• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Capture condition for endo-atmospheric interceptors steered by ALCS and ARCS

    2014-12-07 05:13:49YanfangLIUNaimingQiTianyeWANG
    Control Theory and Technology 2014年1期

    Yanfang LIU,Naiming Qi,Tianye WANG

    1.Department of Aerospace Engineering,Harbin Institute of Technology,Harbin Heilongjiang,150001,China;

    2.Department of Earth and Space Science and Engineering,York University,Toronto,Canada

    Capture condition for endo-atmospheric interceptors steered by ALCS and ARCS

    Yanfang LIU1,2?,Naiming Qi1,Tianye WANG1

    1.Department of Aerospace Engineering,Harbin Institute of Technology,Harbin Heilongjiang,150001,China;

    2.Department of Earth and Space Science and Engineering,York University,Toronto,Canada

    This contribution deals with capture condition for interceptor missiles steered by aero-lift control system(ALCS)and attitude reaction-jet control system (ARCS). With the guidance law derived from bounded differential game formulation, existence condition of capture zone is studied for the case that the interceptor has advantage on maneuverability and disadvantage on agility.For the existence of the open capture zone,ARCS can only close after the engagement terminates.Moreover,ARCS also needs to contribute to maneuverability over the minimum required value.More fuel will be required if ARCS increases its contribution to maneuverability.The minimum required fuel occurs at the tangent point of two curves:the curve of critical parameters and a candidate constraint curve,which is also true even for the complex propellant constrain.The validity of these results is also demonstrated by simulations.

    Capture condition;Differential game;Guidance law;Interceptor missile;Dual control

    1 Introduction

    Successfully intercepting the future uninhabited aerial vehicles is a tough task.A very small miss distance or even direct hit[1]is required as these targets are less vulnerable.Worse still,only marginal maneuverability the interceptor missile has over the targets.There are two approaches to improve homing performance[2]:1)utilizing advance guidance laws to improve guidance performance and 2)introducing reaction-jet control system(RCS)to increase the maneuverability and/or agility(the maximum lateral acceleration divided by the first order time constant)[3].

    The major advanced missile guidance laws are developed by using optimal control theory.In developing these guidance laws,assumptions about future target maneuvers are needed[4–8].If these assumptions are wrong,very large miss distance is created[9,10].

    Differential game guidance laws are less sensitive tothe estimation error of target acceleration[9]and provide an improved guaranteed(robust)homing accuracy[11].In game formulation,the interceptor(pursuer)aims to minimize the miss distance,while the target(evader)tries to maximize it.The game solution provides the optimal pursuer strategy(the interceptor’s guidance law),the optimal evasion strategy(the worst target’s maneuver),and the game value(the guaranteed miss distance).If the game value is zero,the pursuer victories and the interception terminates by capture.The set of initial conditions from where capture is guaranteed is called the capture zone.Two game formulations are mainly addressed:linear quadratic differential game(LQDG)formulation[12–15]and bounded differential game(BDG)formulation[1,10,16–19].The BDG guidance laws obtain larger capture zone[13]and a much improved homing performance [20]. Capture conditions for players(pursuer and evader)with bi-proper dynamics were also studied in[21–24].

    When RCS is introduced,the combination of aero-lift control system(ALCS)and RCS requires special consideration in guidance system.Guidance laws based on BDG[24]and LQDG[15]were suggested for an interceptor having forward canards and aft tails.A feedback strategy combined BDG and LQDG was studied in[25].The forward RCS effects were investigated in[26]using BDG approach.A logic based guidance law was developed for interceptors steered by aerodynamic-fins and divert-thrusters in[27].In[28],capture conditions were studied for the interceptor steered by ALCS and divert thrusters control system(DTCS).

    In this paper, the study in [28] is extended to the interceptor steered by ALCS and attitude RCS(ARCS).Divert thrusters locate near the center of gravity(CG)and generate lateral acceleration directly.However,attitude thrusters locate ahead of the interceptor and generate lateral acceleration by changing the interceptor’s attitude.Compared with DTCS,ARCS requires less propellant,however,it contributes little to the interceptor’s maneuverability.The main contributions of this paper are as follows:1)capture conditions are derived by using BDG formulation;2)the approach for obtaining the minimum ARCS thrust and propellant is given;and 3)propellant quantity is suggested for the worst case–the target has ideal dynamics.

    The reminder of this paper is organized as follows.Section 2 outlines the engagement between the dual controlled interceptor and the target.Section3describes the game solution and game space structure.The existence condition of the capture zone is derived in Section4.The propellant limit effects are studied in Section5.The validity of the analytical results is demonstrated by simulation in Section 6.This paper is concluded in Section 7.

    2 Problem statement

    The engagement between an interceptor missile(pursuer)and its target(evader)is considered.The pursuer is dual-controlled by ALCS and ARCS.A schematic view of the planar end-game geometry is shown in Fig.1.TheX-axis is aligned with the initial line-of-sight(LOS).V,a,and φ are velocity,lateral acceleration,and flightpath angle,respectively;λ andrare LOS angle and range between both players,respectively;y=yE?yPis the relative separation normal to the initial LOS;and subscripts P and E denote the pursuer and the evader,respectively.

    Fig.1 Planar end-game geometry.

    The interception time can be computed for any given initial condition:

    The relative motion normal to the initial LOS is expressed by[1,18,19,24,28,29]

    where u and amaxare commanded and maximum lateral acceleration,respectively;τ is the time constant;and additive subscripts A and R denote ALCS and ARCS,respectively.

    The attitude-thrusters locate in front of the interceptor and work from tRSto tREwith operation time

    The ARCS realizes the acceleration commands by changing interceptor’s attitude.It increases the interceptor’s response speed,but contributes little to the maximum lateral acceleration.Thus,the pursuer’s total lateral acceleration

    is bounded by

    Thus,control commands of the pursuer is assumed to satisfy

    with ARCS contribution ratio on maneuverability defined as

    Remark 1Letting β(t)≡ 0 results in ALCS-only controlled pursuer and letting β(t)≡ 1 results in ARCS-only controlled pursuer.

