• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of a novel DUF1618 gene family in rice

    2014-11-22 03:37:20LanWangRongxinShenLeTianChenandYaoGuangLiu
    Journal of Integrative Plant Biology 2014年2期

    Lan Wang,Rongxin Shen,Le-Tian Chen,3* and Yao-Guang Liu*

    1State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,College of Life Sciences,South China Agricultural University,Guangzhou 510642,China,2College of Agriculture,South China Agricultural University,Guangzhou 510642,China,3Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms,College of Life Sciences,South China Agricultural University,Guangzhou 510642,China.*Correspondence:lotichen@scau.edu.cn;ygliu@scau.edu.cn

    INTRODUCTION

    Evolution of gene families is important for speciation and adaptation to environments(Ohta 2000);examination of these gene families can provide insights into mechanisms of development,adaptation,and evolution.For example,in the important cereal crop rice(Oryza sativa L.),sequencing and annotation of the genome have revealed a number of previously unknown gene families(Ohyanagi et al.2006),including a large set of gene families with domains of unknown function(DUF).Domains of unknown function protein families are named after their order of addition to the protein-family(Pfam)database since 1997,and the DUF numbering scheme now extends to DUF2607(Bateman et al.2010).With tremendous effort,some DUF genes have been experimentally investigated and renamed.For example,DUF1 and DUF2 have been found to act as enzymes to process the ubiquitous signaling molecule c-di-GMP and therefore have been designated as GGDEF and EAL,respectively(Romling and Simm 2009).DUF27,also called the macro domain,possesses an ADP-ribose binding activity(Karras et al.2005).DUF283 is a functional domain in Dicer or Dicer-like(DCL)proteins and plays essential roles in siRNA processing for gene silencing(Dlakic 2006;Qin et al.2010).Also,root UV-B sensitive 1(RUS1)encodes a DUF647 protein involved in UV-B sensing and early morphogenesis of seedlings(Tong et al.2008).Crystal structure analysis revealed an ABATE domain in a DUF1470 protein and suggested a role as a stress-induced transcriptional regulator(Bakolitsa et al.2010).

    DUF1618 domain-containing genes belong to a large gene family containing a conserved domain of 56–199 amino acids(aa).Our analysis of present databases shows that this gene family is present only in several monocot plant species,suggesting it to be a relatively young gene family.However,this gene family has not been characterized,and no member has been functionally studied.In this study,we identified 121 DUF1618 members in the rice genome that are divided into two groups,with two clades in each group,based on phylogenetic analysis.Most DUF1618 genes in rice are expressed at very low levels.The experimental validation indicated that some DUF1618 genes have different expression patterns in different rice cultivars,and some members may be important regulators of biotic and abiotic stress responses.

    RESULTS

    Genome-wide survey and phylogenetic analysis of DUF1618 genes in rice

    In order to extend our understanding of the DUF1618 gene family,we searched public databases through the National Center for Biotechnology Information(NCBI)website and found 468 rice protein sequence entries with a predicted DUF1618 domain.To eliminate redundancies,we analyzed these protein sequences and found that some of the protein entries are encoded by the same genes.We also confirmed the presence of a DUF1618 domain in each putative DUF1618 protein by using the Simple Modular Architecture Research Tool(SMART)in PFam domain analysis,and found that some of the protein entries did not contain a DUF1618 domain.Finally,a set of 121 non-redundant DUF1618 genes was identified in the rice genome(Figure 1).

    Next,we sorted all these DUF1618 genes according to their location on chromosomes 1–12,and designated them with sequential numbers.To examine the phylogenetic relationship of these DUF1618 proteins,an unrooted phylogenetic tree was constructed from alignments of the DUF1618 domain sequences with MEGA 4.0(Tamura et al.2007).These DUF1618 proteins were classified into two distinct groups,A and B,consisting of 87 and 34 members,respectively.Besides the difference in gene number,the length of conserved DUF1618 motifs of groups A and B is also different(Figure S1).The length of DUF1618 motif in group B ranges from 134 to 199 aa,which is longer than that of group A(56–163 aa).Each group was further divided into two clades,namely A1 and A2 or B1 and B2(Figure 1).

    Figure 1.Phylogenetic relationships of the identified 121 DUF1618 proteins in riceThe unrooted tree was constructed by alignments of the DUF1618 domain sequences using the software MEGA 4.0.The sequential numbers of the DUF1618 proteins in this study are shown in parentheses.The DUF1618 family in rice is classified into two groups(A and B,separated by solid line),and each group consists of two clades(A1 and A2;B1 and B2,separated by dotted lines).The DUF1618 genes with expression levels higher than 1,000 in Affymetrix GeneChip Rice Genome Array assay are marked by empty or filled stars,and six of them(indicated by filled stars)were selected for further expression analysis.

    Figure 2.Chromosomal locations of the 121 rice DUF1618 genesTo simplify the figure,only the sequential numbers of the genes are shown.The different colors of the protein numbers indicate that they belong to different clades in the phylogenetic tree:clades A1(red),A2(blue),B1(black),and B2(green).Black dots indicate the centromeric positions.

