• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal response of lithium titanate battery during cycling under adiabatic condition

    2014-11-15 04:24:08ZHAOXuejuanWANGQingsongPINGPingSUNJinhua
    火災(zāi)科學(xué) 2014年2期
    關(guān)鍵詞:產(chǎn)熱鈦酸曲線圖

    ZHAO Xue-juan,WANG Qing-song,PING Ping,SUN Jin-h(huán)ua

    (State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,China)

    1 Introduction

    Lithium ion batteries are widely used in portable consumer electronics because of their high voltage,no memory effect and slow self-discharge rate when not in use.Through years of development of research technology,lithium ion batteries began advancing towards diversified directions including power grids,automotive and aerospace applications,etc.[1].Hereinto,the application of lithium ion battery in energy storage system of smart power grid is becoming a hot spot of current research[2].

    Nowadays,in order to meet the requirements ofgreen economy and sustainable development,the smart power grid has become the optimal choice of energy technology to promote large scale use of clean energy.In particular,the wider range promotion of electric vehicle will drive the development of energy storage system in smart grid.For instance,according to the technology roadmap of European Commission(EC)[3],it is expected that a large number of EVs will be using the electric grid by year 2020.Above all,the energy link which can most effectively combine current electric vehicles and smart grid is lithium ion battery.In fact,power grid with energy storage in the form of lithium ion battery is being used and constructed in large scale around world.

    Nevertheless,the widely-publicized fire and explosion incidents of lithium ion battery,which endangered personal safety of consumers,has raised safety concerns and long been blamed on exothermic reactions between battery components[4].In smart grid energy storage system,large amounts of battery was placed and used intensively,safety issue became a serious problem.Therefore,it is extremely important to use a safer kind of battery in energy storage system.Lithium titanate battery is a popular choice and was adopted in some energy storage systems.

    Nevertheless,most commercial lithium ion batteries used currently take graphite as anode material,and corresponding study of thermal safety also focused on battery with graphite anode.Research on lithium titanate battery mainly carried out to improve its electrochemical performance[5-7],study of thermal safety is relatively scarce.In addition,traditional research of battery thermal stability was carried out in a static way focusing on a specific component,material mixture and a single battery[8-11].However,the actual battery fire and explosion accidents mostly happened when in use.Consequently,it is quite necessary to study the thermal behavior of a whole piece of battery under cycling,which is the research significance of our work,while research effort in this respect is far from adequate at present.

    2 Experimental

    The battery cell sample tested in this study was a soft pack battery with nominal capacity of about 900mAh.The voltage and specific heat capacity of the sample is 2.8Vand 1.0Jg-1K-1,respectively,with weight of 33.0g.The battery cell has a lithium nickel manganese cobalt(NMC)cathode,a lithium titanate anode,and electrolyte of 1.0MLiPF6/EC+DEC(1∶1,wt.%).

    An accelerating rate calorimeter(ARC)combined withmulti-channel battery cycler was used in this work to study the heat release mechanism of a lithium ion battery during cycling.Hereinto,the multi-channel battery cycler was used to finish the charging and discharging process of battery according to the parameters set by user.And the ARC was employed to track the temperature change of the cell in an adiabatic environment.

    In order to verify the reliability of the tested cell,cell sample firstly cycled outside the ARC by operating the battery cycler.After the cycle outside the ARC completed,cell sample was removed and fixed inside the ARC cavity to test its temperature changeunder charging and discharging with start temperature of 25°C.

    The charge-discharge system for battery cell sample was set as follows.The cell sample was first discharged from 2.8Vto 1.5Vat specific rate current,after a standing period of 1minute,the cell was then charged from 1.5Vto 2.8Vat the same rate current.When cell voltage reached 2.8V,a constant voltage charge process was conducted with cutoff current of 20mA.The cell sample cycled 3times outside the ARC and 5times inside the ARC.The specific current was set at five different rates of 0.1C,0.2C,0.5C,1.0Cand 1.5C,respectively.

    3 Results and discussion

    3.1 Thermal response of lithium titanate battery when cycling inside the ARC

    Thebattery sample was first tested at rate of 0.1Coutside the ARC and its cycle curve plot was plotted in Fig.1.It can be figured out that,both the current and voltage curves are very smooth,which indicates that the battery works properly outside the ARC.Fig.2shows the cycle curve of battery tested inside the ARC cavity.Its cycle condition was almost the same as that outside the ARC,which also indicated that this cell works normally when being tested.

