維品質(zhì)的最高層次,只有多種品質(zhì)協(xié)調(diào)一致發(fā)生作用才能有助于創(chuàng)新思維能力的培養(yǎng)。
一、初中數(shù)學(xué)課程改革有哪些變化
1.注重知識(shí)來(lái)源,激發(fā)學(xué)生求知欲
在新的數(shù)學(xué)教材中,每一章節(jié)在引入新的知識(shí)時(shí),都非常注重新的知識(shí)來(lái)源,讓學(xué)生知道要學(xué)新的知識(shí)是由于要解決新的問(wèn)題的緣故,例如在引入有理數(shù)時(shí),課本從溫度,海拔高度,表示相反方向等多個(gè)角度,立體化地說(shuō)明引入負(fù)數(shù)的必要性,從而激發(fā)學(xué)生的求知欲望,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,也在有利于教學(xué)中的重結(jié)論輕過(guò)程向既重結(jié)論又重過(guò)程的方向發(fā)展。
2.創(chuàng)設(shè)問(wèn)題情景,提高學(xué)生解決問(wèn)題能力
同樣在新的教材中,課本亦相當(dāng)重視提高學(xué)生自己動(dòng)手,解決實(shí)際問(wèn)題的能力,例如在新的幾何教材中,就有讓學(xué)生自己動(dòng)手,通過(guò)實(shí)際操作得出幾何中立體圖形的初步概念的實(shí)驗(yàn)課,不僅提高學(xué)生的學(xué)習(xí)興趣,還促進(jìn)學(xué)生動(dòng)手解決問(wèn)題的能力,在中考中亦有類似的題目,如,用兩個(gè)相同的等腰直角三角形,可以拼出多少個(gè)不同的平行四邊形?學(xué)生只要?jiǎng)邮直葎澮幌拢涂梢缘贸鼋Y(jié)論,這對(duì)促進(jìn)學(xué)生動(dòng)手解決實(shí)際問(wèn)題能力有著重要作用。
3.注重培養(yǎng)學(xué)生對(duì)語(yǔ)言理解能力和表達(dá)能力
蘇步青教授曾經(jīng)講過(guò),學(xué)不好語(yǔ)文的學(xué)生,將會(huì)大大限制他在其它學(xué)科的發(fā)展。同樣地,學(xué)生對(duì)語(yǔ)言的理解能力和表達(dá)能力欠缺,要想學(xué)好數(shù)學(xué)也是相當(dāng)困難,如要想證明:圓中最長(zhǎng)弦的是直徑。這是絕大多數(shù)的同學(xué)都知道的結(jié)論,但是由于就是不知道怎么樣去書寫,去表達(dá),得不到分。新的教材就非常注重對(duì)學(xué)生的語(yǔ)言理解能力和表達(dá)能力的培養(yǎng),具體表現(xiàn)在對(duì)學(xué)生對(duì)定義,概念的復(fù)述要求嚴(yán)格,大大地增強(qiáng)了學(xué)生對(duì)語(yǔ)言的理解能力和表達(dá)能力。
二、近年中考的命題有哪些變化
1.注重對(duì)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力
從近年的中考試題可以看出,由于中考是高中階段的學(xué)校招生考試,具有一定的選拔性,因此,在試卷上重視對(duì)“雙基”考查的同時(shí),進(jìn)一步加強(qiáng)了對(duì)數(shù)學(xué)能力,就是思維能力,運(yùn)算能力,空間概念和應(yīng)用所學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題能力的考查,試題強(qiáng)調(diào)應(yīng)用性,開放性與創(chuàng)新意識(shí),試題新穎,具有很強(qiáng)的時(shí)代氣息。
2.注重對(duì)學(xué)生通過(guò)實(shí)際動(dòng)手獲得知識(shí)考查
近年的中考中,亦出現(xiàn)了不少的題目注重對(duì)學(xué)生通過(guò)實(shí)際動(dòng)手解決問(wèn)題的能力的考查。例如,①請(qǐng)同學(xué)們?cè)谝阎切沃薪厝∫粋€(gè)三角形與已知三角形相似。②已知一條河流的同側(cè)有A、B兩村莊,如果要在河邊建一供水站,應(yīng)如何選址才最節(jié)省通水管?這些問(wèn)題,都是對(duì)學(xué)生動(dòng)手能力的考查,學(xué)生只有靈活地掌握數(shù)學(xué)知識(shí),才能運(yùn)用這門工具解決實(shí)際問(wèn)題。