    Chromosomal distribution and structure of DUF1618 genes in rice

    We analyzed these DUF1618 genes on their chromosomal locations and found that they are distributed unevenly on the chromosomes(Figure 2,Table S2).For example,chromosomes 1 and 3 possess 21 and 28 DUF1618 genes,respectively,but chromosomes 7 and 10 each have only one DUF1618 gene(Figure 2).Many of these genes are located as clusters on chromosomes.For instance,on chromosome 1,there are 10 DUF1618 genes located in a region of 291 kb,and on chromosome 11,10 DUF1618 genes clustered within a region of 53 kb.Two DUF1618 genes,#2 and#83,have two and three identical copies,respectively,whereas#80,#81,and#82 each possesses a total of seven copies with high nucleotide sequence identities(99–100%),and they are located as clusters.Notably,one DUF1618 protein(#64,Os05g0250101)contains two DUF1618 domains.In addition,seven DUF1618 proteins contain other conserved functional domains,such as an F-box,kinase domain,transmembrane segment,and so on(Figure 3).

    DUF1618 genes in other plant species

    The completion of genome sequencing in model plants and expressed sequence tag(EST)sequences of many non-model plants enables us to analyze DUF1618 gene family members in these plant species.Thirty-five plant EST databases and six plant genome sequence databases were screened(Table S1),including those of maize(Zea mays),barley(Hordeum vulgare),sorghum(Sorghum bicolor),Arabidopsis(Arabidopsis thaliana),soybean(Glycine max),and poplar(Populus×canadensis).Interestingly,the DUF1618 gene family is found only in four monocot species and not in any of the 22 analyzed dicot and other nine monocot plant species.In the genome databases of sorghum,maize,and barley,60,14,and 18 non-redundant DUF1618 family members were detected,respectively(Table 1).

    We conducted phylogenetic analysis with the DUF1618 proteins,showing that all DUF1618 proteins from sorghum,maize,and barley could be integrated into the four clades of the rice phylogenetic tree(Figure 4).Most DUF1618 proteins from sorghum(46/60)and barley(11/18)were located in the A group,and all 14 DUF1618 proteins from maize were grouped into the A1 clade(Figure 4,Table 1).

    Figure 3.Eight rice DUF1618 proteins contain other putative conserved domainsConserved domains are represented by colored boxes and symbols with explanation.Pkinase_tyr,protein tyrosine kinase domain;Auxin_BP,auxin-binding partner domain;Retrotrans_-gag,retrotransposon gag protein domain;BSD,BTF2-like transcription factors,synapse-associated and DOS2-like protein domain.

    Table 1.The distribution of DUF1618 genes in the clades in four monocot species

    Expression profiles of rice DUF1618 genes and the predicted protein subcellular localization

    We investigated the expression profile of the 121 rice DUF1618 genes in seedling,root,leaf,stem,young panicle,and stamen,using a public expression database from the Affymetrix GeneChip Rice Genome Array(Wang et al.2010).The results showed that most of the genes were expressed at relatively low levels in the tested tissues/organs(Table S2).Only 13 DUF1618 genes(#25,#26,#35,#41,#51,#54,#59,#80,#81,#92,#112,#113,and#116)showed higher hybridization signals(>1,000)in at least one tissue/organ(Figure 1,Table S2).Among those 13 DUF1618 genes,5(#54,#59,#112,#113,and#116)belong to the A1 clade,3(#35,#41,and#51)belong to the A2 clade,and 5(#25,#26,#80,#81,and#92)belong to the B2 clade,but none is in the B1 clade.Os12g39970(#112)had the highest expression levels(6,405–14,655),similar to those of Actin 1(10,000–15,000 in different tissues).In addition,we searched these DUF1618 genes in three other microarray databases(GSE6901,GSE3053,and GSE4438).We found that the majority of the genes with relatively high expression levels are common among these databases(Figure 5A).Next,we selected six of them(#26,#35,#51,#59,#112,and#113)belonging to the A1,A2,and B2 clades(Figure 1;Table S2)to investigate their transcriptional profiles in different cultivars and tissues using quantitative reverse transcription-polymerase chain reaction(qRT-PCR).Our data showed that the expression level of these genes varied among different tissues(Figure 5B)and between indica and japonica cultivars(Figure 6).For example,#26,#35,and#113 were expressed specifically in the leaf of japonica rice Taichung 65(T65),while the#51 and#112 were expressed preferentially in the leaf of indica rice 93-11(Figure 6).In contrast,#59 and#112 had relatively high expression in the root of T65(Figure 6).

    We used the Plant-PLoc server(Chou and Shen 2007)to examine the subcellular localization of the rice DUF1618 proteins,and the majority of the DUF1618 family members(81/121)were predicted to be targeted to the chloroplasts,with the others to be targeted to the cytoplasm,the mitochondria,the chloroplasts,the plasma membrane,the endoplasmic reticulum,the nucleus,the peroxisome,and the cell wall(Table S2).

    Expression profiles of rice DUF1618 genes in response to abiotic stresses and salicylic acid

    Based on the public microarray data,salt is the most effective signal that activates the expression of the six DUF1618 genes(#26,#35,#51,#59,#112,and#113)in an indica cultivar IR64(Figure 5C).Furthermore,we investigated the transcriptional responses of the six selected genes in seedlings of an indica line(TISL5),with different treatments.The qRT-PCR assays showed that five DUF1618 genes,except for#113,responded to cold stress;and five DUF1618 genes,except#112,responded to salt stress(Figure 7).By contrast,only one DUF1618(#112)responded to heat stress and two DUF1618s(#51 and#59)responded to drought stress(Figure 7).Salicylic acid(SA)induces the accumulation of pathogenesis-related proteins and is associated with disease resistance in plants(Koornneef and Pieterse 2008).To test whether DUF1618 family members may contribute to plant defense signaling,we treated the rice seedlings with SA and tested the expression profile of the six DUF1618 genes.The results showed that SA treatment significantly downregulated the expression of#112 and#113 DUF1618 genes,suggesting that they may be related to defense responses against pathogen invasion(Figure 7).Consistent with the public microarray data,most of the selected DUF1618 genes responded to salt stress in TISL5(Figures 5C,7).

