• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Methods in Model Order Reduction (MOR) field

    2014-11-12 09:14:29LIUZhichao
    無(wú)線互聯(lián)科技 2014年10期

    LIU Zhichao

    Abstract:Nowadays, the modeling of systems may be quite large, even up to tens of thousands orders. In spite of the increasing computational powers, direct simulation of these large-scale systems may be impractical. Thus, to industry requirements, analytically tractable and computationally cheap models must be designed. This is the essence task of Model Order Reduction (MOR). This article describes the basics of MOR optimization, various way of designing MOR, and gives the conclusion about existing methods. In addition, it proposed some heuristic footpath.

    Key words:model order reduction (MOR);singular value decomposition (SVD);Lyapunov equations;Krylov subspace;SVD-Krylov methods;empirical gamians;trajectory-pieceWise linear (TPWL) framework

    1 Introduction

    Fundamental methods in the area of MOR were published in the 80s and 90s of the last century. All those methods belong to a same classification: Singular Value Decomposition (SVD). In 1990, the first Krylov subspaces related method was born (AWE). And in 1993, Feldmann proposed another method named Padé via Lanczos (PVL) as an alternative to AWE. Then, PRIMA (Passive Reduced-Interconnect Macromodel Algorithm, 1997) and recently SPRIM (Structure-Preserving Reduced-Order Interconnect Macromodeling, 2004) were developed.

    More recently, a new type of methods that tries to combine the strength of SVD and Krylov based methods and avoids the pitfalls of both methods is appearing. Two main frameworks developing rapidly are namely Empirical Gamians and Trajectory-piecewise linear (TPWL) framework. As a matter of fact, usually they use Krylov method for the Krylov side of the projection and iteration technic to solve the Lyapunov equations for the SVD side of the projection.

    This article describes the basics of MOR optimization, various way of designing MOR.

    2 Conventional MOR methods

    A linear system can be expressed by state space function:

    Where: .

    We want the reduced system to be presented by:

    2.1 SVD-Truncated Balanced Realization (TBR)

    To evaluating the systems the controllability and observability, the two gramians Wc and Wo are used. For practical reasons, one can get them by solving the two Lyapunov functions[1]:

    A balanced realization is such that ,where,Wc and Wo are the gramians and σi are the Hankel singular values. Then, A can be replaced by , which has the following form:

    Where: can be discarded.

    By this technique, we have also the following global error bounds; r is the order of reduced model and also the dimension of :

    The SVD methods have a fully automatic algorithm and an error bound, but they are computational cost and do not usually preserve the systems passivity[2].

    2.2 Krylov subspace-Padé via Lanczos (PVL)

    Inspired by Asymptotic Waveform Evaluation (AWE) born in 1990, the Krylov based method PVL was proposed by Feldmann as an alternative to AWE.

    The order-r Krylov subspace[3] generated by an n-by-n constant matrix A and a constant vector b of dimension n is the linear subspace spanned by the images of b, that is,

    The vectors , constructing the subspace are called basic vectors. By a proper choice through Lanczos procedure of two basis W and V of the Krylov subspace, so as to , one can can replace X(s) by , and we get the following expression in the Laplace (frequency) domain:

    Now the transfer function of the system can be got as By the means of moment matching in the sampling points, we get a reduced order transfer function . Then the reduced model can be thus represented as:

    PVL is much more computational cheap, this character allows its application in large-scale systems, but it does not always preserve stability. Another pitfall is that it is difficult to establish rigorous error bound.

    Same relating improvements were developed: a Multi-input version Matrix PVL method (MPVL, multi-port version for PVL) ; another version that cures the stability problem, namely SyPVL and its multi-port version SyMPVL; besides these, recently, two-step Krylov subspace algorithm, shows much more efficiency than original ones.

    Then, PRIMA (Passive Reduced-Interconnect Macromodel Algorithm, in 1997) and recently SPRIM (Structure-Preserving Reduced-Order Interconnect Macromodeling, in 2004) were developed as improvement to Krylov subspace methods using the Arnoldi procedure, note that, they are provable passivity perversion.