    The evader’s acceleration command is also bounded

    Non-dimensional parameters, pursuer/evader maneuverability ratio μ,evader/pursuer dynamics ratio ε,and ARCS/ALCS dynamics ratio α,are respectively defined as

    As ARCS has a smaller time constant than the ALCS,thus

    The time-to-go and its normalized form are

    Moreover,denotations θ0=tf/τP,A,θf=0,θRS=(tf?tRS)/τP,A,and θRE=(tf? tRE)/τP,Aare made.Thus,equation(2)is reduced and normalized to

    where single prime denotes the first derivative,z(θ)is normalized zero-effort-miss(ZEM)

    and F(tf,t)is the transition matrix of the original homogeneous system in equation(2).

    The natural cost function is the miss distance

    The situation that the pursuer achieves zero miss distance,i.e.,J=0,is called capture.The domain of initial positions(θ0,z(θ0))from which a guidance law guarantees capture is called the capture zone of this guidance law.The open capture zone is a capture zone that extends to all θ>0.

    3 Game space structure

    In this section,the game solution for ALCS-only controlledpursuer is briefly reviewed and the possible game space structure for dual-controlled pursuer is presented.In the sequel,the games for ALCS-only controlled pursuer and for the dual-controlled pursuer are referred to as aero-controlled game(ACG)and dual-controlled game(DCG),respectively.

    3.1 ACG solution

    If condition μ > 1 and μ ε < 1 holds,no capture zone exists in game space D:={(θ,z):θ > 0,z ∈ R}[1,10,18].As shown in Fig.2,the game space decom-poses into two regions by the border optimal trajec-regiongame value(guaranteed miss distance)is constant

    Fig.2 Typical game space decomposition.

    3.2 Possible game space structure for DCG

    By virtue of the fact that ψ(θ)> 0 for θ > 0,the optimal strategies of DCG are solved to be[1,10,18,25,28]

    The game space is obtained by integrating Γ(θ)backward from different end conditions z(θf).Such a candidate trajectory,starting at(θ,z)=(0,z(θf)),is

    Typical game space is shown in Fig.2 with0.4s,1.The game space decomposes into two parts by border optimal trajectories zDand?zD(solid lines),if the family of candidate optimal trajectories does not fill it.The region filled with optiamal trajectories is the regular region,in which the optimal feedback strategies are

    by virtue of the fact that along an optimal trajectory,z(θ)has the same sign[28].

    The remainder of the game space is the singular regionIn the singular region,the game value is constant.If it is zero,this region becomes the capture zone.

    It is not surprised to find that the dual control system enlarges the singular region and reduces the guaranteed miss distance as ARCS increases the pursuer’s response speed.However,Fig.2 also shows that,even when ARCS is utilized,the capture zone does not always exist.The existence condition of the capture zone is studied in following sections.

    4 Capture condition

    In this section,the existence condition of the capture zone for DCG is derived under the conditions

    Thus,we suppose the pursuer has advantages on maneuverability and agility when it is ARCS-only controlled.However,it has agility disadvantage when it is ALCS-only controlled.

    For the case that ARCS works all over the engagement,a new function is defined as

    which is used to derive the existence condition of the capture zone.

    4.1Properties ofˉΓ(θ)

    In proving properties ofˉΓ(θ),two new functions are defined as the facts:1)

    4.2 Existence condition for capture zone

    In this subsection,the conditions of μ,ε,α,β,θRE,and θRSenabling capture will be obtained analytically.

    Lemma 1The necessary and sufficient condition for the existence of a capture zone in the game space is that there existsv> 0 such that Γ(θ)> 0 for θ ∈ (0,v).

    ProofSee proof of Theorem 4.1 in[23].

    Theorem 1Given μ ε < 1 and θRE> θf,a capture zone cannot exist in the game space.

    ProofUsing l’Hpital rule yieldsμ ε.Since θRE> θfand μ ε < 1,then Γ(θ) < 0 for sufficiently small θ ∈ (θf,θRE).By using Lemma 1,the theorem is proved.

    Remark 2Theorem 1 indicates that,if ARCS closes before the interception terminates,the pursuer will not able to secure capture as it has agility disadvantage when it is ALCS-only controlled.

    Theorem 2Given θRE≤ θf,for the existence of a capture zone in the game space,a sufficient condition is β and the necessary condition is

    ProofIf condition θRE≤ θfholds,one obtains Γ(θ)=?!?θ)for θ ∈[θf,θRS).Meanwhile,we have

    Remark 3This theorem has following physical interceptions.Capture is guaranteed for some initial conditions if ARCS has a sufficient large contribution on maneuverability.However,the pursuer will not be able to secure capture for any initial condition if this contribution is smaller than the required value.

    Theorem 3Given(30),necessary and sufficient condition for a capture zone,if it exists,to be open is that one of following conditions

    Remark 4Theorem 3 gives the necessary and sufficient condition for a capture zone to be open by assuming that ARCS works all over the engagement.However,in reality,it only works for a designed duration,considering which the existence condition is given in the next theorem.

    Theorem 4Given(30),the necessary and sufficient conditions for the existence of the open capture zone in the game space are

    1)θRE≤ θf,

    3)one of conditions(38)–(39)holds if θRS< θ1;one of conditions(38)–(40)holds if θRS∈ [θ1,θ3);one of conditions(38)–(41)holds if θRS∈ [θ3,θ5);one of conditions(38)–(42)holds if θRS∈ [θ5,θ7);and one of conditions(38)–(43)holds if θRS∈ [θ7,∞).The parameters θ1,θ3,θ5and θ7are given in Propositions 2–5.

    Proof(Sufficient condition) Since θRE≤ θf,thenThus,z?(θ)>0 for θ ∈ (θf,θRS],which is proved similarly to the sufficient condition of Theorem 3 by using conditions 3)and(30).For the caseusing(26)yieldFor the caseμ β?(1,α,θRS)+ μ β?(1,α,θRE).Using(15),(17),and condition 2)and noting from ?(1,α,θRE)> ?(1,α,θRS)and,consequently,the region between z?(θ)and ?z?(θ)guarantees capture and is open.The sufficient condition is proved.

