• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Use of personalized Dynamic Treatment Regimes (DTRs) and Sequential Multiple Randomized Trials (SMARTs) in mental health studies

    2014-12-08 08:14:51YingLIUDonglinZENGYuanjiaWANG
    上海精神醫(yī)學(xué) 2014年6期
    關(guān)鍵詞:量身精神障礙個(gè)體化

    Ying LIU, Donglin ZENG, Yuanjia WANG*

    ·Biostatistics in psychiatry (24)·

    Use of personalized Dynamic Treatment Regimes (DTRs) and Sequential Multiple Randomized Trials (SMARTs) in mental health studies

    Ying LIU1, Donglin ZENG2, Yuanjia WANG1*

    SMART; dynamic treatment regimes; personalized medicine; O-learning; Q-learning; double robust estimation

    1. Dynamic Treatment Regimens (DTRs)

    Sequential treatments, a sequence of interventions in which the treatment decisions are adapted to the time-varying clinical status of the patient, are useful in treating many complex chronic mental disorders.For instance, existing clinical literature reports on the potential benefit of behavioral or pharmacological interventions, but patients’ heterogeneous responses to each modality of treatment may call for sequential,individualized treatments, especially in cases where the patient is non-responsive to monotherapy. Dynamic Treatment Regimes (DTRs) operationalize the sequential process of medical decision making and closely reflect actual clinical practice. DTRs are sequential decision rules, tailored at each stage to patients’ time-varying features and intermediate outcomes. They are also known as adaptive treatment strategies[1], multi-stage treatment strategies,[2,3]and treatment policies.[4-6]Examples of clinical trials involving sequential treatments and DTRs in mental health include the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial for treating depression,[7,8]the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) trial for treating schizophrenia;[9]Managing Alcoholism in People WhoDo Not Respond to Naltrexone (EXTEND) for treating alcohol dependence,[10]the Reinforcement-Based Treatment for Pregnant Drug Abusers (HOME III) trial,[11]Adaptive Pharmacological and Behavioral Treatments for Children with Attention Deficit/Hyperactivity Disorder(ADHD) trial,[12,13]and the Adaptive Autism Spectrum Disorder (ASD) Developmental and Augmented Intervention.[14]

    Compared to conventional interventions in which all patients in each arm of the trial are offered the same treatment with the same dosage, DTRs have several important advantages.[15](a) Treatment can be assigned to patients according to their personal features and, thus, maximize potential benefits. (b)If the effectiveness of an intervention changes overtime, DTRs allow patients to be switched to other more promising treatments. (c) When there are comorbid conditions – as is often the case for mental disorders –DTRs can help decide which disorder should be treated primarily and when simultaneous treatment of multiple conditions is necessary. (d) When relapse occurs, DTRs can be used to make the optimal clinical decisions about resumption or alteration of the treatment strategy.(e) DTRs can be used to identify the lowest effective dose and, thus, minimize risk of adverse effects. And (f)the option of switching medications when using DTRs increases participant adherence during a clinical trial.

    1.1 Sequential Multiple Assignment Randomized Trials(SMARTs)

    Valid evaluations of the effectiveness of DTRs are based on the notion of potential outcomes, defined as the outcome of a subject had he followed a particular treatment regime, possibly different from the observed regime for the subject. Two assumptions are required to estimate the causal effect of a dynamic regime in this framework:[16,17]

    1. Stable unit treatment value assumption: A subject’s outcome is not influenced by other subjects’ treatment allocations.[18]

    2. No unmeasured confounders assumption: The newly assigned treatments are conditional on the history up to the current time but independent of potential future outcomes from the treatment.[19]

    Sequential Multiple Assignment Randomized Trials (SMARTs) are used to generate data that can be used to make causal inferences of specific treatment sequences and to compare the expected outcomes of different sequences. SMARTs randomize treatments at each critical decision point and, thus, provide the best possible data for making causal interpretations of the different DTRs. Below we use two examples to illustrate SMARTs.

    1.2 Examples of SMARTs

    We first illustrate a SMART using a trial for pregnant drug abusers[11]as an example. The goal of the trial is to study how the intensity and scope of reinforcement based treatment (RBT) might be adapted to a pregnant woman’s progress in treatment. There are four types of RBT (in order of intensity of the intervention):abbreviated RBT (aRBT), reduced RBT (rRBT), treatmentas-usual RBT (tRBT), and enhanced RBT (eRBT). At the first stage of the trial, each participant is randomized to one of the two intermediate intensity interventions(tRBT or rRBT). In the second stage after two weeks,non-responders are re-randomized to continue the original intervention or use the next more intensive intervention, and responders are re-randomized to continue with the same intervention or to use the next less intensive intervention. This trial is illustrated in Figure 1.

    A second example is a SMART study of treatments for children with attention deficit/hyperactivity disorder(ADHD).[12,13]The study lasted for a school year (i.e.,8 months). Interventions include differing doses of methamphetamine and differing intensities of a behavioral modification intervention. As demonstrated in Figure 2, children were randomly assigned to begin with low-intensity behavioral modification or with low-dose medication. This stage lasts for two months, after which the Impairment Rating Scale (IRS)[20]and the individualized List of Target Behaviors (LTB) measure[21]were used to assess each child’s response to initial treatment. Children who responded would continue to receive the initial low intensity treatment. Children who did not respond would be re-randomized to either intensify the initial treatment or to receive adjunctive treatment with the alternative type of treatment. The target outcome of the study was school performance score at the end of study. The primary aim of the study was to test the main effect of beginning with lowdose medication versus beginning with low-intensity behavioral modification on the rate of non-response by the end of the school year. Secondary aims included (a)how baseline variables (e.g., prior medication history,ADHD impairment score, the comorbid presence of an oppositional defiance disorder [ODD] diagnosis, race,etc.) influence the choice of treatments in the first and second stage; and (b) differences in the effect between the four adaptive interventions embedded in the design.