    In the recent searches[4], by applying sampling methods for interpolation, the performance of Krylov methods can be greatly improved, these methods are called rational Krylov methods (RKM); unfortunately, the selection of these points is not an automated process. Moreover, RKM can be extended to solve non-linear or parameter-dependent problems.

    2.3 SVD-Krylov methods

    This type of methods tries to combine the strength of SVD and Krylov based method and avoid the pitfalls of both methods. Some of them can also be applied to nonlinear models. As a matter of fact, they use Krylov method for the Krylov side of the projection and iteration technic to solve a Lyapunov equation for the SVD side of the projection. Two major framework under studying nowadays are namely empirical gramians and Trajectory-piecewise linear (TPWL) framework methods.

    2.3.1 Empirical gramians

    The empirical controllability and observability gramians are as defined by Lall: At first, we need to define the empirical input gramian[5]:

    where r is the number of different perturbation orientations, s is the number of different perturbation magnitudes and n is the number of inputs of the system for the controllability gramians and the number of states of the full order system for the observability gramians.

    Empirical controllability gramian: Let Tp, M and Ep be given as described above, where p is the number of inputs of the system. The empirical controllability gramians for system is defined by

    Where is given by

    The empirical observability gramians are defined in the similar way. Thus, this method is data-driven! The method is applicable for systems for which the nonlinearities are not too severe. Another method of nonlinear system is Proper Orthogonal Decomposition (POD) method[6]. In principle, POD is to begin with an ensemble of data, collected from an experiment or other numerical procedure of a physical system. The POD is then used for producing a set of basis functions, which spans the snapshot collections.

    The main drawback is that Empirical Gramians are only applicable to control-affine systems.

    2.3.2 Trajectory-piecewise linear (TPWL) framework[7]

    As the name of this type of methods indicates, it divides the nonlinear models into different linear pieces. And then by applying the Krylov subspace or SVD-based methods, we can get the local reduced model. This can be represented as the succeeding function:

    For the choice of projection basis, we have the same advantages or disadvantage when using the two basic models, or a combination of the two basic models.

    The methods apply to nonlinear systems by the mature linear system methods, TPWL is able to capture strongly nonlinear effects, with sufficiently accurate and meanwhile, it is cost efficient.

    However, it has no posteriori error bounds, and the method does not guarantee the stable and passive properties. Furth more, it is not totally automatic. This drawback restrains its use.

    2.3.3 Other SVD-Krylov methods

    An algorithm using Laguerre functions is very suitable for circuit synthesis. The algorithm based on the decomposition of the system transfer matrix into orthogonal scaled Laguerre functions, defined as following:

    where α is a positive scaling parameter and ln (t) is the Laguerre polynomial

    By using the Laguerre functions, we can build the link with Padé approximation, the block Arnoldi process and the singular value decomposition (SVD), this permits a simple and stable implementation of the algorithm. In addition, the method is provably passive, but the method is computational cost.

    3 Conclusions

    Generally, the advantages of SVD methods are that they have a fully automatic algorithm and an error bound. However, they are computational cost and do not usually preserve the systems properties like passivity, these drawbacks limit the use of it to large order systems. Krylov-subspace methods have a common disadvantage in practical application: the difficulty to control the error. Error estimator does exist for some methods but they require expensive additional computation. Recent researches are concentrated to the union of the two kind conventional methods through technics like empirical gramians, rational Krylov or TPWL. However, empirical gramians methods are just applicable for control-affine systems and cant capture strong non-linearity. As to rational Krylov or TPWL, the main obstacles are that they are not fully computer automatically in sampling method. To providing some heuristic footpath, other data-driven models like the surrogate models[8] developing rapidly, they can be considered as an alternative to direct model reduction methods.

    [References]

    [1]A.C.Antoulas,D.C.Sorensen and S.Gugercin.A survey of model reduction methods for large-scale systems, Contemporary mathematics,2006.