    The plots of temperature and voltage change over time of the tested battery are shown in Fig.3.It can be seen that,there is an obvious temperature rise in both discharging and charging process.This trend continues to the fifth cycle when temperature of battery finally reaches 65°C.The tested battery only swelled slightly during experiment without occurrence of thermal runaway.Further-more,the plot of temperature rise rate versus temperature was demonstrated in Fig.4.The values of temperature rise rate fluctuate between 0.001°C min-1and 0.03°C min-1,which signifies very low heat production rate.

    圖1 鈦酸鋰電池在0.1C倍率下的循環(huán)曲線圖(在ARC外部)Fig.1 Cycle curve for battery sample tested at rate of 0.1Coutside the ARC

    圖2 鈦酸鋰電池在0.1C倍率下的循環(huán)曲線圖(在ARC內(nèi)部)Fig.2 Cycle curve for battery sample tested at rate of 0.1Cinside the ARC

    圖3 鈦酸鋰電池在0.1C倍率下循環(huán)的溫度/電壓-時間曲線圖Fig.3 Temperature and voltage versus time for lithium titanate battery tested at rate of 0.1C

    圖4 鈦酸鋰電池在0.1C倍率下循環(huán)的溫升速率-溫度曲線圖Fig.4 Temperature rise rate versus temperature for battery tested at rate of 0.1C

    3.2 Heat generation in one cycle

    The adiabatic heat generation is important for practical discussion of safety because it represents the thermal stability characteristic for a lithium ion battery.The simple thermal analytical equation describing the heat generation of a battery cell can be expressed as follows:where Qadis adiabatic heat generation(J),mis the mass of battery cell sample(g),cpis the specific heat capacity(J g-1K-1),andΔTadis the adiabatic temperature rise (K).Temperature data has been obtained from the ARC test,thus adiabatic heat generation can be calculated based on Eq.(1).

    Heat generationper capacity for the lithium titanate battery at 0.1Cwas calculated and the results were listed in Table 1.It can be figured out from the table that,heat generation per capacity of each cycle was close to each other.In these cycle processes,irreversible Joule heat,reversible entropy change heat and over potential heat played a key role in battery heat production.In addition,total heat production was calculated as 1262JAh-1,which was far smaller than that of the battery system using graphite as the anode[1].All of the above proved high thermal stability for lithium titanate battery.

    3.3 Cycle rate effect on thermal response of battery

    In order to research the cycle rate effect on battery thermal response,tests with different cycle rate of 0.2C,0.5C,1.0Cand 1.5Cwere carried out.All of the tested samples cycled normally both outside and inside the ARC.

    However,it's worth pointing out that,compared to the 0.1Ccase,when cell cycled at higher rates,the constant current charge process became shorter and constant voltage charge process lasted longer.Higher charge current results in larger cell polarization.When battery charged at high current,nominal voltage of the cell was easy to be reached,but its nominal capacity actually did not yet keep in the level.This was particularly apparent for 1.5Ccase,in which the constant current charge process was almost skipped.

    Temperature and voltage changeof battery at higher rates were illustrated in Figs.5-9.Similar to case of 0.1C,battery temperature increased during both discharging and charging processes.Nevertheless,difference exists in the aspect of temperature change and calculated heat production rate for each cycle rate,as demonstrated in Figs.5-8and Table 1.It can be figured out that,although temperature rise of different cycle rate shows some disorder,distinct regularity can be found in heat production rate.It was found that,with the increase of cycle rate,heat production rate augments correspondingly for lithium titanate battery as seen in Fig.9.

    表1 鈦酸鋰電池在不同倍率下各循環(huán)階段產(chǎn)熱量及產(chǎn)熱速率對比表Table 1 Heat production and heat production rate of each cycle for lithium titanate battery at different cycle rates

    圖5 鈦酸鋰電池在0.2C倍率下循環(huán)的溫度/電壓-時間曲線圖Fig.5 Temperature and voltage versus time for lithium titanate battery tested at rate of 0.2C

    圖6 鈦酸鋰電池在0.5C倍率下循環(huán)的溫度/電壓-時間曲線圖Fig.6 Temperature and voltage versus time for lithium titanate battery tested at rate of 0.5C

    When batterycycled at lower cycle rate,heat production was determined by both reversible entropy change heat and irreversible Joule heat.However,with the increase of cycle rate,heat generation of the irreversible heat generated by o-vercoming the internal resistance increased rapidly.Therefore,total heat production rate was predominated by irreversible heat at higher rate and increased correspondingly with cycle rate[12].