    DISCUSSION

    DUF1618 is a newly identified gene family in higher plants.In this study,we found no DUF1618 genes in the databases of 22 dicot genomes or EST libraries,suggesting that the DUF1618 family originated in an ancestral monocot plant species after the divergence between monocot and dicot species.Thus,DUF1618 is a relatively young gene family.It is notable that the A1 clade is commonly shared in the four species and all the DUF1618 members in maize are grouped into this clade(Figure 4),suggesting that the A1 clade may be the primitive subfamily in these DUF1618 gene-containing species,and the DUF1618 family in maize has been evolved slowly in comparison to that in the other three species,especially in rice.

    Figure 4.Phylogenetic relationship among the DUF1618 proteins from rice(Os),sorghum(Sb),maize(Zm),and barley(Hv)The unrooted tree was generated from alignments of the DUF1618 domain sequences with the software MEGA 4.0.Groups A and B are separated by a solid line and the clades are separated by dotted lines.

    In the monocot grass family(Poaceae),rice has a compact genome(430 Mb),but the genome size of other monocots,such as sorghum(750 Mb),maize(2,500 Mb),and barley(5,000 Mb),have larger genomes(Arumuganathan and Earle 1991).However,the total number of non-redundant DUF1618 genes in rice,sorghum,maize,and barley is 121,60,14,and 18,respectively(Table 1).This strongly suggests that the DUF1618 gene family has expanded relatively faster in rice,not associated with the genome size variation.Many DUF1618 members with high sequence similarity are found on the chromosomes as gene clusters,suggesting that they were derived from relatively recent gene duplication events,by which the DUF1618 family in rice has become a relatively large family.This phenomenon is also observed in the NBS-LRR R protein family and F-box family and AP2/EREBP family in plants(Cannon et al.2002;Jain et al.2007;Sharoni et al.2011).

    The expression analysis based on the microarray data showed that the expression levels of most DUF1618 genes(90%)are very low,suggesting that some of them may not be active genes.Of 12 high-expressing genes,most of them(10 genes)were common among these databases(Figure 5A),which supports that 6 out of the 10 common genes may cover major functional genes of the DUF1618 family.By investigation of the transcriptional levels of these six representative DUF1618 genes,we revealed the tissue specificity of DUF1618 genes in different cultivars(Figures 5B,6)and found that some DUF1618 genes are regulated by multiple stresses,especially by salinity stress(Figures 5C,7),suggesting that these genes may be important for biotic and abiotic stresses.We realized certain inconsistencies between microarray data and our qRT-PCR experimental results.These could be due to the different genotype of rice cultivars,developmental stages and/or individual treatments.Moreover,most of the DUF1618 proteins(81/121)are predicted to target to the chloroplast(Table S2),suggesting that many DUF1618 proteins may be involved in chloroplast biogenesis and/or photosynthesis pathways.The presence of a relatively large number of DUF1618 genes in the rice genome and the responses of some members to multiple stresses may indicate that the DUF1618 families important for the fitness of this species in response to stresses and in reproduction.The large number of DUF1618 family members may provide a backup strategy in case of dysfunction of an important gene,for rice reproduction and survival of multiple stresses.

    Taken together,this study provides a general overview of the DUF1618 family in rice and clues for further investigation of the functions and evolutionary significance of this young gene family.

    Figure 5.In-depth analysis of public expression microarray databases(A)DUF1618 genes with relative high expression were selected from four independent microarray databases.Each colored oval stands for high-expressing genes from a database.CREP and GSE3053 contain 13 high-expressing genes;GSE4438 and GSE6901 have 12 and 11 such genes,respectively.Among these four datasets,10 genes are common.(B)The expression patterns of six representative DUF1618 genes are shown based on the tissue specificity of rice of Zhenshan 97 and Minhui 63 in the CREP database.RL,root and leaf.YP,young panicles.(C)The expression profiles of six representative DUF1618 genes of IR64 in response to drought,salt,and cold stresses are presented based on the GSE6901 database.

    MATERIALS AND METHODS

    Database searches

    The annotated DUF1618 proteins in the rice genome were searched in the NCBI protein data library.Non-redundant DUF1618 proteins with confidence by SMART/PFam(http://smart.embl-heigelberg.de/)were checked individually.The gene sequences and the DUF1618 loci were searched by NCBI BLAST(http://blast.ncbi.nlm.nih.gov/Blast.cgi).Subcellular localizations of the rice(Oryza sativa L.)DUF1618 proteins were predicted using the Plant-PLoc server(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/).

    The expression profiles of the 121 rice DUF1618 genes in the seedling,the root,the leaf,the stem,the young panicle,and the stamen of indica cultivars were investigated based on the public expression database CREP(Wang et al.2010;http://crep.ncpgr.cn/).In addition,three microarray databases with different varieties were used for bioinformatic analysis:GSE6901 based on indica variety IR64(Jain et al.2007;Jain and Khurana 2009;http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6901),GSE3053 based on indica varieties IR29 and FL478(Walia et al.2005;http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3053),GSE4438 based on indica variety IR29 IR63731,and japonica cultivar M103 and Agami(Walia et al.2007;http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4438).