    [2]S.Gugercin,A.C.Antoulas,A survey of model reduction by balanced truncation and some new results,International Journal of Control,2004.

    [3]Moris Lohmann and Behnam Salimbahrami,Introduction to Krylov Subspace Methods in Model Order Reduction,2003.

    [4]Stefan Güttel,Rational Krylov approximation of matrix functions:Numerical methods and optimal pole selection, GAMM-Mitteilungen Volume 36,Issue 1,2013,pp.8-31.

    [5]Christian Himpe,Mario Ohlberger,Empirical Gramian Framework,WWU Münster,2013.

    [6]René Pinnau,Model reduction via proper orthogonal decomposition,2008,pp 95-109.

    [7]K.Mohaghegh,M.Striebel,Nonlinear Model Order Reduction Based on Trajectory Pievewise Linear Approach:comparing different linear cores,2010,pp.563-570.

    [8]S.Koziel,D.E.Ciaurri and L.Leifsson,Surrogate-based Methods,Computer Optimization,Methods and Algotithms,SCI 356, 2011,pp.33-59.

    久久99一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲精品国产区一区二| 久久av网站| 伊人亚洲综合成人网| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看影片大全网站 | 亚洲国产av影院在线观看| 午夜免费鲁丝| 亚洲av综合色区一区| 80岁老熟妇乱子伦牲交| 麻豆av在线久日| 人人妻人人澡人人看| 日本vs欧美在线观看视频| 久久精品亚洲av国产电影网| 久久精品国产亚洲av涩爱| 午夜免费成人在线视频| 在线观看免费高清a一片| 亚洲成人手机| 热99国产精品久久久久久7| 黄色视频在线播放观看不卡| 一级黄片播放器| 一区二区三区激情视频| 18禁观看日本| 精品视频人人做人人爽| 18禁国产床啪视频网站| 国产欧美亚洲国产| 日韩熟女老妇一区二区性免费视频| 精品久久久久久久毛片微露脸 | 国产真人三级小视频在线观看| 一本一本久久a久久精品综合妖精| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美成人综合另类久久久| 日本av手机在线免费观看| 亚洲熟女毛片儿| 少妇被粗大的猛进出69影院| 91国产中文字幕| 国产视频首页在线观看| 又紧又爽又黄一区二区| 国产精品二区激情视频| av福利片在线| 精品少妇久久久久久888优播| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 欧美亚洲日本最大视频资源| 亚洲精品久久成人aⅴ小说| 欧美xxⅹ黑人| 狂野欧美激情性xxxx| av国产久精品久网站免费入址| 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜一区二区| 这个男人来自地球电影免费观看| 黄色a级毛片大全视频| 欧美日韩黄片免| 欧美激情 高清一区二区三区| 久久精品成人免费网站| √禁漫天堂资源中文www| 美女国产高潮福利片在线看| av视频免费观看在线观看| 国产精品久久久久久人妻精品电影 | 欧美在线黄色| 亚洲欧美一区二区三区黑人| 国产精品欧美亚洲77777| 日韩 亚洲 欧美在线| 欧美在线黄色| 18在线观看网站| 国产高清videossex| 精品国产国语对白av| av线在线观看网站| 亚洲av日韩在线播放| 18禁裸乳无遮挡动漫免费视频| 91九色精品人成在线观看| 老熟女久久久| 欧美激情高清一区二区三区| 中文字幕色久视频| 欧美成人午夜精品| 尾随美女入室| 观看av在线不卡| 亚洲欧美日韩高清在线视频 | 丝袜脚勾引网站| 亚洲第一av免费看| 国产精品国产三级专区第一集| 国产片内射在线| 九色亚洲精品在线播放| 蜜桃在线观看..