    (Necessary condition) If condition 1)does not hold,using Theorem 1 yields that there does not exist a capture zone.If condition 2)does not hold,we have a)z?(θ)will intersect θ-axis atand the capture zone enclosed by z?(θ)and ?z?(θ)can only be closed for the case ?v > 0:Ψ(θ)|0<θ<v> 0,or b)there does not exist a capture zone otherwise.If condition 3)does not hold,using Theorem 3 yields the open capture zone does not exist.Hence,all of conditions 1)–3)are necessary for the existence of the open capture zone.

    Remark 5In Theorem 4,condition 1)gives the ending time of ARCS,and conditions 2)and 3)indicate that different initial time of ARCS will cause different parameter requirement for existence of the open capture zone.

    4.3 Parameter effects

    In Fig.3,the parameter requirement for existence of the open capture zone is given based on Theorem 4.

    The capture-guaranteed parameter space(β,θRS)is shown in top left subfigure with gray color with θRE=0.Thus,the working duration of ARCS is fixed if θRSis given.In the figure,the curve shows the critical β value guaranteeing existence of the open capture zone for a given θRS.For example,β1is the minimum requirement of β if ARCS starts at θRS,1.It means that ARCS should contributes sufficient large lateral acceleration if its initial time is fixed.On the other hand,if the thrust of ARCS is fixed,β = β1for example,then the initial time of ARCS should be not later than θRS,1.Two meaning fulvalues,β0and Δθ0are also shown in the figure.The former is the minimum required β.If ARCS can not generates larger enough thrust to make β ≥ β0,the engagement can not be guaranteed to be terminated by capture.The latter one is the normalized form of minimum required ARCS working duration.The evader can survive if ARCS work duration is shorter than this value,even the pursuer is ARCS-only controlled when ARCS is on.

    Fig.3 The required β value for existence of the open capture zone.

    Actually,the values β0and Δθ0are determined by μ,ε and α,as shown in other three subfingures.Both β0and Δθ0decrease with μ, ε.Thus,if the agility of the pursuer increases by increasing the maximum lateral acceleration or decreasing the time constant,the requirement of the minimum thrust and/or working duration of ARCS will decrease.However,both β0and Δθ0increase with α,which indicates that if ARCS’s response speed decreases,the working duration and/or the thrust of ARCS should increase to guarantee capture.

    5 Effects of propellant limits

    In reality,the propellant of ARCS is actually restricted by the pursuer’s configuration,such as weight and size.The propellant limit is approximated by

    To simplify the analysis,equation(45)is further reduced as

    The physical interception of equation(46)is that,if ARCS increases its contribution on the pursuer’s maneuverability,its working duration reduces.In this section,the propellant limit effects are investigated under equation(46).

    5.1 Thrust of ARCS

    Fig.4 shows ARCS thrust’s effect on the game space structure withQ=0.25s,and θRE=0.The open capture zone exists for cases β =0.25 and β =0.5.If β is too large,i.e.,β=0.75,the open capture zone does not exist as ARCS works too shortly.If β is too small,i.e.,β=0.1,there is no open capture zone in the game space due to β < β0.The critical β curve and constraint curves for differentQare shown in Fig.5.

    The region between the critical β curve and a constraint curve is the parameter space for existence of the open capture zone under propellant limit.The markers in the figure denote the calculating point of the above and following examples.The cases β =0.1 and β =0.75,shown in Fig.4,actually are not included in this parameter space.The formula in equation(46)is a simplified propellant constrain.However,for a complex form of propellant constrain,the parameter space for existence of the open capture zone can also be obtained similarly as in Fig.5.

    Fig.4 Effects of β under propellant limit.

    Fig.5 Critical β as a function of θRSunder propellant limit.

    The effect of the propellant quantity on the game space is shown in Fig.6 for fixed contribution of ARCS on the pursuer’s maneuverability,i.e., β =0.25,and θRE=0.The calculating points are also shown in Fig 5.If the fuel is smaller enough,there will be no intersect point between the critical β curve and the constraint curve.Consequently,the closed capture zone cannot exist.Increasing the propellant will enlarge the capture zone and,consequently release the handover condition between the terminal phase and the midcourse guidance.Seen from Fig.5,the critical case for the given β,i.e.,Q=0.1672s,is one intersect point of the critical β curve and constraint curves.

    Fig.6 Effects of propellant quantity.

    5.2 Minimum propellant requirement

    The minimum ARCS propellant satisfies

    which can also be expressed as

    The right-hand term of(48)is the guaranteed miss distance when the pursuer is ALCS-only controlled.The left-hand term represents ZEM reduced by ARCS.Base on Theorem 1,capture guaranteed interception requires θRE≤ θf.Thus,the minimum required propellant is an optimal problem stated as

    Theorem 5Under conditions(10)and(30),the minimum required propellant is

    where θRS,0satisfiesProofζ > 0 and(10)hold,thenf(ζ)> 0,g(ζ)> 0,andf(ζ)andg(ζ)are increasing.Givenμ andε,is constant.Letting β < β,then

    121 and,consequently,θRS,1> θRS,2.Therefore,1.Thus,the required propellant increases with β.Moreover,the minimum propellant requirement occurs at β0and isQ?= β0τP,AθRS,0,where θRS,0satisfies equation(52).

    Remark 6In Theorem 5,the optimal propellant is given under the simplified constrain equation(46).As shown is Fig.5,a set of constraint curves is obtained by changing the propellant limit.Among these curves,there is one that intersects the critical β curve tangently.The tangent point,(θRS,β)=(1.9375,0.1905)marked by star in Fig. 5, gives the optimal propellant. The thick solid line is the tangent constraint curve. For the complex constrain,Theorem 5 may not hold.However,the optimal propellant can also be obtained by finding the tangent point of the critical β curve and the tangent constraint curve.