    Figure 1. Design of adaptive reinforcement-based treatment for pregnant drug abusers

    Figure 2. Design of trial on adaptive pharmacological and behavioral treatments for children with Attention Deficit/Hyperactivity Disorder (ADHD)

    2. Statistical analysis of data collected in SMARTs

    2.1. Primary analysis

    The primary aims of the above ADHD SMART study are listed in table 1. Comparisons of first-stage and second-stage intervention options can be made using a two-sample t-test for the two groups of patients.When comparing the imbedded adaptive intervention options in the last row of Table 1, it is necessary to compare weighted averages that adjust for the response rate of the initial treatment and randomization probabilities; inverse probability weighting[22]generates weighted averages that reflect the response rate in the population. A more detailed description of the primary analyses of SMART studies and specifically for this ADHD trial can be found in Nahum and Shani.[23]The sample size estimation for the primary analysis can be found in Oetting.[24]

    2.2. Finding the optimal DTR

    Besides comparison of two initial regimes, it is also of interest to find the optimal regime (i.e., resulting in the best final outcome) using the rich data collected from SMARTs. One benefit of the optimal regime is that itassigns individualized treatments at each stage based on a patient’s personal characteristics and intermediate outcomes; this approach is likely to produce better overall outcomes compared to ‘one-size-fits-all’ regimes that are not tailored to patients’ personal features. The optimal DTR also provides insights about the effects of patients’ characteristics on the choice of treatment and eventual outcome; based on this information,researchers can design future confirmatory SMART trials.

    Table 1. Primary analysis questions and example in the ADHD study

    Estimating optimal DTR from SMART data has recently received considerable attention in the statistics community; several statistical methods have been developed to achieve this goal.[25]Here we focus on two machine-learning methods which are flexible,computational efficient, and applicable to handling large numbers of patient-specific characteristics (including genomic and imaging characteristics) as potential tailoring variables,

    Q-learning, first proposed in Watkins,[26]was implemented to analyze SMART data by Murphy and colleagues[27]and Zhao and colleagues.[28]It is a regression-based method to identify optimal multistage decision rules, where the optimal treatment at each stage is discovered by a backward induction to maximize the estimated Q-function (“Q” stands for“quality of action’’). Q-learning is based on simple linear regression model and can be implemented by a SAS procedure known as PROC QLEARN.[29]For single-stage studies when the assumptions hold and the regression model is correctly specified, Q-learning is efficient. Thus it is widely used to analyze SMART studies with a limited number of tailoring variables. However, regression based Q-learning may suffer from incorrect model assumptions when the number of tailoring variables is large. Even if using nonparametric learning algorithms,the Q-learning approach selects the optimal treatment by modeling the Q-function and its contrasts that are not explicitly related to the optimization of the objective function (i.e., value function[30]). The mismatch between maximizing the Q-function and the value function potentially leads to suboptimal regimes due to overfitting of the regression model.

    Recent advances in statistical methodology avoid these problems. Outcome-weighted learning(O-learning) which was first introduced by Zhao and colleagues[31]to choose optimal treatment rules by directly optimizing the expected clinical outcome at the end of the study for single-stage trials. The resulting optimal treatment regimen is found by weighted supportive vector machines (SVM) and can take any unconstrained nonparametric functional form. Their simulation studies demonstrate that O-learning outperforms Q-learning, especially in small-sample settings with a large number of tailoring variables. Zhao,and colleagues[32]generalized the developed O-learning to multiple-stage trials by a backward iterative method.

    Most recently, Zeng and colleagues,[33]proposed Augmented Multi-stage Outcome-weighted Learning(AMOL), which integrates Q-learning under the O-learning framework and, thus, improves the performance of O-learning. This method incorporates doubly robust augmentation which is also referred as augmented inverse probability weighting originally proposed in the missing data literature[34]into O-learning by drawing information from regression model-based Q-learning at each stage in the decision tree. Thus,it combines the robustness of O-learning with the imputation ability of Q-learning.

    AMOL has three new features not reported in the studies by Zhao and colleagues.[31,32]Firstly, for singlestage trials, AMOL generalizes the original O-learning[31]to allow for negative outcome values instead of adding an arbitrarily large constant[31]which leads to numeric instability. This feature is useful when there are both positive and negative outcomes observed in a clinical study (e.g., rate of change of clinical symptoms).Secondly, by using residuals from a regression on variables other than the treatment assignment as outcome values, AMOL is able to reduce the variability of weights in O-learning to achieve numeric stability and efficiency gain. Thirdly, and most importantly, for multiple-stage trials, AMOL estimates optimal DTRs via a backward induction learning procedure[32]which starts from the last stage and propagates backwards to the first stage to boost efficiency through augmentation and integration with Q-learning. At each stage of the study of interest, the optimal treatment regimes are obtained using only subjects whose treatment assignments coincide with the optimal rule for all the future stages in the study. Thus, one major limitation of O-learning is that the number of subjects used for inferring optimal treatment rules decreases geometrically with the increasing number of stages, so their method may be inefficient. In contrast, at each stage, AMOL uses robustly weighted O-learning for estimating the optimal DTRs; the weights are based on the observed outcome and a conditional expectation term for subjects who follow the optimal treatment rules in future stages or– for those who do not follow optimal rules in future stages – weights imputed from regression models obtained from Q-learning. Therefore, AMOL, as a hybrid approach, simultaneously takes advantage of the robustness of nonparametric O-learning and also makes use of the model-based Q-learning which uses data from all subjects.

    2.3 Example of Q-learning and O-learning based analyses of ADHD data

    The ADHD data analysis we present here was simulated by investigators at the University of Michigan based on an ongoing two-stage SMART trial on ADHD[12]that has been used in a workshop about SMART that can be downloaded at: (http://www-personal.umich.edu/~dalmiral/software/mw_workshop_files/SAS%20 Code/adhd_simulated_data.txt). The primary outcome of the study is the school performance score (ranging from 1 to 5) measured at the end of the study. There are 150 subjects, four baseline covariates (e.g. prior medication history, ADHD impairment score, ODD diagnosis, race) and two time-varying covariates including adherence to the initial treatment and months to remission. There were 99 participants who did not respond to first stage intervention and are rerandomized in the second stage.