    Phylogenetic analysis

    The conserved amino acid sequence alignment of DUF1618 domains was performed by ClustalW of the software MEGA4.0.Unrooted phylogenetic trees were constructed by the neighbor-joining method with MEGA 4.0 using the DUF1618 conserved domain amino acid sequences(Tamura et al.2007).Bootstrap values were calculated from 1,000 replicates.

    Figure 6.Validation of the expression of six DUF1618 genes by quantitative reverse transcription-polymerase chain reaction(qRT-PCR)in different tissues of riceThe expression levels were normalized by OsActin1 expression and the data shown are means±SD based on three replicates(n=3).T65 and 93-11 are japonica and indica cultivars,respectively.R,root of seedlings;L,leaf of seedlings;S,stem of seedlings;YP,young panicles.

    Figure 7.Transcriptional responses of six DUF1618 genes to abiotic stresses and salicylic acid(SA)The transcriptional levels of the genes in response to abiotic stresses(cold,heat,salt,and drought)and salicylic acid(SA)were tested by quantitative reverse transcription-polymerase chain reaction(qRT-PCR)with a japonica line TISL5.The data are shown as mean ± SD(n=3).The transcriptional difference between mock and treatments was examined by Student’s t-test.Single asterisk indicates 0.01<P<0.05;double asterisks indicate P<0.01.

    RNA isolation and RT-PCR analysis

    The indica cultivar 93-11 and japonica cultivars Taichung 65 and TISL5(Zhang and Zhang 2001)were grown in the farm of South China Agricultural University in China.Abiotic stress treatments of rice seedlings were carried out as previously described(Li et al.2011).Total RNAs were isolated using TRIzol reagent(Invitrogen Carlsbad,CA,USA).The first strand of cDNA was synthesized from 1 μg of total RNA using the SuperScript II reverse transcription kit(Invitrogen).The qRT-PCR was conducted with gene-specific primers(Table S3).The PCRs were carried out with 30 cycles of 94 °C for 15 s,58 °C for 60 s,and 72°C for 30 s.

    ACKNOWLEDGEMENTS

    This research was supported by the National Natural Science Foundation of China(30800597),the Natural Science Foundation of Guangdong Province(8451064201001015),and the New Teacher Foundation of Chinese Colleges and Universities(20094404120018).We thank Dr.Zhang Q for help with stress treatment of rice samples.

    Arumuganathan K,Earle E(1991)Nuclear DNA content of some important plant species.Plant Mol Biol Rep 9:208–218

    Bakolitsa C,Bateman A,Jin KK,McMullan D,Krishna SS,Miller MD,Abdubek P,Acosta C,Astakhova T,Axelrod HL,Burra P,Carlton D,Chiu HJ,Clayton T,Das D,Deller MC,Duan L,Elias Y,Feuerhelm J,Grant JC,Grzechnik A,Grzechnik SK,Han GW,Jaroszewski L,Klock HE,Knuth MW,Kozbial P,Kumar A,Marciano D,Morse AT,Murphy KD,Nigoghossian E,Okach L,Oommachen S,Paulsen J,Reyes R,Rife CL,Sefcovic N,Tien H,Trame CB,Trout CV,van den Bedem H,Weekes D,White A,Xu Q,Hodgson KO,Wooley J,Elsliger MA,Deacon AM,Godzik A,Lesley S,Wilson IA(2010)The structure of Jann_2411(DUF1470)from Jannaschia sp.at 1.45 A resolution reveals a new fold(the ABATE domain)and suggests its possible role as a transcription regulator.Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1198–1204

    Bateman A,Coggill P,Finn RD(2010)DUFs:Families in search of function.Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1148–1152

    Cannon SB,Zhu H,Baumgarten AM,Spangler R,May G,Cook DR,Young ND(2002)Diversity,distribution,and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies.J Mol Evol 54:548–562

    Chou KC,Shen HB(2007)Large-scale plant protein subcellular location prediction.J Cell Biochem 100:665–678

    Dlakic M(2006)DUF283 domain of Dicer proteins has a doublestranded RNA-binding fold.Bioinformatics 22:2711–2714

    Jain M,Khurana JP(2009)Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice.FEBS J 276:3148–3162

    Jain M,Nijhawan A,Arora R,Agarwal P,Ray S,Sharma P,Kapoor S,Tyagi AK,Khurana JP(2007)F-box proteins in rice.Genome-wide analysis,classification,temporal and spatial gene expression during panicle and seed development,and regulation by light and abiotic stress.Plant Physiol 143:1467–1483

    Karras GI,Kustatscher G,Buhecha HR,Allen MD,Pugieux C,Sait F,Bycroft M,Ladurner AG(2005)The macro domain is an ADP-ribose binding module.EMBO J 24:1911–1920

    Koornneef A,Pieterse CM(2008)Cross talk in defense signaling.Plant Physiol 146:839–844

    Li X,Wang C,Nie P,Lu X,Wang M,Liu W,Yao J,Liu Y,Zhang Q(2011)Characterization and expression analysis of the SNF2 family genes in response to phytohormones and abiotic stresses in rice.Biol Plantarum 55:625–633

    Ohta T(2000)Evolution of gene families.Gene 259:45–52

    Ohyanagi H,Tanaka T,Sakai H,Shigemoto Y,Yamaguchi K,Habara T,Fujii Y,Antonio BA,Nagamura Y,Imanishi T,Ikeo K,Itoh T,Gojobori T,Sasaki T(2006)The Rice Annotation Project Database(RAP-DB):Hub for Oryza sativa ssp.japonica genome information.Nucleic Acids Res 34:D741–D744