    Using equations(15)and(24)yieldsther using equations(14)and(17)and noting from that γ(μ,ε,θ) < 0 fordecreases with ε.Thus,

    which represents the worst case for the pursuer as the target has ideal dynamics.

    6 Simulation study

    This section demonstrates the validity of analytical results by simulations.Two sets of simulations are carried out.

    The first set of simulations is carried out under ideal conditions:1)both players have perfect information structure and utilize the optimal guidance strategies in equation(27);2)both the guidance cycle and the simulation step are set to be as small as 0.1ms;and 3)both players point to each other and have zero initial lateral acceleration.The simulation results are shown in Table1.The game space structure for cases 1–4 are shown in Fig.4 and that for cases 5–7 are shown in Fig.6.Seen from Fig.5,parameter sets,(θRS,β),for cases 2,3,6,and 7 are above the critical β curve.For these cases,zero miss interception is guaranteed under the ideal conditions,which demonstrated Theorem 4. Case 8 is actually the minimum propellent case.The miss distance for this case is smaller enough for the hit-to-kill performance,which demonstrates Theorem 5.

    Table 1 Miss distance under ideal conditions.

    In the second set of simulations,the target’s maneuvering sequence is selected to be bang-bang type(maximum maneuver command to one direction followed by a maximum maneuver command in the opposite direction)[1,10,11,16–18,24].The maneuver command switches randomly at(tgo)sw∈[0,3]s.The estimated target time constantThe guidance cycle and the simulation step are taken to be 5ms and 1ms,respectively.At the beginning of the end-game,both players are assumed to point directly toward each other(the nominal case of head-on engagement).The initial lateral accelerations of both players are chosen to be zero.The results of 500 Monte Carlo runs are shown in Fig.7.Case 1 is for parametersQ=1.008s and β=0.6,which satisfies equation(56);Case 2 is for the minimum propellant case given in equation(51);and Case 3 is for ALCS-only controlled interceptor.Results show that the optimal propellant case has a better performance than the ALCS-only controlled case.However,it may result in a large miss distance due to estimation error of target’s time constant and sampling error.Assume that the estimation of time-to-goestimation of target acceleration?aE~N(aE,δaE).The effects of time-to-go estimation error,target acceleration estimation error and delay are analyzed separately.The results in Figs.7–9 show that the performance becomes worse.To improve the performance,more propellant is required.However,the suggested propellant quantity,Case 1,guarantees robust performance.

    Fig.7 Cumulative miss distance distribution with tgoestimation error.

    Fig.8 Cumulative miss distance distribution withaEestimation error.

    Fig.9 Cumulative miss distance distribution withaEestimation delay.

    7 Conclusions

    The capture condition is studied for interceptor missiles steered by aero-lift control system and attitude reaction-jet control system. Analytical results are derived under the condition that the interceptor has advantage on maneuverability and disadvantage on agility if it is aero-lift-only controlled.

    For the existence of the open capture zone,the attitude reaction-jet control system should close after the engagement terminates and contribute to the maneuverability over the minimum required value.The analytical results also show that the minimum propellant requirement increases with the contribution of attitude reaction-jet control system on the maneuverability,for a simplified form of propellant constrain.However,for the complex propellant limit, this minimum requirement can be obtained by finding the tangent point of the curve of critical parameters and a candidate constraint curve.A suggested parameter allocation is given by assuming target has ideal dynamics,which shows a robust performance in the simulation.

    [1]J.Shinar,T.Shima.Nonorthodox guidance law development approach for intercepting maneuvering targets.Journal of Guidance,Control,and Dynamics,2002,25(4):658–666.

    [2]Y.Liu,N.Qi,Z.Tang.Linear quadratic differential game strategies with two-pursuit versus single-evader.Chinese Journal of Aeronautics,2012,25(6):896–905.

    [3]R.Hirokawa,K.Sato,S.Manabe.Autopilot design for a missile with reaction-jet using coefficient diagram method.AIAA Guidance,Navigation,and Control Conference.Montreal:AIAA,2001:739–746.

    [4]Z.Paul.Tactical and strategic missile guidance.Progress in Astronautics and Aeronautics.Reston:AIAA,1997:143–161.

    [5]N.F.Palumbo,R.A.Blauwkamp,J.M.Lloyd.Modern homing missile guidance theory and techniques.Johns Hopkins APL Technical Digest,2010,29(1):42–59.

    [6]V.Garber.Optimum intercept laws for accelerating targets.AIAA Journal,1968,6(11):2196–2198.

    [7]R.G.Cottrell.Optimal intercept guidance for short-range tactical missiles.AIAA Journal,1971,9(7):1414–1415.

    [8]F.W.Nesline,P.Zarchant.A new look at classical vs modern homing missile guidance.Journal of Guidance,Control,and Dynamics,1981,4(1):78–85.

    [9]G.M.Anderson.Comparison of optimal control and differential game intercept missile guidance laws.Journal of Guidance,Control,and Dynamics,1981,4(2):109–115.

    [10]T.Shima,J.Shinar.Time-varying linear pursuit-evasion game models with bounded controls.Journal of Guidance,Control,and Dynamics,2002,25(3):425–432.

    [11]J.Shinar,T.Shima,A.Kebke.On the validity of linearized analysis in the interception of reentry vehicles.AIAA Guidance, Navigation,and Control Conference and Exhibit.Reston:AIAA,1998:1050–1060.

    [12]Y.C.Ho,A.E.Bryson JR.,S.Baron.Differential game and optimal pursuit-evasion strategies.IEEE Transaction on Automatic Control,1965,10(10):385–389.

    [13]V.Turetsky,J.Shinar.Missile guidance laws based on pursuitvasion game formulations.Automatica,2003,39(4):607–618.

    [14]O.Belapolsky,J.Z.Ben-asher.On two formulations of linear quadratic optimal guidance.AIAA Guidance,Navigation,and Control Conference and Exhibit.Hilton Head:AIAA,2007:1–26.

    [15]T.Shima,O.M.Golan.Linear quadratic differential games guidance law for dual controlled missiles.IEEE Transaction on Aerospace and Electronic Systems,2007,43(3):834–842.