    圖7 鈦酸鋰電池在1.0C倍率下循環(huán)的溫度/電壓-時間曲線圖Fig.7 Temperature and voltage versus time for lithium titanate battery tested at rate of 1.0C

    圖8 鈦酸鋰電池在1.5C倍率下循環(huán)的溫度/電壓-時間曲線圖Fig.8 Temperature and voltage versus time for lithium titanate battery tested at rate of 1.5C

    3.4 Thermal runaway characteristic for lithium titanate battery

    In order to study the thermal runaway characteristic of lithiumtitanate battery,a new test was carried out at cycle rate of 1.5Cwith more cycle times of 30,and the result is shown in Fig.10.The battery worked normally during the first 15 cycles,however,the constant voltage charge process in the 16thcycle lasted slightly longer,and even longer process was found in that of the 17thcycle.Subsequently,this battery failed and could not work normally any more.

    圖9 鈦酸鋰電池在不同循環(huán)倍率下的產(chǎn)熱速率對比圖Fig.9 Plot of heat production rate at different cycle rates for lithium titanate battery

    圖10 鈦酸鋰電池在1.5C倍率下循環(huán)的溫度/電壓-時間曲線圖(循環(huán)次數(shù)為30次)Fig.10 Temperature and voltage versus time plot of lithium titanate battery tested at for 1.5Cwith cycle times set at 30

    Correspondingly,temperatureof battery kept rising all the way.After the thermal runaway starting point of about 125°C,high temperature caused reactions inside the battery occurred subsequently including reactions between negative active material and electrolyte,positive active material and electrolyte,the negative active and binder,etc.These reactions may occur simultaneously,leading to immediate thermal runaway,causing surface temperature of battery increasing sharply to the peak of 366.0°C.The whole process released a large amount of heat of 15243.5JAh-1.Even though the heat released was great,lithium titanate battery was still relatively safer than lithium cobalt oxides battery,which ran to thermal runaway when cycled at most 5times[13].

    4 Conclusions

    Thermal response of lithiumtitanate battery during cycling was studied by employing an accelerating rate calorimeter combined with multi-channel battery cycler.It was found that temperature rise existed in both discharging and charging processes.However,the magnitude of battery temperature rise and heat generation under adiabatic condition was small,and no thermal runaway occurred after cycled 5times.

    To investigate the cycle rate effect on thermal characteristics oflithium titanate battery,tests with different cycle rates of 0.1C,0.2C,0.5C,1.0Cand 1.5Cwere carried out.Experimental results show that,with the increase of cycle rate,heat production rate augments correspondingly.Moreover,thermal runaway characteristic of lithium titanate battery was researched by testing a battery at cycle rate of 1.5Cwith cycle time of 30.The battery worked normally in the first 15cycles and thermal runaway happened soon afterwards,causing surface temperature of battery increasing sharply to the peak of 366.0°C with heat production rate of 436.8JAh-1h-1,which was less than that of cobalt oxides battery.

    The above results were obtained under adiabatic condition,which corresponds to the worst case,proving outstanding thermal stability for lithium titanate battery.In the actual energy storage system of power grid,lots of batteries are packed together for use in series or parallel way.When fire happened,heat could not dissipate in time,causing quasi-adiabatic condition.Study in this paper can provide theoretical support for thermal safety design of lithium titanate battery.

    [1]Wang QS,et al.Thermal runaway caused fire and explosion of lithium ion battery[J].Journal of Power Sources,2012,208:210-224.

    [2]Horiba T,et al.Applications of high power density lithium ion batteries[J].Journal of Power Sources,2005,146(1):107-110.

    [3]Commission of the European Communities[EB/OL],http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri1/4SEC:2009:1295:FIN:EN:PDF,2013-02.

    [4]Leadbetter J,Swan LG.Selection of battery technology to support grid-integrated renewable electricity[J].Journal of Power Sources,2012,216:376-386.

    [5]Wang YQ,et al.Rutile-TiO2nanocoating for a high-rate Li4Ti5O12anode of a lithium-ion battery[J].Journal of the American Chemical Society,2012,134 (18):7874-7879.

    [6]Yi TF,et al.Structural and thermodynamic stability of Li4Ti5O12anode material for lithium-ion battery[J].Journal of Power Sources,2013,222:448-454.