| 大香蕉久久成人网| 91精品国产国语对白视频| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦在线观看免费高清www| a级毛片黄视频| 久久精品aⅴ一区二区三区四区| 亚洲av欧美aⅴ国产| 激情五月婷婷亚洲| 亚洲成人免费电影在线观看 | 丰满少妇做爰视频| 精品一品国产午夜福利视频| 中文欧美无线码| av国产精品久久久久影院| 欧美+亚洲+日韩+国产| 午夜福利在线免费观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品日本国产第一区| 精品一区二区三卡| 久久99精品国语久久久| 亚洲成人手机| 欧美黑人精品巨大| 亚洲熟女精品中文字幕| 亚洲精品久久午夜乱码| 欧美性长视频在线观看| 另类精品久久| 亚洲av美国av| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| 伦理电影免费视频| 在线亚洲精品国产二区图片欧美| 香蕉丝袜av| 中文字幕色久视频| 侵犯人妻中文字幕一二三四区| 热99久久久久精品小说推荐| 欧美日韩福利视频一区二区| netflix在线观看网站| 波多野结衣av一区二区av| 在线看a的网站| 国产精品 欧美亚洲| 日韩中文字幕欧美一区二区 | 一区二区三区乱码不卡18| 99久久人妻综合| 精品国产乱码久久久久久男人| 狂野欧美激情性xxxx| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 欧美精品人与动牲交sv欧美| 一本—道久久a久久精品蜜桃钙片| 2021少妇久久久久久久久久久| 亚洲av综合色区一区| 亚洲成人国产一区在线观看 | 丝瓜视频免费看黄片| 黄频高清免费视频| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线| 国产高清不卡午夜福利| 多毛熟女@视频| 亚洲精品成人av观看孕妇| 成年av动漫网址| 亚洲少妇的诱惑av| 两个人免费观看高清视频| videosex国产| a级毛片在线看网站| 久9热在线精品视频| 美女扒开内裤让男人捅视频| 国产免费一区二区三区四区乱码| 久久精品久久久久久久性| 久久狼人影院| 亚洲人成77777在线视频| 成人黄色视频免费在线看| svipshipincom国产片| 午夜福利影视在线免费观看| 久久久久久人人人人人| 1024香蕉在线观看| 交换朋友夫妻互换小说| 亚洲成国产人片在线观看| 午夜91福利影院| 久久久久久人人人人人| 国产一区二区激情短视频 | 精品国产国语对白av| 精品一品国产午夜福利视频| 国产成人一区二区三区免费视频网站 | 久久久久久人人人人人| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 熟女少妇亚洲综合色aaa.| 亚洲三区欧美一区| 亚洲欧美一区二区三区黑人| 国产av国产精品国产| 久久久国产欧美日韩av| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一出视频| 亚洲男人天堂网一区| 91国产中文字幕| 欧美另类一区| 国产爽快片一区二区三区| 免费女性裸体啪啪无遮挡网站| 黑人猛操日本美女一级片| 久久久久久久国产电影| 视频在线观看一区二区三区| 婷婷色综合www| 热99久久久久精品小说推荐| 亚洲成国产人片在线观看| 亚洲三区欧美一区| 久久人妻熟女aⅴ| 国产精品一区二区免费欧美 | 人人妻人人澡人人爽人人夜夜| 女人精品久久久久毛片| 美女视频免费永久观看网站| 亚洲av欧美aⅴ国产| 亚洲,一卡二卡三卡| 