    [16]S.Gutman,G.Leitmann.Optimal strategies in the neighborhood of a collison course.AIAA Journal,1976,14(9):1210–1212.

    [17]S.Gutman.On optimal guidance for homing missiles.Journal of Guidance,Control,and Dynamics,1979,2(4):296–300.

    [18]J.Shinar.Solution techniques for realistic pursuit-evasion games.Advances in Control and Dynamic Systems.New York:Academic Press,1981:63–124.

    [19]N.Qi,Y.Liu,X.Sun.Differential game guidance law for interceptor missiles with a time-varying lateral acceleration limit.Transactions of the Japan Society for Aeronautical and Space Sciences,2011,54(185/186):189–197.

    [20]T.Shima,O.M.Golan.End-game guidance laws for dual-control missiles.Proceedings IMechE–Part G:Journal of Aerospace Engineering,2005,219(2):157–170.

    [21]S.Gutman.Superiority of canards in homing missiles.IEEE Transaction on Aerospace and Electronic Systems,2003,39(3):740–746.

    [22]T.Shima.Capture zomes in a pursuuit-evasion game.Proceedings of IEEE Conference on Decision and Control.Hawaii:IEEE,2003:5450–5455.

    [23]T.Shima.Capture conditions in a pursuit-evasion game between players with biproper dynamics.Journal of Optimization Theory and Applications,2005,126(3):503–528.

    [24]T.Shima,S.Member,O.M.Golan.Bounded differential games guidance law for dual-controlled missiles.IEEE Transactions on Control System Technolody,2006,14(4):719–724.

    [25]Y.Liu,N.Qi,R.Lu,et al.Bounded linear-quadratic differential game guidance law fordual-thruster controlled missiles.Transactions of the Japan Society for Aeronautical and Space Sciences,2012,55(1):68–76.

    [26]Y.Li,N.Qi,W.Zhang,et al.Bounded differential game guidance law for interceptor missiles with aero fins and reaction jets.Transactions of the Japan Society for Aeronautical and Space Sciences,2011,53(182):275–282.

    [27]Y.Li,N.Qi.Logic-based guidance law for interceptor missiles steered by aerodynamic lift and divert thruster.IEEE Transactions on Control System Technolody,2011,19(4):884–890.

    [28]Y.Liu,N.Qi,Z.Tang.Effects of divert-thrusters on homing performance of endo-atmospheric interceptors.Journal of Optimization Theory and Applications,2013,156(2):345–364.

    [29]J.Shinar,V.Y.Glizer,V.Turetsky.Robust pursuit of a hybrid evader–the generalized solution.IEEE 26th Convention of Electrical and Electronics Engineers in Israel.Eilat:IEEE,2010:717–721.

    26 February 2013;revised 5 July 2013;accepted 3 September 2013

    DOI10.1007/s11768-014-0031-3

    ?Corresponding author.

    E-mail:liu-yanfang@hotmail.com.Tel.:+1 416-736-2100 ext.40484;fax:+1 416-736-5817.

    This work was partially supported by the China Aerospace Science and Institute Corporation and State Scholarship Fund.

    Yanfang LIUis a Ph.D.candidate at School of Astronautics,Harbin Institute of Technology,and a visiting scholar student at Department of Earth and Space Science and Engineering,York University.His study in Canada is supported by State Scholarship Fund.He received his B.E.degree from the Harbin Engineering University in 2008.His area of research includes missile guidance and control.E-mail:liu-yanfang@hotmail.com.

    Naiming QIis a professor with School of Astronautics,Harbin Institute of Technology.He received his Ph.D.degree from Harbin Institute of Technology in 2001.His area of research includes aircraft dynamics,guidance,and control and integration of electro-mechanical system.E-mail:qinmok@163.com.

    Tianye WANGis a graduate student with School of Astronautics,Harbin Institute of Technology.He received his B.E.degree from Harbin Institute of Technology in 2012.E-mail:wang878552527@126.com.

    Journal title change

    We would like to inform you that the title of‘Journal of Control Theory and Applications’is changed to ‘Control Theory and Technology’.The change will be effective from the beginning of 2014.

    We welcome your submissions for the journal with new title(http://controls.papercept.net).