    [7]Zaghib K,et al.Electrochemical and thermal characterization of lithium titanate spinel anode in C–LiFePO4//C–Li4Ti5O12cells at sub-zero temperatures[J].Journal of Power Sources,2014,248:1050-1057.

    [8]Wang QS,et al.Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive[J].Journal of Power Sources,2010,195(21):7457-7461.

    [9]Wang QS,et al.Enhancing the thermal stability of Li-CoO2electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries[J].Journal of Power Sources,2006,162(2):1363-1366.

    [10]Wang QS,et al.Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive[J].Journal of Applied Electrochemistry,2009,39(7):1105-1110.

    [11]Yao XL,et al.Comparisons of graphite and spinel Li1.33Ti1.67O4as anode materials for rechargeable lithium-ion batteries[J].Electrochimica Acta,2005,50(20):4076-4081.

    [12]Li Q,et al.Investigation of the heat production of Liion batteries during cycling[J].Power Source Technol-ogy,2008,32(9):606-610.

    [13]Zhao XJ,et al.Thermal response of lithium ion battery during charging and discharging using adiabatic calorimetry methodology[J].Under Review,2014.

    猜你喜歡
    產(chǎn)熱鈦酸曲線圖
    秦皇島煤價周曲線圖
    秦皇島煤價周曲線圖
    鋰動力電池電化學(xué)-熱特性建模及仿真研究
    森林工程(2020年6期)2020-12-14 04:26:52
    鈦酸鉍微米球的合成、晶型調(diào)控及光催化性能表征
    小氣候環(huán)境對肉雞能量代謝的影響研究進展
    秦皇島煤價周曲線圖
    秦皇島煤價周曲線圖
    胺/層狀鈦酸鹽復(fù)合材料對CO2的吸附性能研究
    云南不同地區(qū)大絨鼠體重、產(chǎn)熱和肥滿度的研究
    鋰離子電池在充放電過程中的產(chǎn)熱研究
    午夜免费激情av| 美女cb高潮喷水在线观看 | 女人被狂操c到高潮| 中文字幕精品亚洲无线码一区| 欧美乱妇无乱码| 18美女黄网站色大片免费观看| 99久久无色码亚洲精品果冻| 亚洲av熟女| 国产精品av久久久久免费| 99久久久亚洲精品蜜臀av| 日本黄色视频三级网站网址| 欧美最黄视频在线播放免费| 波多野结衣巨乳人妻| 国产成人精品久久二区二区免费| 亚洲av成人精品一区久久| 老司机福利观看| 日韩有码中文字幕| 熟女人妻精品中文字幕| 在线免费观看不下载黄p国产 | 欧美色欧美亚洲另类二区| 欧美日韩一级在线毛片| 两性夫妻黄色片| tocl精华| 99精品久久久久人妻精品| 亚洲人成伊人成综合网2020| 午夜激情福利司机影院| 很黄的视频免费| 熟女人妻精品中文字幕| 日本撒尿小便嘘嘘汇集6| 成人鲁丝片一二三区免费| 美女扒开内裤让男人捅视频| 一卡2卡三卡四卡精品乱码亚洲| 国产单亲对白刺激| www.