    We present the estimated coefficients of the optimal DTR estimated by Q-learning and AMOL in Table 2. AMOL gives a sparse set of variables with nonimportant variables yielding coefficients near zero. In contrast, Q-learning leads to many more variables with non-zero coefficients. We can rank the importance of standardized covariates by the magnitude of their coefficients. In stage 1, medication prior to enrollment has the largest magnitude coefficient estimated by AMOL (-0.001557, Table 2), which is more than 3-foldthe magnitude of the second largest covariate (race).The fitted optimal DTR suggests that patients who previously took medication before the trial would be better off starting with medication, and those who did not take medication before the trial should start with behavioral modification. In stage 2, adherence to treatment in stage 1 has the largest magnitude coefficient (0.999, Table 2). The AMOL fitted optimal DTR suggests that patients who adhered to their initial treatment should be assigned to continue with the same treatment, while patients who did not adhere to the first treatment should switch.

    Table 2. Standardized coefficients for the optimal dynamic treatment rule estimated by various methods using data from the Attention Deficit/Hyperactivity Disorder (ADHD)study a

    3. Discussion

    This paper has introduced the design of SMARTs for assessment of DTRs in psychiatric research, the statistical methods used to make inference about the primary goal in such studies, and the most recently introduced machine learning methods for identifying the best treatment and for identifying potential tailoring variables for future confirmative trials. A few core issues about the statistical analyses of SMART and DTR merit further research. Most methods on identifying optimal DTR from SMART are targeted on continuous outcomes; further work will be need to extend this approach to deal with ordinal or categorical outcomes and censored survival events. Moreover, in mental health research there is often interest in a combination of outcomes (to comprehensively assess potential benefit); for example, alleviation of symptoms may be considered in conjunction with increased quality of life and functioning, time to response, and reduction of side effects. In this situation it may be insufficient to represent all information in a single dimensional outcome. Further work will be needed to develop machine-learning methods for handling such multidimensional outcomes. Another issue is that in many clinical studies there may be multiple options – not just two – at each stage of the study; current machinelearning methods need to be extended to identify optimal DTRs when multiple treatment options are possible at each stage of the study. Future research is also needed to develop methods for selecting the feature variables from observational studies that will best maximize interpretability of constructed DTR. Finally, one practical challenge is that multiplestage randomized clinical trials require prolonged commitment and compliance from all participants.Missing data in SMARTs is often a rule rather than an exception, so continued effort is needed to find creative ways for reducing missing data and for statistically dealing with missing data. Shortreed and colleagues[35]recently discussed imputation methods for handling missing data in SMART.

    Conflict of Interest

    The authors report no conflict of interest related to this manuscript.

    Funding

    This research is sponsored by the United States National Institute of Health (NS082062, NS073671).

    1. Lavori PW, Dawson R. A design for testing clinical strategies:biased adaptive within-subject randomization.J R Stat Soc Ser A Stat Soc.2000; 163(1): 29-38. doi: http://dx.doi.org/10.1111/1467-985X.00154

    2. Thall PF, Sung HG, Estey EH. Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials.J Am Stat Assoc.2002; 97(457): 29-39

    3. Thall PF, Wathen JK. Covariate-adjusted adaptive randomization in a sarcoma trial with multi-stage treatments.Stat Med.2005; 24(13): 1947-1964. doi: http://dx.doi.org/10.1002/sim.2077

    4. Lunceford JK, Davidian M, Tsiatis AA. Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials. Biometrics.2002;58(1): 48-57. doi: http://dx.doi.org/10.1111/j.0006-341X.2002.00048.x

    5. Wahed AS, Tsiatis A A. Optimal estimator for the survival distribution and related quantities for treatment policies in two-stage randomization designs in clinical trials.Biometrics.2004; 60(1): 124-133. doi: http://dx.doi.org/10.1111/j.0006-341X.2004.00160.x

    6. Wahed AS, Tsiatis AA. Semiparametric efficient estimation of survival distributions in two-stage randomisation designs in clinical trials with censored data.Biometrika.2006; 93 (1):163-177

    7. Rush AJ, Fava M, Wisniewski SR, Lavori PW, Trivedi MH,Sackeim HA, et al. Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design.Controlled clin trials.2004; 25(1): 119-142

    8. Rush A, Trivedi M, Wisniewski S, Nierenberg A, Stewart J, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report.Am J Psychiatry.2006; 163(11):1905-1917

    9. Schneider LS, Ismail MS, Dagerman K, Davis S, Olin J,McManus D, et al. Clinical antipsychotic trials of intervention effectiveness (CATIE): Alzheimer’s disease trial.Schizophr bull.2003; 29(1): 57. doi: http://dx.doi.org/10.1093/schbul/sbj026

    10. McKay J, Horn DV, Oslin D, Lynch K, Ivey M. A randomized trial of extended telephone-based continuing care for alcohol dependence: within-treatment substance use outcomes.J Consult Clin Psychol.2010; 78: 912-923. doi:http://dx.doi.org/10.1037/a0020700

    11. Jones H, O’Grady K, Tuten M. Reinforcement-based treatment improves the maternal treatment and neonatal outcomes of pregnant patients enrolled in comprehensive care treatment.Am J Addict.2011; 20: 196-204. doi: http://dx.doi.org/10.1111/j.1521-0391.2011.00119.x

    12. Pelham WE, Hoza B, Pillow DR, Gnagy EM, Kipp HL, Greiner AR. et al. Effects of methylphenidate and expectancy on children with ADHD: Behavior, academic performance, and attributions in a summer treatment program and regular classroom setting.J Consult Clin Psychol.2002; 70: 320-335

    13. Pelham W, Fabiano G A. Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder.J Clin Child Adolesc Psychol.2008; 37(1): 184-214. doi: http://dx.doi.org/10.1080/15374410701818681

    14. Kasari C, Freeman S, Paparella T. Joint attention and symbolic play in young children with autism:a randomized controlled intervention study.J Child Psychol Psychiatry.2006; 47: 611-620. doi: http://dx.doi.org/10.1111/j.1469-7610.2005.01567.x