    婷婷亚洲欧美| 最新在线观看一区二区三区| 男人的好看免费观看在线视频| 欧美性猛交╳xxx乱大交人| 国产精品一及| 亚洲精品亚洲一区二区| 欧美日本视频| 在线国产一区二区在线| av专区在线播放| 在线国产一区二区在线| 国产伦一二天堂av在线观看| 免费在线观看日本一区| 欧美国产日韩亚洲一区| 国产亚洲欧美98| 欧美3d第一页| 色av中文字幕| 成人二区视频| 色av中文字幕| 亚洲天堂国产精品一区在线| 黄色丝袜av网址大全| 黄色丝袜av网址大全| 老女人水多毛片| 特大巨黑吊av在线直播| 性欧美人与动物交配| 亚洲男人的天堂狠狠| 免费看日本二区| 校园春色视频在线观看| 久久精品国产99精品国产亚洲性色| 在线看三级毛片| 一级av片app| 亚洲avbb在线观看| 内地一区二区视频在线| 校园春色视频在线观看| 国产v大片淫在线免费观看| 亚洲avbb在线观看| 精品久久久久久久久久久久久| 久久久久精品国产欧美久久久| 观看免费一级毛片| 免费人成在线观看视频色| 日日摸夜夜添夜夜添小说| 欧美高清成人免费视频www| 搞女人的毛片| 麻豆一二三区av精品| 亚洲中文日韩欧美视频| 成人精品一区二区免费| 亚洲av中文字字幕乱码综合| 人人妻人人看人人澡| 亚洲午夜理论影院| 伦精品一区二区三区| 黄色一级大片看看| 欧美最新免费一区二区三区| 成年女人看的毛片在线观看| 日韩欧美 国产精品| 成人av一区二区三区在线看| 永久网站在线| 日韩精品青青久久久久久| 日韩欧美国产一区二区入口| 人人妻人人澡欧美一区二区| 精品久久久久久,| 欧美日韩精品成人综合77777| 免费av毛片视频| 波多野结衣高清作品| 欧美性感艳星| 国模一区二区三区四区视频| 午夜精品久久久久久毛片777| 成年免费大片在线观看| 性欧美人与动物交配| 内地一区二区视频在线| 午夜久久久久精精品| 天堂网av新在线| 亚洲av中文字字幕乱码综合| 两性午夜刺激爽爽歪歪视频在线观看| 欧美激情国产日韩精品一区| 国产精品一区二区三区四区免费观看 | 免费无遮挡裸体视频| 又黄又爽又免费观看的视频| 亚洲av二区三区四区| 国产精品一区二区性色av| 中文字幕av成人在线电影| av国产免费在线观看| 色吧在线观看| 综合色av麻豆| а√天堂www在线а√下载| 啪啪无遮挡十八禁网站| 一本一本综合久久| 又爽又黄无遮挡网站| 国产大屁股一区二区在线视频| 天堂网av新在线| 欧美日韩国产亚洲二区| 日韩国内少妇激情av| 国产熟女欧美一区二区| 国产精品久久久久久亚洲av鲁大| 久久婷婷人人爽人人干人人爱| 国产高清视频在线观看网站| 黄色视频,在线免费观看| 久久久久久久精品吃奶| 男人和女人高潮做爰伦理| 成人av在线播放网站| 成人二区视频| 国产又黄又爽又无遮挡在线| 精品国内亚洲2022精品成人| 亚洲中文日韩欧美视频| 在线观看舔阴道视频| 精品人妻一区二区三区麻豆 | 亚洲av免费高清在线观看| 国产中年淑女户外野战色| 精品久久久久久成人av| 淫妇啪啪啪对白视频| 亚洲精品亚洲一区二区| 麻豆久久精品国产亚洲av| 成人毛片a级毛片在线播放| 精品人妻1区二区| 黄色女人牲交| 精品久久久久久久久av| 国产伦人伦偷精品视频| 高清毛片免费观看视频网站| 欧美色欧美亚洲另类二区| 国产av一区在线观看免费| 大又大粗又爽又黄少妇毛片口| 亚洲午夜理论影院| 国产老妇女一区| 成人国产一区最新在线观看| 亚洲精品日韩av片在线观看| 亚洲自偷自拍三级| 噜噜噜噜噜久久久久久91| 毛片一级片免费看久久久久 | 国产精品人妻久久久影院| 久久久久久大精品| 久久午夜福利片| 热99re8久久精品国产| 精品午夜福利视频在线观看一区| 国产成人a区在线观看| 色5月婷婷丁香| 欧美日韩黄片免| 无遮挡黄片免费观看| 日本精品一区二区三区蜜桃| 久久久久久久精品吃奶| 国产亚洲av嫩草精品影院| 美女高潮的动态| 成人美女网站在线观看视频| 欧美精品啪啪一区二区三区| 亚洲中文字幕日韩| 欧美又色又爽又黄视频| 国产私拍福利视频在线观看| 91久久精品国产一区二区三区| 啪啪无遮挡十八禁网站| 日韩 亚洲 欧美在线| 级片在线观看| 不卡视频在线观看欧美| 国产精品一区二区性色av| 黄片wwwwww| 久久久久久久久久黄片| 日本爱情动作片www.在线观看 | 久久天躁狠狠躁夜夜2o2o| 成人av在线播放网站| 亚洲精品乱码久久久v下载方式| 看黄色毛片网站| 国产极品精品免费视频能看的| 少妇人妻一区二区三区视频| 久久人人爽人人爽人人片va| 天天躁日日操中文字幕| 99热这里只有是精品在线观看| 中出人妻视频一区二区| 真人做人爱边吃奶动态| 亚洲经典国产精华液单| 22中文网久久字幕| 日韩欧美一区二区三区在线观看| 国产精品自产拍在线观看55亚洲| 俺也久久电影网| 蜜桃久久精品国产亚洲av| 在线国产一区二区在线| 看十八女毛片水多多多| 在线观看免费视频日本深夜| 自拍偷自拍亚洲精品老妇| 99热只有精品国产| 久久久久久久精品吃奶| 日本撒尿小便嘘嘘汇集6| 老女人水多毛片| 老熟妇乱子伦视频在线观看| 亚洲精品在线观看二区| 亚洲内射少妇av| 国产成人影院久久av| 人妻久久中文字幕网| 精品久久久久久久人妻蜜臀av| 欧美日韩黄片免| 九九久久精品国产亚洲av麻豆| 有码 亚洲区| 毛片女人毛片| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕av在线有码专区| 永久网站在线| 香蕉av资源在线| 成人午夜高清在线视频| 熟女人妻精品中文字幕| 老女人水多毛片| h日本视频在线播放| 亚洲欧美日韩无卡精品| АⅤ资源中文在线天堂| 91久久精品国产一区二区成人| 夜夜夜夜夜久久久久| 免费观看精品视频网站| 国产精品亚洲一级av第二区| 色噜噜av男人的天堂激情| 超碰av人人做人人爽久久| 男人和女人高潮做爰伦理| 成熟少妇高潮喷水视频| 91狼人影院| 在线播放无遮挡| 国内精品美女久久久久久| 麻豆成人av在线观看| 午夜影院日韩av| 天堂√8在线中文| 一本一本综合久久| 国产成人a区在线观看| 亚洲专区国产一区二区| 