    Qin H,Chen F,Huan X,Machida S,Song J,Yuan YA(2010)Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein–protein interaction.RNA 16:474–481

    Romling U,Simm R(2009)Prevailing concepts of c-di-GMP signaling.Contrib Microbiol 16:161–181

    Sharoni AM,Nuruzzaman M,Satoh K,Shimizu T,Kondoh H,Sasaya T,Choi IR,Omura T,Kikuchi S(2011)Gene structures,classification and expression models of the AP2/EREBP transcription factor family in rice.Plant Cell Physiol 52:344–360

    Tamura K,Dudley J,Nei M,Kumar S(2007)MEGA4:Molecular Evolutionary Genetics Analysis(MEGA)software version 4.0.Mol Biol Evol 24:1596–1599

    Tong H,Leasure CD,Hou X,Yuen G,Briggs W,He ZH(2008)Role of root UV-B sensing in Arabidopsis early seedling development.Proc Natl Acad Sci USA 105:21039–21044

    Walia H,Wilson C,Condamine P,Liu X,Ismail AM,Zeng L,Wanamaker SI,Mandal J,Xu J,Cui X,Close TJ(2005)Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage.Plant Physiol 139:822–835

    Walia H,Wilson C,Zeng L,Ismail AM,Condamine P,Close TJ(2007)Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage.Plant Mol Biol 63:609–623

    Wang L,Xie W,Chen Y,Tang W,Yang J,Ye R,Liu L,Lin Y,Xu C,Xiao J,Zhang Q(2010)A dynamic gene expression atlas covering the entire life cycle of rice.Plant J 61:752–766

    Zhang Z,Zhang G(2001)Fine mapping of the S-c locus and markerassisted selection using PCR markers in rice.Acta Agron Sin 27:704–709

    SUPPORTING INFORMATION

    Additional supporting information can be found in the online version of this article:

    Figure S1.Amino acid sequence alignment of some selected DUF1618 domains

    (A)Proteins belong to group A,which share average 39.2%similarity in the domain sequences.(B)Proteins belong to group B,which share average 40.5%similarity in the domain sequences