針對(duì)初中數(shù)學(xué)課程改革和中考命題的變化,我們?cè)趥淇紩r(shí)就要有的放矢,從著實(shí)提高學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題能力入手,為此,我們應(yīng)該做好以下幾方面工作。
(一)注重思維誘導(dǎo),培養(yǎng)思維探索性
良好的思維習(xí)慣,主要體現(xiàn)在是否敢于思維和獨(dú)立思維。這就要求教師首先應(yīng)為學(xué)生的思維提供空間和時(shí)間,注重思維誘導(dǎo),把知識(shí)作為過(guò)程而不是結(jié)果教給學(xué)生,為學(xué)生的思維創(chuàng)造良好的思維環(huán)境。
(1)注重提問(wèn)的設(shè)計(jì)問(wèn)題,培養(yǎng)學(xué)生獨(dú)立思維的習(xí)慣。著名的數(shù)學(xué)教育家波利亞認(rèn)為:“高質(zhì)量的提問(wèn),使學(xué)生不斷產(chǎn)生‘是什么、‘為什么的定向反射?!备哔|(zhì)量的提問(wèn)在課堂教學(xué)中不僅可以長(zhǎng)時(shí)間的維持學(xué)生的有意注意,而且還會(huì)很好地培養(yǎng)學(xué)生的思維習(xí)慣。
(2)充分發(fā)揮學(xué)生的主體作用,培養(yǎng)學(xué)生獨(dú)立思維習(xí)慣。盡管可能各人的收獲、體會(huì)不完全相同,但通過(guò)討論和交流總可以受到相互啟發(fā)。以上可以看出在設(shè)計(jì)上注重了結(jié)論的探求過(guò)程和方法的思考過(guò)程的研究,由于學(xué)生親自參加于知識(shí)的產(chǎn)生過(guò)程,由此對(duì)知識(shí)產(chǎn)生有一種親近感,由此而陶冶出來(lái)的基本態(tài)度和思維能力則可以長(zhǎng)久地保持并對(duì)變化的情況有廣泛的適應(yīng)性。
(3)鼓勵(lì)大膽質(zhì)疑、釋疑,培養(yǎng)學(xué)生敢于思維的習(xí)慣。教師在教學(xué)中應(yīng)不失時(shí)機(jī)地設(shè)疑提問(wèn)并給學(xué)生留有思考的余地;對(duì)學(xué)生經(jīng)思考回答的問(wèn)題正確的應(yīng)及時(shí)給予肯定和鼓勵(lì),回答不完善的不應(yīng)馬上否定,而應(yīng)讓學(xué)生再想一想,把問(wèn)題回答的更完善或更準(zhǔn)確,以充分保護(hù)學(xué)生思維的積極性,使學(xué)生養(yǎng)成敢于思維的習(xí)慣。
(二)克服思維定勢(shì),培養(yǎng)學(xué)生思維靈活性
在思維和解題中有“法”可循、有“路”可行。但有些學(xué)生往往忽視知識(shí)的靈活運(yùn)用,受到某些方法的局限,形成一定的思維定勢(shì),影響了思維的靈活性,因而在教學(xué)中應(yīng)設(shè)法克服學(xué)生的某些思維定勢(shì),注重多角度思維,培養(yǎng)學(xué)生思維的靈活性和全面性。
(三)引導(dǎo)一題多解、一題多變,培養(yǎng)思維的廣闊性和創(chuàng)新性
在教學(xué)中,教師應(yīng)結(jié)合教材內(nèi)容,從新知與舊知、本類與它類、縱向與橫向等方面引導(dǎo)學(xué)生展開聯(lián)想,弄清知識(shí)之間的聯(lián)系,以拓寬學(xué)生的知識(shí)面開拓學(xué)生的思維。例如,求一次函數(shù)y=3x-1與y=-3x+5的交點(diǎn)的坐標(biāo),可以利用圖象法解,也可以利用求方程組的解得出,不同的解法既可以揭示出數(shù)與形的聯(lián)系,又溝通了幾類知識(shí)的橫向聯(lián)系。在教學(xué)中有意識(shí)地引導(dǎo)學(xué)生一題多解,讓學(xué)生用不同的思路、方法來(lái)解,有利于培養(yǎng)學(xué)生思維的廣闊性。另外,有意通過(guò)一題多變、一題多答等具有發(fā)散性的題型進(jìn)行訓(xùn)練、培養(yǎng)學(xué)生思維的創(chuàng)新性。在實(shí)際數(shù)學(xué)中,讓學(xué)生結(jié)合實(shí)際問(wèn)題自編題目,也有助于創(chuàng)新性思維的培養(yǎng)。對(duì)于學(xué)生思維能力,特別是創(chuàng)新性思維能力的培養(yǎng),是一個(gè)很復(fù)雜而系統(tǒng)的領(lǐng)域,還需要我們?cè)诮虒W(xué)中不斷探索、總結(jié),再探索、再研究才能取得很好的效果。