亚洲成人中文字幕在线播放| or卡值多少钱| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区免费欧美| 欧美最新免费一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 最近中文字幕高清免费大全6 | 人人妻人人看人人澡| 我的老师免费观看完整版| 国产精品一区二区三区四区久久| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 精品少妇黑人巨大在线播放| 日本av免费视频播放| 国产精品欧美亚洲77777| 亚洲国产色片| 久久久久久久久久久丰满| 少妇高潮的动态图| 哪个播放器可以免费观看大片| 亚洲精品国产成人久久av| 乱系列少妇在线播放| 欧美97在线视频| 午夜福利在线观看免费完整高清在| 国内揄拍国产精品人妻在线| 亚洲aⅴ乱码一区二区在线播放| 成年免费大片在线观看| 高清视频免费观看一区二区| 日韩av在线免费看完整版不卡| 国产精品.久久久| 汤姆久久久久久久影院中文字幕| 精品一区在线观看国产| 麻豆精品久久久久久蜜桃| 人人妻人人看人人澡| 亚洲av中文av极速乱| 亚洲国产欧美人成| 欧美精品亚洲一区二区| 在线观看免费视频网站a站| 中文天堂在线官网| 午夜激情久久久久久久| 日韩免费高清中文字幕av| 在线观看人妻少妇| 欧美三级亚洲精品| 国产国拍精品亚洲av在线观看| 下体分泌物呈黄色| 99久久精品一区二区三区| 亚洲国产日韩一区二区| 国产黄色免费在线视频| 日本猛色少妇xxxxx猛交久久| 午夜福利影视在线免费观看| 99热这里只有是精品50| 亚洲欧美一区二区三区黑人 | 人体艺术视频欧美日本| 亚洲美女视频黄频| 精品久久久精品久久久| 国产午夜精品久久久久久一区二区三区| 国产精品无大码| 免费观看性生交大片5| 欧美极品一区二区三区四区| 成人高潮视频无遮挡免费网站| 国产亚洲5aaaaa淫片| 噜噜噜噜噜久久久久久91| 久久精品久久久久久久性| 亚洲性久久影院| 精品久久久久久久久亚洲| 久久精品久久精品一区二区三区| 欧美日韩亚洲高清精品| 夫妻性生交免费视频一级片| 26uuu在线亚洲综合色| 国产免费视频播放在线视频| 99热这里只有精品一区| 99精国产麻豆久久婷婷| 99久久中文字幕三级久久日本| 老司机影院成人| 日韩欧美一区视频在线观看 | 久久99蜜桃精品久久| 日本爱情动作片www.在线观看| 亚洲精品乱码久久久v下载方式| 一级毛片黄色毛片免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 久久99热6这里只有精品| 欧美+日韩+精品| 26uuu在线亚洲综合色| 少妇的逼好多水| 韩国高清视频一区二区三区| 在线精品无人区一区二区三 | 精品99又大又爽又粗少妇毛片| .国产精品久久| 亚洲av福利一区| 在现免费观看毛片| 久热这里只有精品99| 自拍偷自拍亚洲精品老妇| 久久韩国三级中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品久久久久久| 有码 亚洲区| 天堂俺去俺来也www色官网| 女人久久www免费人成看片| 爱豆传媒免费全集在线观看| 人妻少妇偷人精品九色| 尾随美女入室| 少妇丰满av| 国内精品宾馆在线| 亚洲人成网站在线观看播放| 久久99精品国语久久久| 日日摸夜夜添夜夜爱| 欧美高清性xxxxhd video| 熟女电影av网| 亚洲国产精品专区欧美| 在线观看美女被高潮喷水网站| 国产视频内射| 日日啪夜夜爽| 免费观看在线日韩| 成人特级av手机在线观看| 极品教师在线视频| .国产精品久久| 国产亚洲午夜精品一区二区久久| 成年免费大片在线观看| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 国产精品一二三区在线看| 国产欧美亚洲国产| 最近最新中文字幕免费大全7| 久久精品夜色国产| 五月开心婷婷网| 亚洲国产欧美人成| 亚洲精品456在线播放app| 人人妻人人澡人人爽人人夜夜| 日韩av免费高清视频| 国产乱来视频区| 久久久久久久久久人人人人人人| 久久久国产一区二区| 少妇熟女欧美另类| 一个人看的www免费观看视频| 久久久国产一区二区| 热re99久久精品国产66热6| 老司机影院毛片| 欧美少妇被猛烈插入视频| 国产亚洲一区二区精品| 女性生殖器流出的白浆| 高清日韩中文字幕在线| 日韩一区二区三区影片| 一个人看的www免费观看视频| 国产亚洲欧美精品永久| 国产亚洲一区二区精品| 国产av精品麻豆| 久久影院123| 老师上课跳d突然被开到最大视频| 22中文网久久字幕| 久久6这里有精品| 国产色婷婷99| 街头女战士在线观看网站| 国产在视频线精品| 亚洲精品一二三| 国内揄拍国产精品人妻在线| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 国产av码专区亚洲av| 国产精品女同一区二区软件| 在线观看人妻少妇| 精品人妻视频免费看| 亚洲av免费高清在线观看| 久久鲁丝午夜福利片| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久久久免| 亚洲在久久综合| 国产精品秋霞免费鲁丝片| 水蜜桃什么品种好| 少妇高潮的动态图| 男女边吃奶边做爰视频| 亚洲图色成人| 熟女电影av网| 视频中文字幕在线观看| 成人综合一区亚洲| 99久久精品热视频| 亚洲av综合色区一区| 久久久久久九九精品二区国产| 丰满少妇做爰视频| 中文资源天堂在线| 成人国产av品久久久| 久久影院123| 成人综合一区亚洲| 一区二区av电影网| 国产乱来视频区| 欧美xxⅹ黑人| 亚洲精品久久午夜乱码| 99热这里只有是精品50| 寂寞人妻少妇视频99o| 中国国产av一级| 国产色爽女视频免费观看| 观看av在线不卡| 国产精品一区www在线观看| 欧美激情极品国产一区二区三区 | 久久综合国产亚洲精品| 国产高清三级在线| 欧美日韩视频精品一区| 