精华液| 久久热在线av| 99热精品在线国产| 国产1区2区3区精品| 久久精品亚洲精品国产色婷小说| 国产精品亚洲美女久久久| 欧美不卡视频在线免费观看| 国产精品98久久久久久宅男小说| 精品国产超薄肉色丝袜足j| 一区二区三区高清视频在线| 国产精品综合久久久久久久免费| 久久久色成人| 99国产综合亚洲精品| 亚洲av熟女| 午夜福利在线观看吧| 18禁裸乳无遮挡免费网站照片| 精品欧美国产一区二区三| 狂野欧美白嫩少妇大欣赏| 国产成人一区二区三区免费视频网站| xxxwww97欧美| 91麻豆av在线| 亚洲欧洲精品一区二区精品久久久| 国产精品野战在线观看| 欧美乱色亚洲激情| 国产黄片美女视频| 在线观看免费视频日本深夜| 成年版毛片免费区| 国产黄片美女视频| 色哟哟哟哟哟哟| 国产野战对白在线观看| 一a级毛片在线观看| 国产高清视频在线观看网站| 国产精品日韩av在线免费观看| 免费大片18禁| 午夜福利视频1000在线观看| aaaaa片日本免费| 色av中文字幕| 窝窝影院91人妻| 一区二区三区国产精品乱码| 韩国av一区二区三区四区| 天天一区二区日本电影三级| 国产午夜福利久久久久久| 97碰自拍视频| www日本黄色视频网| 免费av毛片视频| 久久久久久久午夜电影| av在线天堂中文字幕| 亚洲黑人精品在线| 1024手机看黄色片| 欧美一级毛片孕妇| 久久伊人香网站| 国产欧美日韩精品一区二区| 熟妇人妻久久中文字幕3abv| 亚洲专区国产一区二区| 女同久久另类99精品国产91| 黄色 视频免费看| 午夜影院日韩av| 国产欧美日韩一区二区三| 女生性感内裤真人,穿戴方法视频| 一夜夜www| 亚洲色图 男人天堂 中文字幕| 非洲黑人性xxxx精品又粗又长| 中出人妻视频一区二区| 制服人妻中文乱码| 波多野结衣巨乳人妻| 老司机在亚洲福利影院| 国产极品精品免费视频能看的| 日韩欧美精品v在线| 精品乱码久久久久久99久播| av在线天堂中文字幕| 日本 欧美在线| 成人性生交大片免费视频hd| www国产在线视频色| 国产探花在线观看一区二区| 成人永久免费在线观看视频| 在线观看66精品国产| 一进一出抽搐gif免费好疼| 亚洲国产精品999在线| 国产蜜桃级精品一区二区三区| 国产黄a三级三级三级人| 欧美zozozo另类| 久9热在线精品视频| 老司机午夜福利在线观看视频| 亚洲av成人精品一区久久| 窝窝影院91人妻| 欧美绝顶高潮抽搐喷水| 亚洲中文字幕日韩| 亚洲精品一区av在线观看| 国产欧美日韩一区二区三| 久久久久久大精品| 久久精品91无色码中文字幕| 熟女人妻精品中文字幕| 国产精品 欧美亚洲| 小蜜桃在线观看免费完整版高清| 岛国在线观看网站| 欧美日韩黄片免| 日韩 欧美 亚洲 中文字幕| 日本精品一区二区三区蜜桃| 午夜亚洲福利在线播放| 老鸭窝网址在线观看| 可以在线观看的亚洲视频| 日本黄色片子视频| 国产又黄又爽又无遮挡在线| 久久久久免费精品人妻一区二区| 久久精品91蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 国产成年人精品一区二区| 18禁美女被吸乳视频| 真人一进一出gif抽搐免费| 久久久久国产一级毛片高清牌| 99精品在免费线老司机午夜| 手机成人av网站| 久久久久亚洲av毛片大全| 久久精品国产亚洲av香蕉五月| 久久久久久国产a免费观看| 母亲3免费完整高清在线观看| 国产成人av教育| 在线播放国产精品三级| 欧美乱码精品一区二区三区| 熟女电影av网| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区三| 久久久久久国产a免费观看| 亚洲精华国产精华精| 老司机午夜十八禁免费视频| 亚洲男人的天堂狠狠| 成人精品一区二区免费| 国产精品98久久久久久宅男小说| 久久久久久九九精品二区国产| 日韩欧美一区二区三区在线观看| 亚洲精品国产精品久久久不卡| 啪啪无遮挡十八禁网站| 成人av在线播放网站| 一卡2卡三卡四卡精品乱码亚洲| 脱女人内裤的视频| 欧美激情久久久久久爽电影| 日韩免费av在线播放| 婷婷六月久久综合丁香| 狂野欧美激情性xxxx| 亚洲男人的天堂狠狠| 精品久久久久久久人妻蜜臀av| 手机成人av网站| 日韩免费av在线播放| 午夜免费观看网址| 99国产综合亚洲精品| 国模一区二区三区四区视频 | 欧美不卡视频在线免费观看| 黄色 视频免费看| 国产精品一及| 亚洲黑人精品在线| 桃色一区二区三区在线观看| 久久国产精品人妻蜜桃| 熟妇人妻久久中文字幕3abv| 成人av一区二区三区在线看| 午夜影院日韩av| 床上黄色一级片| 中国美女看黄片| 色视频www国产| 天堂网av新在线| 变态另类成人亚洲欧美熟女| 无遮挡黄片免费观看| 久久精品综合一区二区三区| 麻豆av在线久日| 国产成人欧美在线观看| 国产伦精品一区二区三区四那| 欧美日韩综合久久久久久 | 三级国产精品欧美在线观看 | 99久久国产精品久久久| www.