    15. Lei H, Nahum-Shani I, Lynch K, Oslin D, Murphy S. (2012).A “SMART” design for building individualized treatment sequences.Annu Rev Clin Psychol.2012; 8(1): 21-48. Epub 2011 Dec 12. doi: http://dx.doi.org/10.1146/annurevclinpsy-032511-143152

    16. Murphy SA, Van Der Laan MJ, Robins JM. Marginal mean models for dynamic regimes.J Am Stat Assoc.2001;96(456): 1410-1423

    17. Moodie EE, Richardson TS, Stephens DA. Demystifying optimal dynamic treatment regimes.Biometrics.2007;63(2): 447-455. doi: http://dx.doi.org/10.1111/j.1541-0420.2006.00686.x

    18. Rubin DB. Bayesian inference for causal effects: The role of randomization.Ann Stat. 1978; 6: 34-58

    19. Berkane M.Latent variable modeling and applications to causality. New York: Springer New York; 1997

    20. Fabiano G, Pelham E, Waschbusch D, Gnagy M, Lahey B. A practical measure of impairment: psychometric properties of the impairment rating scale in samples of children withattention deficit hyperactivity disorder and two schoolbased samples.J Clin Child Adolesc Psychol.2006; 35: 369-385

    21. Pelham WE Jr, Gnagy EM, Greenslade KE, Milich R. Teacher ratings of DSM-III-R symptoms for the disruptive behavior disorders.J Am Acad Child Adolesc Psychiatry.1992;31(2): 210-218. doi: http://dx.doi.org/10.1097/00004583-199203000-00006

    22. Hernán Má, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men.Epidemiology.2000; 11(5):561-570

    23. Nahum-Shani IM, Qian M, Almirall D. Experimental design and primary data analysis methods for comparing adaptive interventions.Psychological methods.2012; 17(4): 457. doi:http://dx.doi.org/10.1037/a0029372

    24. Oetting AI, Levy JA, Weiss RD, Murphy SA. Statistical methodology for a SMART design in the development of adaptive treatment strategies. In:Causality and Psychopathology: Finding the Determinants of Disorders and their Cures Arlington.VA: American Psychiatric Publishing, Inc; 2007

    25. Chakraborty B, Moodie EE.Statistical Methods for Dynamic Treatment Regimes.New York: Springer; 2013

    26. Watkins CJ.Learning from delayed rewards(Ph.D.dissertation). UK: University of Cambridge; 1989

    27. Murphy SA, Collins LM, Rush AJ. Customizing treatment to the patient: Adaptive treatment strategies.Drug Alcohol Depend.2007; 88(Suppl 2): S1-S3. doi: http://dx.doi.org/10.1016/j.drugalcdep.2007.02.001

    28. Zhao Y, Kosorok MR, Zeng D. Reinforcement learning design for cancer clinical trials.Stat Med.2009; 28(26): 3294-3315.doi: http://dx.doi.org/10.1002/sim.3720

    29. Ertefaie A. Almirall DA, Huang L, Dziak JJ, Wagner AT, Murphy SA.SAS PROCQLEARN users’ guide (Version 1.0). University Park: The Methodology Center, Penn State; 2012. Retrieved from http://methodology.psu.edu

    30. Qian M, Murphy SA. Performance guarantees for individualized treatment rules.Ann Stat.2011; 39 (2): 1180

    31. Zhao Y, Zeng D, Rush AJ, Kosorok MR. Estimating individualized treatment rules using outcome weighted learning.J Am Stat Assoc.2012; 107 (499): 1106-1118. doi:http://dx.doi.org/10.1080/01621459.2012.695674

    32. Zhao Y, Zeng D, Laber E, Kosorok MR. New statistical learning methods for estimating optimal dynamic treatment regimes.J Am Stat Assoc.2014; in press. doi: http://dx.doi.org/10.1080/01621459.2014.937488

    33. Zeng D, Wang Y, Liu Y, Kosorok M.Improved Outcome Weighted Learning for DynamicTreatment Regimes.Massachusettes, Boston: Joint Statistical Meetings; 2014

    34. Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed.J Am Stat Assoc. 1994; 89: 846-866

    35. Shortreed SM, Laber E, Stroup TS, Pineau J. A multiple imputation strategy for sequential multiple assignment randomized trials.Stat Med. 2014; 33(24): 4202-4214. Epub 11 Jun 2014. doi: http://dx.doi.org/10.1002/sim.6223

    , 2014-10-22; accepted, 2014-11-20)

    Ying Liu (M. Phil M.S.) graduated from the Department of Mathematics at Peking University and is currently a Ph.D. candidate in the Department of Biostatistics at Columbia University. Her dissertation research is focused on merging statistical modeling and medical domain knowledge with machine learning algorithms to make personalized medical decisions using complex biomedical data. She also works with clinical collaborators and psychiatrists at the New York State Psychiatric Institutes on innovative clinical trials and epidemiological studies in anorexia nervosa, schizophrenia and other mental disorders.

    個(gè)體化動(dòng)態(tài)治療方案和多重方案隨機(jī)序貫試驗(yàn)在精神衛(wèi)生研究中的應(yīng)用

    Liu Y, Zeng DL, Wang YJ

    多重方案隨機(jī)序貫試驗(yàn),動(dòng)態(tài)治療方案,個(gè)體化醫(yī)療,O型學(xué)習(xí),Q型學(xué)習(xí),雙穩(wěn)健估計(jì)

    Summary:Dynamic treatment regimens (DTRs) are sequential decision rules tailored at each point where a clinical decision is made based on each patient’s time-varying characteristics and intermediate outcomes observed at earlier points in time. The complexity, patient heterogeneity, and chronicity of mental disorders call for learning optimal DTRs to dynamically adapt treatment to an individual’s response over time. The Sequential Multiple Assignment Randomized Trial (SMARTs) design allows for estimating causal effects of DTRs. Modern statistical tools have been developed to optimize DTRs based on personalized variables and intermediate outcomes using rich data collected from SMARTs; these statistical methods can also be used to recommend tailoring variables for designing future SMART studies. This paper introduces DTRs and SMARTs using two examples in mental health studies, discusses two machine learning methods for estimating optimal DTR from SMARTs data, and demonstrates the performance of the statistical methods using simulated data.