    Table S1.The EST databases for 35 species screened in this study

    Table S2.Expression patterns and predicted localization of DUF1618 genes in rice

    Table S3.Primers for qRT-PCR in this study

    亚洲激情五月婷婷啪啪| 日韩免费高清中文字幕av| 亚洲一区中文字幕在线| 12—13女人毛片做爰片一| 精品视频人人做人人爽| 午夜福利在线免费观看网站| 后天国语完整版免费观看| 亚洲国产中文字幕在线视频| 777久久人妻少妇嫩草av网站| 亚洲 国产 在线| 他把我摸到了高潮在线观看 | 男女免费视频国产| 99香蕉大伊视频| 久久影院123| 欧美 亚洲 国产 日韩一| 日韩制服丝袜自拍偷拍| 美女脱内裤让男人舔精品视频| a在线观看视频网站| 午夜成年电影在线免费观看| 秋霞在线观看毛片| 国产在线一区二区三区精| 久久久久精品人妻al黑| 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| 12—13女人毛片做爰片一| 99精品欧美一区二区三区四区| 男女边摸边吃奶| 精品久久蜜臀av无| 亚洲欧美一区二区三区久久| 精品人妻1区二区| 91精品三级在线观看| 最新的欧美精品一区二区| 亚洲欧洲日产国产| 精品少妇一区二区三区视频日本电影| 日韩电影二区| 一级,二级,三级黄色视频| 国产激情久久老熟女| 热99国产精品久久久久久7| 国产亚洲av片在线观看秒播厂| 性高湖久久久久久久久免费观看| 国产福利在线免费观看视频| a级毛片在线看网站| 国产黄色免费在线视频| 国产成人精品无人区| 色播在线永久视频| 久久影院123| 少妇猛男粗大的猛烈进出视频| 久久精品亚洲熟妇少妇任你| 欧美亚洲日本最大视频资源| 国产精品麻豆人妻色哟哟久久| videos熟女内射| 久久精品熟女亚洲av麻豆精品| 蜜桃在线观看..| 中文字幕人妻丝袜一区二区| 国产又色又爽无遮挡免| 国产伦理片在线播放av一区| 亚洲精品国产精品久久久不卡| 日韩欧美免费精品| 亚洲激情五月婷婷啪啪| 欧美日韩视频精品一区| 亚洲av男天堂| 成人国产av品久久久| 国产日韩欧美视频二区| 久久国产精品影院| 黑人操中国人逼视频| 精品少妇内射三级| 国产男女内射视频| 日本撒尿小便嘘嘘汇集6| 国产成人一区二区三区免费视频网站| 亚洲色图 男人天堂 中文字幕| 成人黄色视频免费在线看| 一级,二级,三级黄色视频| 免费高清在线观看视频在线观看| 国产精品 国内视频| 叶爱在线成人免费视频播放| 久久人妻福利社区极品人妻图片| 亚洲av日韩在线播放| 国产一区二区三区在线臀色熟女 | 国产一卡二卡三卡精品| 久久精品国产亚洲av香蕉五月 | 久久久久视频综合| 免费av中文字幕在线| 亚洲精品国产色婷婷电影| 国产片内射在线| 亚洲欧洲精品一区二区精品久久久| av网站在线播放免费| 国产人伦9x9x在线观看| 大片电影免费在线观看免费| 国产区一区二久久| 国产亚洲欧美精品永久| 9色porny在线观看| 99久久99久久久精品蜜桃| 国产免费一区二区三区四区乱码| 亚洲专区字幕在线| 曰老女人黄片| 99久久综合免费| 亚洲精品成人av观看孕妇| 国产精品一区二区精品视频观看| 一本综合久久免费| 久久精品亚洲熟妇少妇任你| 少妇猛男粗大的猛烈进出视频| 在线观看免费高清a一片| 一级毛片女人18水好多| 91老司机精品| 在线观看舔阴道视频| 少妇 在线观看| 亚洲av成人不卡在线观看播放网 | 少妇的丰满在线观看| 久久人人爽av亚洲精品天堂| 黑人操中国人逼视频| 一区二区三区激情视频| 亚洲少妇的诱惑av| 亚洲国产精品999| 俄罗斯特黄特色一大片| 大香蕉久久成人网| 少妇的丰满在线观看| 免费一级毛片在线播放高清视频 | 一级毛片女人18水好多| 免费在线观看视频国产中文字幕亚洲 | 亚洲av成人一区二区三| 国产成人啪精品午夜网站| 亚洲国产欧美网| 久久久久久人人人人人| 一本一本久久a久久精品综合妖精| 美女高潮到喷水免费观看| av超薄肉色丝袜交足视频| a在线观看视频网站| 大片电影免费在线观看免费| 一区二区三区乱码不卡18| 亚洲欧美日韩另类电影网站| 国产精品影院久久| 国产精品香港三级国产av潘金莲| 国产欧美日韩精品亚洲av| 高清视频免费观看一区二区| www.999成人在线观看| 亚洲精品中文字幕一二三四区 | 最近最新免费中文字幕在线| 国产色视频综合| 国产成人欧美在线观看 | 午夜福利免费观看在线| 欧美日韩成人在线一区二区| 日本vs欧美在线观看视频| 91老司机精品| 免费在线观看视频国产中文字幕亚洲 | 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 丝袜喷水一区| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 每晚都被弄得嗷嗷叫到高潮| 精品人妻熟女毛片av久久网站| 亚洲国产av影院在线观看| 美国免费a级毛片| 国产真人三级小视频在线观看| 免费看十八禁软件| 亚洲国产欧美网| 青春草视频在线免费观看| 日韩人妻精品一区2区三区| 久久国产精品人妻蜜桃| 男女午夜视频在线观看| 国产黄色免费在线视频| 午夜福利视频精品| tube8黄色片| 丝袜人妻中文字幕| 精品卡一卡二卡四卡免费| 久久久国产欧美日韩av| 后天国语完整版免费观看| 精品久久久精品久久久| 男女无遮挡免费网站观看| 嫁个100分男人电影在线观看| 看免费av毛片| 国产精品久久久av美女十八| 国产色视频综合| 亚洲av片天天在线观看| 亚洲精品一二三| 热99re8久久精品国产| 久久精品亚洲熟妇少妇任你| 亚洲中文av在线| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 亚洲第一青青草原| 桃花免费在线播放| 亚洲午夜精品一区,二区,三区| 亚洲男人天堂网一区| 三级毛片av免费| 亚洲中文日韩欧美视频| 蜜桃在线观看..