精华液| 亚洲最大成人中文| 欧美日本亚洲视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品久久国产高清桃花| 美女高潮的动态| 久久久久久久久中文| 12—13女人毛片做爰片一| 1024香蕉在线观看| 欧美黑人巨大hd| 亚洲欧美精品综合久久99| 中文资源天堂在线| 午夜福利高清视频| 欧美黄色片欧美黄色片| 亚洲国产欧美一区二区综合| 最新在线观看一区二区三区| 成人精品一区二区免费| 我的老师免费观看完整版| 国产欧美日韩一区二区三| 亚洲av第一区精品v没综合| 亚洲成人久久爱视频| 国产欧美日韩精品一区二区| 午夜福利在线观看免费完整高清在 | 美女被艹到高潮喷水动态| 国内精品一区二区在线观看| 美女免费视频网站| 欧美性猛交黑人性爽| 国产成人精品久久二区二区91| 在线免费观看不下载黄p国产 | 观看免费一级毛片| 黄色日韩在线| 一a级毛片在线观看| 国产精品精品国产色婷婷| 久久这里只有精品19| 99精品在免费线老司机午夜| 999久久久精品免费观看国产| 久久中文看片网| 一本久久中文字幕| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲美女久久久| 99国产极品粉嫩在线观看| 国产精品日韩av在线免费观看| 欧美色视频一区免费| 日韩欧美在线二视频| 久久久久国产精品人妻aⅴ院| 美女大奶头视频| 亚洲av第一区精品v没综合| 99久国产av精品| 欧美日韩瑟瑟在线播放| 婷婷六月久久综合丁香| or卡值多少钱| 日韩成人在线观看一区二区三区| 欧美一区二区国产精品久久精品| 麻豆成人午夜福利视频| 久久久久免费精品人妻一区二区| 91麻豆精品激情在线观看国产| 男人和女人高潮做爰伦理| 国内精品久久久久精免费| av中文乱码字幕在线| 99久久无色码亚洲精品果冻| 久久午夜综合久久蜜桃| 国产精品综合久久久久久久免费| 叶爱在线成人免费视频播放| 国产久久久一区二区三区| 曰老女人黄片| 久久精品国产亚洲av香蕉五月| 真人一进一出gif抽搐免费| 一区二区三区国产精品乱码| 欧美av亚洲av综合av国产av| 男女视频在线观看网站免费| 亚洲av成人精品一区久久| 国产精品一区二区三区四区免费观看 | 日本黄色视频三级网站网址| 丁香欧美五月| 亚洲七黄色美女视频| 99久国产av精品| 波多野结衣巨乳人妻| 久久久久国产精品人妻aⅴ院| 又粗又爽又猛毛片免费看| 在线十欧美十亚洲十日本专区| 一区二区三区国产精品乱码| 国产熟女xx| 亚洲精品在线观看二区| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久久久电影| 欧美乱码精品一区二区三区| 亚洲成人中文字幕在线播放| av视频在线观看入口| 成人亚洲精品av一区二区| h日本视频在线播放| 国产私拍福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 天堂网av新在线| 久久久久久九九精品二区国产| 欧美日韩中文字幕国产精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 黑人操中国人逼视频| 久久久国产欧美日韩av| 91在线精品国自产拍蜜月 | 男人的好看免费观看在线视频| 精品久久久久久久久久免费视频| 麻豆成人av在线观看| 五月玫瑰六月丁香| 国产成人一区二区三区免费视频网站| 国产熟女xx| 国产一区二区在线观看日韩 | 日本 av在线| 久久久久国内视频| 精品国产乱子伦一区二区三区| 999精品在线视频| a级毛片a级免费在线| 亚洲精品456在线播放app | 亚洲熟女毛片儿| 国产成年人精品一区二区| 99在线视频只有这里精品首页| 国产精品野战在线观看| 国产男靠女视频免费网站| 91在线精品国自产拍蜜月 | 午夜福利成人在线免费观看| 国产毛片a区久久久久| 在线永久观看黄色视频| 日韩高清综合在线| 久久久精品大字幕| 嫩草影视91久久| 成人午夜高清在线视频| 91麻豆av在线| 国产精品99久久99久久久不卡| 在线免费观看的www视频| av女优亚洲男人天堂 | 