    [Shanghai Arch Psychiatry. 2014;26(6): 376-383.

    http://dx.doi.org/10.11919/j.issn.1002-0829.214172]

    1Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States

    2Department of Biostatistics, University of North Carolina at Chapel Hill, United States

    *correspondence: yuanjia.wang@columbia.edu

    A full-text Chinese translation of this article will be available at www.shanghaiarchivesofpsychiatry.org on January 25, 2015.

    概述: 動(dòng)態(tài)治療方案(Dynamic treatment regimens,DTRs)是一種序貫決策規(guī)則,是根據(jù)每個(gè)患者隨時(shí)間變化而變化的特征和先前觀察到的中間結(jié)果而量身定制的臨床決策。精神障礙具有慢性和復(fù)雜性的特點(diǎn),精神障礙患者具有異質(zhì)性特點(diǎn)。這就要求隨時(shí)間推移,根據(jù)個(gè)體對(duì)治療反應(yīng)的不同而分析出最佳的治療方案,并動(dòng)態(tài)地應(yīng)用到患者之后的治療中。多重方案隨機(jī)序貫試驗(yàn)(Sequential Multiple Assignment Randomized Trial,SMARTs)的設(shè)計(jì)可以估計(jì)DTRs的治療效應(yīng)。SMARTs收集到大量的個(gè)體化變量和中間結(jié)果,在此基礎(chǔ)上應(yīng)用已有的現(xiàn)代統(tǒng)計(jì)工具可以優(yōu)化DTRs。這些統(tǒng)計(jì)方法也可為今后的SMARTs研究設(shè)計(jì)推薦量身定制的變量。本文通過(guò)兩個(gè)精神衛(wèi)生研究案例介紹了DTRs和SMARTs,討論了從SMARTs數(shù)據(jù)估算出最佳DTR的兩種不同的計(jì)算機(jī)自動(dòng)分析方法,并使用模擬數(shù)據(jù)演示這兩種統(tǒng)計(jì)方法的性能。