| 操出白浆在线播放| 久热爱精品视频在线9| 91精品三级在线观看| 在线观看免费午夜福利视频| 国产亚洲精品一区二区www | 国产精品久久久av美女十八| 免费观看a级毛片全部| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 热99re8久久精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机午夜十八禁免费视频| 亚洲专区国产一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 欧美人与性动交α欧美精品济南到| 看免费av毛片| 国产主播在线观看一区二区| 国产精品成人在线| 又黄又粗又硬又大视频| 亚洲精品美女久久久久99蜜臀| 女人精品久久久久毛片| 国产精品一二三区在线看| 国产在线免费精品| 伦理电影免费视频| 国产精品影院久久| 国产av又大| 国产在视频线精品| 国产欧美日韩精品亚洲av| 国产男人的电影天堂91| 十八禁高潮呻吟视频| 久久天躁狠狠躁夜夜2o2o| 看免费av毛片| 美女午夜性视频免费| 大香蕉久久成人网| 亚洲精品一卡2卡三卡4卡5卡 | 精品国产乱子伦一区二区三区 | 欧美久久黑人一区二区| 在线观看免费视频网站a站| 99香蕉大伊视频| 777久久人妻少妇嫩草av网站| 国产一区二区激情短视频 | 国产欧美亚洲国产| 欧美大码av| 国产亚洲精品第一综合不卡| 69精品国产乱码久久久| 亚洲熟女毛片儿| 男女之事视频高清在线观看| 国产精品一区二区免费欧美 | 淫妇啪啪啪对白视频 | 视频区图区小说| 久久国产精品影院| 人成视频在线观看免费观看| 在线观看舔阴道视频| 高清视频免费观看一区二区| 伦理电影免费视频| h视频一区二区三区| 视频区图区小说| 秋霞在线观看毛片| 一区二区日韩欧美中文字幕| 成年人黄色毛片网站| 男人爽女人下面视频在线观看| 啦啦啦 在线观看视频| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 亚洲精品中文字幕一二三四区 | 亚洲av成人不卡在线观看播放网 | av天堂在线播放| 桃红色精品国产亚洲av| 精品福利观看| 成年美女黄网站色视频大全免费| 99久久99久久久精品蜜桃| 一本一本久久a久久精品综合妖精| 国产男人的电影天堂91| 波多野结衣av一区二区av| 亚洲天堂av无毛| 亚洲va日本ⅴa欧美va伊人久久 | 欧美老熟妇乱子伦牲交| 性色av一级| 午夜福利一区二区在线看| 成在线人永久免费视频| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 亚洲自偷自拍图片 自拍| 少妇粗大呻吟视频| 99re6热这里在线精品视频| 欧美人与性动交α欧美精品济南到| 成人18禁高潮啪啪吃奶动态图| 久久国产精品影院| 人人妻人人爽人人添夜夜欢视频| 免费观看a级毛片全部| 亚洲欧美日韩高清在线视频 | 秋霞在线观看毛片| 丁香六月天网| 亚洲欧美精品自产自拍| 婷婷丁香在线五月| 欧美日韩av久久| 午夜免费观看性视频| 一区二区三区精品91| 青青草视频在线视频观看| 久久久久久人人人人人| 超色免费av| 手机成人av网站| 国产精品av久久久久免费| 久久99热这里只频精品6学生| 人妻 亚洲 视频| 99久久精品国产亚洲精品| 婷婷成人精品国产| 最新的欧美精品一区二区| 热99国产精品久久久久久7| 国产一区二区三区在线臀色熟女 | 免费观看av网站的网址| 久久精品国产综合久久久| 捣出白浆h1v1| 我的亚洲天堂| 亚洲第一青青草原| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 熟女少妇亚洲综合色aaa.| 波多野结衣av一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产区一区二| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 老鸭窝网址在线观看| 欧美人与性动交α欧美软件| 国产精品av久久久久免费| 午夜福利视频精品| 国产免费现黄频在线看| av在线播放精品| 国产精品二区激情视频| 亚洲情色 制服丝袜| 久久毛片免费看一区二区三区| 2018国产大陆天天弄谢| 男人添女人高潮全过程视频| 亚洲国产欧美在线一区| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 青草久久国产| 精品少妇一区二区三区视频日本电影| 久久久久国内视频| 侵犯人妻中文字幕一二三四区| 国产精品自产拍在线观看55亚洲 | √禁漫天堂资源中文www| 欧美在线黄色| 亚洲avbb在线观看| 亚洲精品久久成人aⅴ小说| 少妇的丰满在线观看| 丁香六月天网| 老司机午夜福利在线观看视频 | 亚洲精品久久成人aⅴ小说| 777米奇影视久久| 欧美av亚洲av综合av国产av| 大码成人一级视频| 啦啦啦免费观看视频1| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 国产97色在线日韩免费| 在线观看一区二区三区激情| 老司机午夜福利在线观看视频 | 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频 | 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| 亚洲美女黄色视频免费看| 一边摸一边做爽爽视频免费| 国产精品偷伦视频观看了| 久久国产精品影院| 在线观看免费日韩欧美大片| 黄色 视频免费看| 波多野结衣一区麻豆| 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 少妇精品久久久久久久| 午夜激情久久久久久久| 午夜福利乱码中文字幕| 欧美大码av| 久久中文看片网| 国产亚洲午夜精品一区二区久久| 午夜免费观看性视频| svipshipincom国产片| 午夜福利视频在线观看免费| 成人三级做爰电影| 日韩欧美一区二区三区在线观看 | 丝袜人妻中文字幕| 国产无遮挡羞羞视频在线观看| 国产色视频综合| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线| 精品人妻一区二区三区麻豆| 久久久久国产一级毛片高清牌| 97在线人人人人妻| 久久久久国产一级毛片高清牌| 欧美在线黄色| 男女高潮啪啪啪动态图| 亚洲第一青青草原| 男女高潮啪啪啪动态图| 嫩草影视91久久| 天堂中文最新版在线下载| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 久久精品aⅴ一区二区三区四区| 久久久久国产一级毛片高清牌| 久久人人97超碰香蕉20202| 国产欧美日韩一区二区精品| 亚洲欧美精品综合一区二区三区| 亚洲av电影在线进入| 人人澡人人妻人| 91成人精品电影| 久久性视频一级片| 国产精品免费视频内射| 国产亚洲精品久久久久5区| 亚洲av欧美aⅴ国产| av国产精品久久久久影院| 波多野结衣av一区二区av| 免费人妻精品一区二区三区视频| 精品卡一卡二卡四卡免费| 国产一卡二卡三卡精品| av片东京热男人的天堂| 建设人人有责人人尽责人人享有的| 91精品三级在线观看| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 一级片免费观看大全| 亚洲成人手机| 久久久精品免费免费高清| 18禁黄网站禁片午夜丰满| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| www.