中文字幕人成人乱码亚洲影| 母亲3免费完整高清在线观看| 国产 一区 欧美 日韩| 亚洲成人久久性| 亚洲av电影在线进入| 久久伊人香网站| 日韩人妻高清精品专区| 成人午夜高清在线视频| 国产aⅴ精品一区二区三区波| 无限看片的www在线观看| 国产av在哪里看| 中文字幕熟女人妻在线| 亚洲五月婷婷丁香| 小蜜桃在线观看免费完整版高清| 国产男靠女视频免费网站| 亚洲av熟女| 91老司机精品| 成人特级黄色片久久久久久久| 精品乱码久久久久久99久播| 青草久久国产| 少妇的逼水好多| 啦啦啦免费观看视频1| 69av精品久久久久久| 亚洲在线观看片| 日本五十路高清| 啪啪无遮挡十八禁网站| 国产综合懂色| 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清| 国内久久婷婷六月综合欲色啪| 12—13女人毛片做爰片一| 观看美女的网站| 国产又黄又爽又无遮挡在线| 亚洲成人久久性| 日韩欧美免费精品| 最新美女视频免费是黄的| 亚洲专区中文字幕在线| 日日干狠狠操夜夜爽| 国产aⅴ精品一区二区三区波| 午夜福利在线在线| 18禁裸乳无遮挡免费网站照片| 国产激情欧美一区二区| 亚洲精品一区av在线观看| 天天躁日日操中文字幕| 怎么达到女性高潮| 日韩成人在线观看一区二区三区| 嫩草影院入口| 国产探花在线观看一区二区| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影| 一本精品99久久精品77| 国产一区二区三区视频了| 女生性感内裤真人,穿戴方法视频| 亚洲欧美精品综合久久99| 国产一级毛片七仙女欲春2| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看| 三级男女做爰猛烈吃奶摸视频| 变态另类丝袜制服| aaaaa片日本免费| 欧美日韩瑟瑟在线播放| 九色成人免费人妻av| 亚洲国产中文字幕在线视频| 老熟妇仑乱视频hdxx| 欧美成人性av电影在线观看| 久久久精品大字幕| 最好的美女福利视频网| 久久精品91无色码中文字幕| 色综合婷婷激情| 国产91精品成人一区二区三区| 在线免费观看不下载黄p国产 | 99热精品在线国产| 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| 国产精华一区二区三区| 香蕉久久夜色| 国产高清视频在线观看网站| 99久久综合精品五月天人人| 每晚都被弄得嗷嗷叫到高潮| 欧美成人性av电影在线观看| 欧美一级a爱片免费观看看| 99国产极品粉嫩在线观看| 久久久久九九精品影院| 好看av亚洲va欧美ⅴa在| 99精品欧美一区二区三区四区| 日韩欧美免费精品| 日韩欧美国产在线观看| 欧美又色又爽又黄视频| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 亚洲熟妇中文字幕五十中出| 成年女人毛片免费观看观看9| av在线蜜桃| 色精品久久人妻99蜜桃| 欧美最黄视频在线播放免费| 亚洲国产精品999在线| 一级作爱视频免费观看| 久久国产精品影院| 国产一区二区三区在线臀色熟女| 高清在线国产一区| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人性av电影在线观看| 中文字幕久久专区| 亚洲成a人片在线一区二区| 免费在线观看视频国产中文字幕亚洲| 亚洲精品色激情综合| 久久草成人影院| 一区二区三区高清视频在线| 久久天躁狠狠躁夜夜2o2o| 国产成+人综合+亚洲专区| 国产午夜精品久久久久久| 国产av一区在线观看免费| 人人妻人人澡欧美一区二区| tocl精华| 中文亚洲av片在线观看爽| 最近最新中文字幕大全免费视频| 久久久久久久久中文| 亚洲精品色激情综合| svipshipincom国产片| 国产三级在线视频| 欧美成狂野欧美在线观看| 免费无遮挡裸体视频| 99国产综合亚洲精品| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区视频9 | av视频在线观看入口| 亚洲av片天天在线观看| 久久中文看片网| 校园春色视频在线观看| 亚洲美女黄片视频| 热99re8久久精品国产| 日本黄色视频三级网站网址| 国产精品 国内视频| www日本在线高清视频| 一个人免费在线观看的高清视频| 最新美女视频免费是黄的| 美女大奶头视频| 久久这里只有精品19| 国内少妇人妻偷人精品xxx网站 | 亚洲av五月六月丁香网| 香蕉丝袜av| 国产亚洲精品综合一区在线观看| 国产成年人精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品sss在线观看| 熟女人妻精品中文字幕| 精品国产超薄肉色丝袜足j| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产综合久久久| 亚洲熟妇中文字幕五十中出| 欧美国产日韩亚洲一区| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲av一区麻豆| 成人国产一区最新在线观看| 麻豆成人午夜福利视频| 欧美三级亚洲精品| 桃红色精品国产亚洲av| 久久香蕉精品热| 69av精品久久久久久| 一区二区三区国产精品乱码| 美女黄网站色视频| 高清在线国产一区| 国内揄拍国产精品人妻在线| 首页视频小说图片口味搜索| 久久欧美精品欧美久久欧美| 国产成人aa在线观看| 日韩欧美 国产精品| 欧美乱妇无乱码| 日韩中文字幕欧美一区二区| 麻豆av在线久日| 国产精品乱码一区二三区的特点| 久久中文字幕人妻熟女| 人人妻人人看人人澡| 波多野结衣高清作品| 中文在线观看免费www的网站| 久久婷婷人人爽人人干人人爱| 久久精品国产99精品国产亚洲性色| 精品人妻1区二区| 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| 亚洲国产色片| 不卡一级毛片| 国产亚洲精品久久久com| 亚洲中文字幕日韩| 国产成人影院久久av| 白带黄色成豆腐渣| 久久中文字幕人妻熟女| 99久久精品一区二区三区| 岛国视频午夜一区免费看| 国内久久婷婷六月综合欲色啪| 巨乳人妻的诱惑在线观看| 亚洲成a人片在线一区二区| 97碰自拍视频| 午夜激情福利司机影院| 亚洲av成人不卡在线观看播放网| 在线观看日韩欧美| av在线蜜桃| 俺也久久电影网| 黄色日韩在线| 免费看十八禁软件| 成人国产综合亚洲| 一个人免费在线观看电影 | 国产一区在线观看成人免费| 性欧美人与动物交配| 搡老岳熟女国产| 校园春色视频在线观看| 国产又色又爽无遮挡免费看| 美女扒开内裤让男人捅视频| 男女下面进入的视频免费午夜| 精品久久蜜臀av无| 成人三级黄色视频| 久久久国产成人精品二区| 少妇人妻一区二区三区视频| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| 亚洲美女黄片视频| 两人在一起打扑克的视频| 国内少妇人妻偷人精品xxx网站 | 午夜久久久久精精品| xxxwww97欧美| 欧美中文综合在线视频| 99久久综合精品五月天人人| 午夜激情福利司机影院| 麻豆国产av国片精品| 黄片大片在线免费观看| 欧美绝顶高潮抽搐喷水| 嫩草影院精品99| 国产免费男女视频| 欧美成人性av电影在线观看| 国产黄片美女视频| 美女cb高潮喷水在线观看 | 丝袜人妻中文字幕| 亚洲人成网站在线播放欧美日韩| 十八禁人妻一区二区| 国产极品精品免费视频能看的| 精品欧美国产一区二区三| 国产一级毛片七仙女欲春2| 国产淫片久久久久久久久 | 国产综合懂色| 欧美黄色片欧美黄色片| 99精品在免费线老司机午夜| 亚洲无线在线观看| 国产亚洲精品综合一区在线观看| 偷拍熟女少妇极品色| 一个人看视频在线观看www免费 | 欧美日韩乱码在线| 757午夜福利合集在线观看| 欧美zozozo另类| 久久国产精品影院| 青草久久国产| 日韩免费av在线播放| 最新在线观看一区二区三区| 少妇人妻一区二区三区视频| 欧美日韩亚洲国产一区二区在线观看| 日本 av在线| 日韩欧美国产在线观看| 免费电影在线观看免费观看| 精品一区二区三区av网在线观看| 久久精品影院6| 99久久99久久久精品蜜桃| 一夜夜www| av天堂中文字幕网| 一本一本综合久久| www.自偷自拍.com| 久久这里只有精品19| 日韩成人在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美三级三区| 一区二区三区国产精品乱码| 免费大片18禁| 一个人看的www免费观看视频| 成年人黄色毛片网站| 久久精品人妻少妇| 最新在线观看一区二区三区| 午夜a级毛片| 精品一区二区三区av网在线观看| 亚洲国产欧美人成| 一级毛片女人18水好多| 床上黄色一级片| 国产亚洲精品一区二区www| 男女视频在线观看网站免费| 亚洲精品在线美女|