    本文全文中文版從2015年01月25日起在www.shanghaiarchivesofpsychiatry.org可供免費(fèi)閱覽下載

    猜你喜歡
    量身精神障礙個(gè)體化
    《風(fēng)平浪靜》黑色影像的個(gè)體化表述
    今傳媒(2022年12期)2022-12-22 07:20:12
    自擬醒腦湯聯(lián)合體外反搏治療癲癇所致精神障礙的效果
    量身定制的美顏霜
    個(gè)體化護(hù)理在感染科中的護(hù)理應(yīng)用
    奧氮平治療老年2型糖尿病伴發(fā)精神障礙臨床觀察
    有一種膏方叫“量身定制”
    全適配鏡框技術(shù) 量身定制的舒適
    喹硫平與利培酮對(duì)癲癇所致精神障礙療效比較
    個(gè)體化治療實(shí)現(xiàn)理想應(yīng)答
    肝博士(2015年2期)2015-02-27 10:49:46
    脂肪肝需要針對(duì)病因進(jìn)行個(gè)體化治療
    肝博士(2015年2期)2015-02-27 10:49:43
    成人漫画全彩无遮挡| xxxhd国产人妻xxx| 国产 一区精品| 丝瓜视频免费看黄片| 伦理电影免费视频| 纵有疾风起免费观看全集完整版| 另类亚洲欧美激情| 18禁观看日本| 高清欧美精品videossex| 日韩一卡2卡3卡4卡2021年| 99国产精品免费福利视频| 国产xxxxx性猛交| 久久久久久久大尺度免费视频| 成人影院久久| 少妇人妻久久综合中文| 日韩一本色道免费dvd| 久久久久国产精品人妻一区二区| 可以免费在线观看a视频的电影网站 | 亚洲综合精品二区| 国产男人的电影天堂91| 亚洲天堂av无毛| 黑丝袜美女国产一区| 两个人免费观看高清视频| 三上悠亚av全集在线观看| 婷婷成人精品国产| 久久久精品区二区三区| 91精品伊人久久大香线蕉| 一级片'在线观看视频| av在线观看视频网站免费| 亚洲第一av免费看| 嫩草影院入口| 亚洲国产欧美在线一区| 久久久久久免费高清国产稀缺| 国产精品一区二区在线不卡| 日韩伦理黄色片| 国产免费福利视频在线观看| 国产精品99久久99久久久不卡 | 成年人午夜在线观看视频| 免费观看a级毛片全部| 亚洲经典国产精华液单| 久久精品国产a三级三级三级| 国产精品99久久99久久久不卡 | 有码 亚洲区| 日韩一卡2卡3卡4卡2021年| 亚洲精品,欧美精品| 寂寞人妻少妇视频99o| 国产探花极品一区二区| 三级国产精品片| 久久综合国产亚洲精品| 日韩av在线免费看完整版不卡| 亚洲精品日韩在线中文字幕| 国产一区有黄有色的免费视频| 热re99久久精品国产66热6| 嫩草影院入口| 制服诱惑二区| 男的添女的下面高潮视频| 亚洲精品久久成人aⅴ小说| 国产精品麻豆人妻色哟哟久久| 美国免费a级毛片| 国产综合精华液| 日韩av免费高清视频| 久久精品久久久久久噜噜老黄| 婷婷色麻豆天堂久久| 黑丝袜美女国产一区| 日韩精品免费视频一区二区三区| 999精品在线视频| 国产精品久久久久久精品古装| 日韩 亚洲 欧美在线| 精品卡一卡二卡四卡免费| 最近中文字幕高清免费大全6| 国产精品人妻久久久影院| 久久99精品国语久久久| 成人毛片a级毛片在线播放| www.av在线官网国产| 国产色婷婷99| 久久久久久久国产电影| 性色av一级| 国产 精品1| 又黄又粗又硬又大视频| 午夜福利视频精品| 91在线精品国自产拍蜜月| 91久久精品国产一区二区三区| 亚洲美女视频黄频| 精品国产乱码久久久久久男人| 免费看av在线观看网站| 国精品久久久久久国模美| 一本色道久久久久久精品综合| 女性生殖器流出的白浆| 女人被躁到高潮嗷嗷叫费观| 下体分泌物呈黄色| 一级黄片播放器| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 精品久久久精品久久久| 高清黄色对白视频在线免费看| 老汉色∧v一级毛片| 日本av免费视频播放| 午夜福利一区二区在线看| 午夜91福利影院| 各种免费的搞黄视频| 久久久久国产网址| 国产精品久久久久久久久免| 高清不卡的av网站| 欧美日韩成人在线一区二区| 精品国产露脸久久av麻豆| 精品少妇内射三级| 免费av中文字幕在线| 国产不卡av网站在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| 桃花免费在线播放| 中文字幕亚洲精品专区| 多毛熟女@视频| 亚洲经典国产精华液单| 中文字幕亚洲精品专区| 欧美人与性动交α欧美软件| av免费在线看不卡| 大话2 男鬼变身卡| 女人久久www免费人成看片| 一区福利在线观看| 建设人人有责人人尽责人人享有的| 777久久人妻少妇嫩草av网站| 一级黄片播放器| 亚洲欧美一区二区三区国产| 99久久综合免费| 熟女少妇亚洲综合色aaa.| 欧美人与性动交α欧美精品济南到 | 日韩欧美精品免费久久| 日韩成人av中文字幕在线观看| 免费av中文字幕在线| 一边亲一边摸免费视频| 久久久久国产一级毛片高清牌| 精品久久蜜臀av无| 成人手机av| 黑丝袜美女国产一区| 欧美激情极品国产一区二区三区| 久久久久久久久免费视频了| 男女边吃奶边做爰视频| 制服丝袜香蕉在线| 日本欧美视频一区| 麻豆乱淫一区二区| 激情视频va一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲精品久久久久久婷婷小说| 欧美变态另类bdsm刘玥| 麻豆精品久久久久久蜜桃| 免费观看性生交大片5| 国产黄频视频在线观看| 人妻一区二区av| 亚洲美女搞黄在线观看| 秋霞在线观看毛片| 我要看黄色一级片免费的| 国产人伦9x9x在线观看 | 如日韩欧美国产精品一区二区三区| 久久久久久人人人人人| 在线免费观看不下载黄p国产| 少妇的丰满在线观看| 美女中出高潮动态图| 国产成人欧美| 高清不卡的av网站| 亚洲欧美一区二区三区黑人 | 久久女婷五月综合色啪小说| 日韩在线高清观看一区二区三区| 亚洲国产精品成人久久小说| 亚洲天堂av无毛| 精品少妇黑人巨大在线播放| 国产乱人偷精品视频| 新久久久久国产一级毛片| 99久久精品国产国产毛片| 国产老妇伦熟女老妇高清| 国产乱人偷精品视频| 少妇精品久久久久久久| 在线观看免费视频网站a站| 女人被躁到高潮嗷嗷叫费观| 欧美 亚洲 国产 日韩一| 一边亲一边摸免费视频| 午夜av观看不卡| 1024视频免费在线观看| 久久精品国产亚洲av涩爱| 国产淫语在线视频| 