精华液| av在线app专区| 国产成人av教育| 国产精品一二三区在线看| 日本a在线网址| 水蜜桃什么品种好| 欧美日韩成人在线一区二区| 午夜视频精品福利| 久久这里只有精品19| 十八禁高潮呻吟视频| 少妇的丰满在线观看| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 国产在线免费精品| 欧美人与性动交α欧美软件| 国产亚洲一区二区精品| 成在线人永久免费视频| 啦啦啦在线免费观看视频4| 啦啦啦在线免费观看视频4| 欧美+亚洲+日韩+国产| 又大又爽又粗| 老司机亚洲免费影院| 国产精品九九99| 国产片内射在线| h视频一区二区三区| 欧美黄色淫秽网站| 午夜精品国产一区二区电影| 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| 中文字幕高清在线视频| 捣出白浆h1v1| 久久国产精品人妻蜜桃| 考比视频在线观看| av网站在线播放免费| 日本91视频免费播放| 亚洲国产av影院在线观看| 老熟妇仑乱视频hdxx| 欧美成狂野欧美在线观看| 天堂俺去俺来也www色官网| 1024视频免费在线观看| 丝袜脚勾引网站| 国产有黄有色有爽视频| 丰满少妇做爰视频| 成人免费观看视频高清| 日本av手机在线免费观看| 国产淫语在线视频| www.熟女人妻精品国产| 国产三级黄色录像| 不卡av一区二区三区| 丝袜人妻中文字幕| 自线自在国产av| 婷婷丁香在线五月| 人人妻人人爽人人添夜夜欢视频| 欧美日韩国产mv在线观看视频| 人成视频在线观看免费观看| 美女视频免费永久观看网站| 18禁裸乳无遮挡动漫免费视频| 国产主播在线观看一区二区| 免费在线观看日本一区| 欧美日韩亚洲综合一区二区三区_| 水蜜桃什么品种好| 亚洲人成电影免费在线| 久久国产精品男人的天堂亚洲| 国产日韩一区二区三区精品不卡| 国产精品一区二区在线观看99| 欧美激情久久久久久爽电影 | 亚洲国产av新网站| 欧美黑人精品巨大| xxxhd国产人妻xxx| 日本a在线网址| 一区二区三区激情视频| av片东京热男人的天堂| 热99久久久久精品小说推荐| 热re99久久国产66热| 欧美在线一区亚洲| 少妇粗大呻吟视频| 大码成人一级视频| 精品少妇黑人巨大在线播放| 亚洲国产欧美网| 电影成人av| 中文字幕制服av| 色综合欧美亚洲国产小说| 国产精品二区激情视频| 国产成+人综合+亚洲专区| 亚洲精华国产精华精| 黄色 视频免费看| 中文字幕色久视频| 免费在线观看完整版高清| 男男h啪啪无遮挡| 伊人亚洲综合成人网| 成人av一区二区三区在线看 | 亚洲第一青青草原| 欧美乱码精品一区二区三区| 汤姆久久久久久久影院中文字幕| 十八禁高潮呻吟视频| av一本久久久久| 久久久国产精品麻豆| 女性被躁到高潮视频| 亚洲天堂av无毛| 搡老岳熟女国产| 高潮久久久久久久久久久不卡| 国内毛片毛片毛片毛片毛片| 黄网站色视频无遮挡免费观看| 日本撒尿小便嘘嘘汇集6| 国产精品久久久人人做人人爽| 日日摸夜夜添夜夜添小说| 亚洲欧美精品自产自拍| 老汉色∧v一级毛片| 少妇的丰满在线观看| 欧美黑人欧美精品刺激| 欧美性长视频在线观看| 欧美人与性动交α欧美精品济南到| 免费少妇av软件| xxxhd国产人妻xxx| 大型av网站在线播放| 美女视频免费永久观看网站| 人妻久久中文字幕网| 国产欧美亚洲国产| 色老头精品视频在线观看| 99精品久久久久人妻精品| 国产精品香港三级国产av潘金莲| 丁香六月欧美| 一级,二级,三级黄色视频| www.自偷自拍.com| 国产高清videossex| 国产免费现黄频在线看| 又紧又爽又黄一区二区| 日韩制服骚丝袜av| 亚洲第一青青草原| av不卡在线播放| 69精品国产乱码久久久| 在线观看免费视频网站a站| 99国产精品99久久久久| 国产黄色免费在线视频| 91成人精品电影| 人人澡人人妻人| 亚洲av日韩在线播放| 在线亚洲精品国产二区图片欧美| 高清av免费在线| 国产一区二区激情短视频 | 大香蕉久久成人网| 国产亚洲av高清不卡| 亚洲色图 男人天堂 中文字幕| av又黄又爽大尺度在线免费看| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 亚洲第一av免费看| 黑人猛操日本美女一级片| 精品人妻在线不人妻| 欧美另类一区| 亚洲精品一二三| 91老司机精品| 五月开心婷婷网| 亚洲欧美一区二区三区久久| 国产伦人伦偷精品视频| 一级a爱视频在线免费观看| 国产色视频综合| 自线自在国产av| 亚洲成国产人片在线观看| a在线观看视频网站| 久久久久久免费高清国产稀缺| 男人操女人黄网站| 男人舔女人的私密视频| 日本vs欧美在线观看视频| 日韩视频在线欧美| 制服人妻中文乱码| 人人妻人人爽人人添夜夜欢视频| 丁香六月欧美| 香蕉丝袜av| av免费在线观看网站| 国产欧美日韩一区二区精品| 91字幕亚洲| 国产成人免费观看mmmm| 在线观看免费视频网站a站| 国产免费视频播放在线视频| 最近最新免费中文字幕在线| 在线观看人妻少妇| 一级毛片精品| 汤姆久久久久久久影院中文字幕| 亚洲第一av免费看| 国产成人精品久久二区二区免费| 国产精品成人在线| avwww免费| 91九色精品人成在线观看| 国产色视频综合| 在线观看免费视频网站a站| 9191精品国产免费久久| 亚洲熟女精品中文字幕| 日韩精品免费视频一区二区三区| 精品卡一卡二卡四卡免费| 国产av又大| 欧美变态另类bdsm刘玥| 国产精品久久久久成人av| 国产国语露脸激情在线看| 亚洲精品一二三| a级毛片黄视频|