精品人妻熟女av久视频| av福利片在线观看| 舔av片在线| 一个人免费看片子| 国产真实伦视频高清在线观看| 国产精品熟女久久久久浪| 伦理电影大哥的女人| 91久久精品国产一区二区三区| 亚洲av在线观看美女高潮| 亚洲精品日韩在线中文字幕| 最近手机中文字幕大全| 国产成人freesex在线| 中文精品一卡2卡3卡4更新| 国产久久久一区二区三区| 亚洲精品,欧美精品| 亚洲va在线va天堂va国产| 国产成人freesex在线| 亚洲精品色激情综合| 亚洲av综合色区一区| 日本-黄色视频高清免费观看| av在线播放精品| 国产又色又爽无遮挡免| 美女国产视频在线观看| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 97热精品久久久久久| 99国产精品免费福利视频| 夫妻午夜视频| av在线app专区| 婷婷色综合大香蕉| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 中文欧美无线码| 国产精品一区www在线观看| 欧美最新免费一区二区三区| 中国国产av一级| 国产淫语在线视频| 色婷婷av一区二区三区视频| 特大巨黑吊av在线直播| 欧美精品一区二区免费开放| 日韩国内少妇激情av| 九色成人免费人妻av| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩视频精品一区| 久久精品夜色国产| 精品亚洲成国产av| 久久精品国产自在天天线| 色视频www国产| 久久精品人妻少妇| 99久久精品国产国产毛片| 老司机影院毛片| av在线播放精品| 亚洲,欧美,日韩| 成人特级av手机在线观看| 少妇精品久久久久久久| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 亚洲av中文av极速乱| 国产人妻一区二区三区在| 国产有黄有色有爽视频| 国产免费一区二区三区四区乱码| 免费看光身美女| 一级毛片久久久久久久久女| 日韩欧美一区视频在线观看 | 精品午夜福利在线看| 欧美 日韩 精品 国产| 少妇人妻一区二区三区视频| 色视频www国产| 午夜福利在线观看免费完整高清在| 精品久久久久久久末码| 高清视频免费观看一区二区| 噜噜噜噜噜久久久久久91| 蜜桃在线观看..| 九色成人免费人妻av| 中文字幕久久专区| 国产精品国产三级国产av玫瑰| 亚洲国产精品国产精品| 又大又黄又爽视频免费| 免费看av在线观看网站| 蜜臀久久99精品久久宅男| 99热6这里只有精品| av网站免费在线观看视频| 老司机影院成人| 寂寞人妻少妇视频99o| 午夜福利影视在线免费观看| 色网站视频免费| 午夜老司机福利剧场| 三级经典国产精品| 在线观看免费高清a一片| 色综合色国产| av卡一久久| 久久国产精品大桥未久av | 亚洲va在线va天堂va国产| 精品国产露脸久久av麻豆| 欧美成人a在线观看| 岛国毛片在线播放| 国产免费视频播放在线视频| 看十八女毛片水多多多| 亚洲婷婷狠狠爱综合网| 成人亚洲精品一区在线观看 | 乱码一卡2卡4卡精品| 色吧在线观看| 久久久a久久爽久久v久久| 97超视频在线观看视频| 日韩视频在线欧美| 日韩中文字幕视频在线看片 | 亚洲精品色激情综合| 亚洲国产毛片av蜜桃av| 五月玫瑰六月丁香| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 欧美一级a爱片免费观看看| 2018国产大陆天天弄谢| 亚洲三级黄色毛片| 欧美精品国产亚洲| 欧美变态另类bdsm刘玥| 国产精品免费大片| 欧美变态另类bdsm刘玥| 我要看日韩黄色一级片| 亚洲无线观看免费| av国产精品久久久久影院| 日韩国内少妇激情av| 91精品国产国语对白视频| 色综合色国产| 国产免费一区二区三区四区乱码| 国产熟女欧美一区二区| 我要看黄色一级片免费的| 午夜福利网站1000一区二区三区| 久久久色成人| 国内少妇人妻偷人精品xxx网站| 99热6这里只有精品| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 国产成人91sexporn| 最近最新中文字幕大全电影3| 啦啦啦在线观看免费高清www| 久久婷婷青草| 成人影院久久| a级一级毛片免费在线观看| 狂野欧美激情性xxxx在线观看| 在线精品无人区一区二区三 | 成人高潮视频无遮挡免费网站| 久久国产亚洲av麻豆专区| 99视频精品全部免费 在线| 人妻少妇偷人精品九色| 永久网站在线| 亚洲人与动物交配视频| 亚洲美女黄色视频免费看| 亚洲av不卡在线观看| 亚洲怡红院男人天堂| 国产成人a区在线观看| 国产亚洲午夜精品一区二区久久| 日日摸夜夜添夜夜添av毛片| 一区二区三区四区激情视频| 99精国产麻豆久久婷婷| 五月天丁香电影| 精品人妻偷拍中文字幕| 妹子高潮喷水视频| 日韩伦理黄色片| 涩涩av久久男人的天堂| 一边亲一边摸免费视频| 日日摸夜夜添夜夜添av毛片| 啦啦啦视频在线资源免费观看| 美女脱内裤让男人舔精品视频| 亚洲精品日本国产第一区| 亚洲精品乱码久久久久久按摩| 韩国高清视频一区二区三区| 精品国产乱码久久久久久小说| 中文在线观看免费www的网站| 九色成人免费人妻av| 人妻一区二区av| 啦啦啦视频在线资源免费观看| 在线天堂最新版资源| 久久久久网色| 亚洲真实伦在线观看| 国产一级毛片在线| 草草在线视频免费看| 国产免费又黄又爽又色| 舔av片在线| 亚洲经典国产精华液单| 男人和女人高潮做爰伦理| 亚洲精品亚洲一区二区| 美女视频免费永久观看网站| 亚洲国产精品专区欧美| 久久婷婷青草| 最近中文字幕高清免费大全6| 波野结衣二区三区在线| 亚洲av免费高清在线观看| 国产精品国产三级专区第一集| 特大巨黑吊av在线直播| 各种免费的搞黄视频| 蜜桃在线观看..| 91精品伊人久久大香线蕉| 寂寞人妻少妇视频99o| 青春草国产在线视频| 久久99热这里只有精品18| 欧美97在线视频| 在线观看国产h片| 一个人看的www免费观看视频| 日韩亚洲欧美综合| 国产精品福利在线免费观看|