考比视频在线观看| 久久久久久人妻| 在现免费观看毛片| 黄片播放在线免费| 精品国产乱码久久久久久男人| 日韩电影二区| 国产爽快片一区二区三区| 免费日韩欧美在线观看| 午夜免费鲁丝| 欧美bdsm另类| 成人黄色视频免费在线看| 成年人免费黄色播放视频| 一个人免费看片子| 欧美成人精品欧美一级黄| 成人二区视频| 国产亚洲av片在线观看秒播厂| 日韩一区二区视频免费看| 欧美日韩亚洲国产一区二区在线观看 | 最黄视频免费看| 午夜影院在线不卡| 欧美日韩av久久| 美国免费a级毛片| 免费在线观看视频国产中文字幕亚洲 | 一级毛片我不卡| 久久久久精品性色| 亚洲国产成人一精品久久久| 丝瓜视频免费看黄片| 日韩一区二区三区影片| 超碰成人久久| 国产免费视频播放在线视频| 高清av免费在线| 少妇人妻久久综合中文| 亚洲av中文av极速乱| 一级毛片黄色毛片免费观看视频| 国产在线视频一区二区| 国产精品国产av在线观看| 一级爰片在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久精品电影小说| 观看美女的网站| 国产精品 欧美亚洲| 亚洲欧洲国产日韩| 中文欧美无线码| 成人毛片60女人毛片免费| 欧美黄色片欧美黄色片| 两个人免费观看高清视频| 国产xxxxx性猛交| 涩涩av久久男人的天堂| 一二三四在线观看免费中文在| 曰老女人黄片| 在线观看免费高清a一片| 国产日韩一区二区三区精品不卡| 2018国产大陆天天弄谢| 中国国产av一级| 人人妻人人添人人爽欧美一区卜| 国产av国产精品国产| 性色avwww在线观看| www日本在线高清视频| 九色亚洲精品在线播放| 亚洲精品第二区| 男人舔女人的私密视频| 日韩一区二区三区影片| 亚洲精品日本国产第一区| 中文字幕精品免费在线观看视频| 91精品国产国语对白视频| 人人澡人人妻人| 男女边吃奶边做爰视频| 777米奇影视久久| 久久免费观看电影| 久久女婷五月综合色啪小说| 亚洲视频免费观看视频| 丝袜脚勾引网站| 日本爱情动作片www.在线观看| 香蕉国产在线看| 国产极品天堂在线| 成人毛片60女人毛片免费| 黑丝袜美女国产一区| 久久鲁丝午夜福利片| 日韩电影二区| www.自偷自拍.com| 中文字幕亚洲精品专区| 在现免费观看毛片| 亚洲精品国产一区二区精华液| 超色免费av| 国产精品.久久久| 久久久久久久亚洲中文字幕| 纯流量卡能插随身wifi吗| 精品人妻一区二区三区麻豆| 乱人伦中国视频| 精品99又大又爽又粗少妇毛片| 美女视频免费永久观看网站| 日韩一区二区三区影片| 久久人人爽av亚洲精品天堂| 国产黄色免费在线视频| 99精国产麻豆久久婷婷| 看十八女毛片水多多多| 少妇被粗大的猛进出69影院| 极品少妇高潮喷水抽搐| 晚上一个人看的免费电影| 国产亚洲欧美精品永久| 国产极品天堂在线| 国产探花极品一区二区| 久久久久久久大尺度免费视频| 最近的中文字幕免费完整| 国产精品女同一区二区软件| 日本vs欧美在线观看视频| 中文字幕人妻熟女乱码| 狠狠婷婷综合久久久久久88av| 91精品三级在线观看| 日韩电影二区| 丁香六月天网| 精品国产超薄肉色丝袜足j| 日韩中文字幕欧美一区二区 | 色吧在线观看| 欧美亚洲 丝袜 人妻 在线| 国产av码专区亚洲av| 久久精品人人爽人人爽视色| 99re6热这里在线精品视频| 亚洲精品美女久久久久99蜜臀 | 久久久久国产精品人妻一区二区| 国产精品久久久久久精品电影小说| 免费在线观看视频国产中文字幕亚洲 | 免费在线观看黄色视频的| 亚洲美女视频黄频| 亚洲成国产人片在线观看| 亚洲av男天堂| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区免费观看| 啦啦啦在线观看免费高清www| 久久久久视频综合| 成人午夜精彩视频在线观看| 国产成人精品一,二区| 国产又爽黄色视频| 少妇的逼水好多| av视频免费观看在线观看| 国产精品不卡视频一区二区| 亚洲,欧美,日韩| videosex国产| 一级毛片黄色毛片免费观看视频| 欧美日韩一区二区视频在线观看视频在线| 日本免费在线观看一区| 永久免费av网站大全| 亚洲精品aⅴ在线观看| 一区二区日韩欧美中文字幕| 免费看不卡的av| 国产一区二区三区综合在线观看| 午夜福利在线免费观看网站| 波野结衣二区三区在线| 你懂的网址亚洲精品在线观看| 欧美xxⅹ黑人| 日韩,欧美,国产一区二区三区| 欧美最新免费一区二区三区| 国产高清不卡午夜福利| 97在线人人人人妻| av在线app专区| 国产乱人偷精品视频| 亚洲国产精品国产精品| 国产免费又黄又爽又色| 亚洲成av片中文字幕在线观看 | 国产精品无大码| freevideosex欧美| 1024视频免费在线观看| 国产在线视频一区二区| 1024香蕉在线观看| 另类亚洲欧美激情| 亚洲视频免费观看视频| 精品国产一区二区三区四区第35| av在线老鸭窝| 最近手机中文字幕大全| 欧美bdsm另类| 观看av在线不卡| 国产av精品麻豆| 国产av精品麻豆| 人成视频在线观看免费观看| 久久免费观看电影| 国产精品一国产av| 亚洲精品乱久久久久久| 国产一区亚洲一区在线观看| 黄色怎么调成土黄色| 午夜91福利影院| 国产免费一区二区三区四区乱码| 亚洲四区av| 精品久久久精品久久久| 亚洲精品第二区| 欧美成人午夜精品| 另类精品久久| 精品亚洲成国产av| 丰满少妇做爰视频| 狠狠精品人妻久久久久久综合| 免费看不卡的av| 五月开心婷婷网| 一级片免费观看大全| 欧美人与性动交α欧美精品济南到 | 黄网站色视频无遮挡免费观看| 欧美人与性动交α欧美软件| 一本色道久久久久久精品综合| 亚洲熟女精品中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av有码第一页| 18+在线观看网站| 国产熟女欧美一区二区| 可以免费在线观看a视频的电影网站 | 伦理电影免费视频| 日本爱情动作片www.在线观看| 国产精品熟女久久久久浪| 亚洲国产欧美日韩在线播放| 日本91视频免费播放| 80岁老熟妇乱子伦牲交| 成人亚洲精品一区在线观看| 国产黄色免费在线视频| 国产精品人妻久久久影院| av在线播放精品| 亚洲精品日本国产第一区| 狠狠精品人妻久久久久久综合| 久久这里有精品视频免费| 青春草视频在线免费观看| 99re6热这里在线精品视频| 成年av动漫网址| 亚洲精华国产精华液的使用体验| 五月开心婷婷网| 国产成人精品久久久久久| 叶爱在线成人免费视频播放| 老汉色av国产亚洲站长工具| 免费女性裸体啪啪无遮挡网站| 久久99蜜桃精品久久| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品久久午夜乱码| 中文乱码字字幕精品一区二区三区| 国产精品国产三级国产专区5o| 精品国产国语对白av| 日韩中文字幕欧美一区二区 | 日本黄色日本黄色录像| 免费看不卡的av| 国产不卡av网站在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 新久久久久国产一级毛片| 新久久久久国产一级毛片| 欧美成人精品欧美一级黄| 老汉色∧v一级毛片| 高清欧美精品videossex| 免费在线观看视频国产中文字幕亚洲 | 午夜影院在线不卡| 男女午夜视频在线观看| 婷婷成人精品国产| 秋霞在线观看毛片| 一边摸一边做爽爽视频免费| 亚洲五月色婷婷综合| 亚洲精品久久午夜乱码| 高清av免费在线| 欧美精品国产亚洲| 一区二区三区四区激情视频| av不卡在线播放| 亚洲国产成人一精品久久久| 久久毛片免费看一区二区三区| 色94色欧美一区二区| 99精国产麻豆久久婷婷| 超色免费av| 99久久中文字幕三级久久日本| 国产亚洲午夜精品一区二区久久| 国产亚洲欧美精品永久| 亚洲精品乱久久久久久| 久久97久久精品| 国产精品久久久久成人av| 亚洲国产成人一精品久久久| 亚洲国产毛片av蜜桃av| 一个人免费看片子| 99re6热这里在线精品视频| 精品酒店卫生间| 久久久久久久久久久久大奶| 国产精品国产三级专区第一集| 久久久亚洲精品成人影院| 日韩精品有码人妻一区| www.熟女人妻精品国产| av卡一久久| 少妇熟女欧美另类| 国产野战对白在线观看| 国产探花极品一区二区| 欧美精品一区二区大全| 制服丝袜香蕉在线| 视频区图区小说| 国产精品女同一区二区软件| 中文乱码字字幕精品一区二区三区| 亚洲少妇的诱惑av| 中文字幕人妻丝袜一区二区 | 国产免费视频播放在线视频| 国产精品久久久久久精品电影小说| 亚洲美女搞黄在线观看| 亚洲欧美成人精品一区二区| 成人黄色视频免费在线看| 国产免费一区二区三区四区乱码| 亚洲第一av免费看| 亚洲av中文av极速乱| 欧美日韩国产mv在线观看视频| 国产又爽黄色视频| 久久久久精品久久久久真实原创| 在线观看www视频免费| 成人亚洲欧美一区二区av| 亚洲精品国产一区二区精华液| 激情视频va一区二区三区| 久久女婷五月综合色啪小说| 大码成人一级视频| 麻豆乱淫一区二区| 岛国毛片在线播放| 国产一区亚洲一区在线观看| 久久精品久久久久久久性| 欧美在线黄色| 性高湖久久久久久久久免费观看| 国产极品天堂在线| 欧美精品国产亚洲| 99久久精品国产国产毛片| 久久久久久人妻| 18禁国产床啪视频网站| 国产探花极品一区二区| 日韩av在线免费看完整版不卡| 久久久久国产一级毛片高清牌| 天天躁日日躁夜夜躁夜夜| 美女视频免费永久观看网站| 亚洲人成网站在线观看播放| 乱人伦中国视频| 熟妇人妻不卡中文字幕| 久久精品夜色国产| 午夜精品国产一区二区电影| 久久久国产欧美日韩av| 巨乳人妻的诱惑在线观看| 成人亚洲精品一区在线观看| 国产精品.久久久| 制服诱惑二区| 日韩av在线免费看完整版不卡| 亚洲在久久综合| 色94色欧美一区二区| 免费播放大片免费观看视频在线观看| 人人澡人人妻人| 国产精品久久久久久精品古装| 午夜福利影视在线免费观看| 国产乱人偷精品视频| www.av在线官网国产| 日韩伦理黄色片| 久久人人爽av亚洲精品天堂| 国产一级毛片在线| 欧美最新免费一区二区三区| 侵犯人妻中文字幕一二三四区| 成年动漫av网址| 在线观看免费视频网站a站| 你懂的网址亚洲精品在线观看| 亚洲综合色惰| 丰满少妇做爰视频| 天天影视国产精品| 国产精品 国内视频| 亚洲av电影在线观看一区二区三区| 性色avwww在线观看| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 日韩三级伦理在线观看| 亚洲国产av影院在线观看| 成人漫画全彩无遮挡| 国产亚洲精品第一综合不卡| 日韩av在线免费看完整版不卡| 咕卡用的链子| 欧美激情 高清一区二区三区| 18禁裸乳无遮挡动漫免费视频| 91精品伊人久久大香线蕉| 丰满少妇做爰视频| 亚洲婷婷狠狠爱综合网| 考比视频在线观看| 久久久精品国产亚洲av高清涩受| www日本在线高清视频| 欧美老熟妇乱子伦牲交| 日本色播在线视频| 亚洲成人手机| 巨乳人妻的诱惑在线观看| 国产精品国产三级专区第一集| 在线观看美女被高潮喷水网站| 青春草国产在线视频| 中文字幕人妻丝袜一区二区 | 女性生殖器流出的白浆| videos熟女内射| 亚洲国产精品一区二区三区在线| 国产 一区精品| av在线播放精品| 一边摸一边做爽爽视频免费| 亚洲第一青青草原| 亚洲av日韩在线播放| 多毛熟女@视频| 精品少妇一区二区三区视频日本电影 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美国产精品一级二级三级| 99久久中文字幕三级久久日本| 91久久精品国产一区二区三区| 婷婷色综合www| 国产免费又黄又爽又色| 如日韩欧美国产精品一区二区三区| 久久午夜福利片| 亚洲精品久久成人aⅴ小说| 久久久久精品久久久久真实原创| 亚洲一区中文字幕在线| 乱人伦中国视频| 母亲3免费完整高清在线观看 | 亚洲成国产人片在线观看| 我要看黄色一级片免费的| 国产乱人偷精品视频| 美女大奶头黄色视频| 伦理电影免费视频| 国产在线一区二区三区精| 香蕉丝袜av| av天堂久久9| www日本在线高清视频| videosex国产| 一本色道久久久久久精品综合| 99久久精品国产国产毛片| 国产伦理片在线播放av一区| 国产白丝娇喘喷水9色精品| 精品久久久久久电影网| 大片免费播放器 马上看| 天天躁日日躁夜夜躁夜夜| 国产乱来视频区| 久久精品国产鲁丝片午夜精品| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 亚洲欧美日韩另类电影网站| 国产又爽黄色视频| 丝袜美腿诱惑在线| 天堂中文最新版在线下载| 婷婷色麻豆天堂久久| 最近中文字幕高清免费大全6| 曰老女人黄片| 男女下面插进去视频免费观看| 少妇人妻精品综合一区二区| 日韩一本色道免费dvd| 日本-黄色视频高清免费观看| 久久久亚洲精品成人影院| 国产 精品1| 亚洲一区二区三区欧美精品| 一二三四在线观看免费中文在| 国产成人精品久久久久久| 成年人午夜在线观看视频|