国产在线观看jvid| 国产国语露脸激情在线看| 婷婷色综合www| 久久亚洲国产成人精品v| 老司机午夜十八禁免费视频| 婷婷成人精品国产| 日本a在线网址| 国产日韩一区二区三区精品不卡| 午夜福利视频在线观看免费| 国产极品粉嫩免费观看在线| 国产黄色视频一区二区在线观看| 亚洲成色77777| 欧美另类一区| 国产亚洲av片在线观看秒播厂| 久久精品成人免费网站| 国产免费一区二区三区四区乱码| av视频免费观看在线观看| 国产国语露脸激情在线看| 国产精品99久久99久久久不卡| 国产亚洲欧美在线一区二区| 国产人伦9x9x在线观看| 久久久久久久国产电影| 亚洲人成电影观看| 亚洲中文日韩欧美视频| 国产又爽黄色视频| 一级,二级,三级黄色视频| 精品国产一区二区三区久久久樱花| 一区福利在线观看| 黑丝袜美女国产一区| 亚洲av男天堂| 老司机深夜福利视频在线观看 | 国产深夜福利视频在线观看| 免费看不卡的av| 精品亚洲成a人片在线观看| 久久人妻熟女aⅴ| 亚洲成国产人片在线观看| 一区二区三区四区激情视频| 一边摸一边做爽爽视频免费| 久久亚洲精品不卡| 最近最新中文字幕大全免费视频 | 久久久久久人人人人人| 美女脱内裤让男人舔精品视频| www.熟女人妻精品国产| 亚洲第一av免费看| 女人精品久久久久毛片| 老司机靠b影院| 男女下面插进去视频免费观看| 久久 成人 亚洲| 午夜福利乱码中文字幕| 亚洲精品乱久久久久久| 自线自在国产av| 这个男人来自地球电影免费观看| 无限看片的www在线观看| 中文字幕人妻丝袜一区二区| 大片电影免费在线观看免费| 一个人免费看片子| 国产成人一区二区三区免费视频网站 | 丝袜喷水一区| 亚洲欧洲国产日韩| 久久久久久久大尺度免费视频| 美女大奶头黄色视频| 亚洲成人手机| 十八禁网站网址无遮挡| 亚洲情色 制服丝袜| 免费少妇av软件| 午夜老司机福利片| 飞空精品影院首页| 18在线观看网站| 中文字幕精品免费在线观看视频| 国产精品九九99| 黑人猛操日本美女一级片| 亚洲精品一区蜜桃| 亚洲欧洲国产日韩| 免费看av在线观看网站| 又大又爽又粗| 国产黄色视频一区二区在线观看| cao死你这个sao货| 免费在线观看视频国产中文字幕亚洲 | 久久毛片免费看一区二区三区| 亚洲免费av在线视频| 超碰97精品在线观看| 国产精品久久久久久人妻精品电影 | 欧美日韩福利视频一区二区| 麻豆乱淫一区二区| 1024视频免费在线观看| www日本在线高清视频| 日韩熟女老妇一区二区性免费视频| 9色porny在线观看| 亚洲成人国产一区在线观看 | 99re6热这里在线精品视频| 高清av免费在线| av在线app专区| 日本色播在线视频| 亚洲精品在线美女| 只有这里有精品99| 曰老女人黄片| 永久免费av网站大全| 好男人视频免费观看在线| 十八禁网站网址无遮挡| 日本av手机在线免费观看| 热99久久久久精品小说推荐| 国产精品 欧美亚洲| 欧美精品高潮呻吟av久久| 少妇人妻 视频| 美女视频免费永久观看网站| 男人操女人黄网站| 蜜桃国产av成人99| 亚洲色图 男人天堂 中文字幕| 又紧又爽又黄一区二区| 国产女主播在线喷水免费视频网站| 9191精品国产免费久久| 亚洲av电影在线进入| 一区二区三区四区激情视频| 亚洲精品美女久久av网站| 久久午夜综合久久蜜桃| 精品人妻在线不人妻| 色综合欧美亚洲国产小说| 日韩制服丝袜自拍偷拍| 人人妻人人澡人人看| 亚洲国产欧美日韩在线播放| 欧美日韩视频精品一区| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 久热爱精品视频在线9| 国产亚洲精品久久久久5区| 91精品国产国语对白视频| 老汉色av国产亚洲站长工具| 国产在线免费精品| av在线播放精品| 熟女av电影| www.熟女人妻精品国产| 久久天堂一区二区三区四区| av一本久久久久| 日韩视频在线欧美| 欧美日韩亚洲国产一区二区在线观看 | a级片在线免费高清观看视频| 熟女少妇亚洲综合色aaa.| 欧美av亚洲av综合av国产av| 久久久久视频综合| av在线老鸭窝| 色婷婷av一区二区三区视频| av在线app专区| 亚洲av成人精品一二三区| 飞空精品影院首页| 69精品国产乱码久久久| 久久久精品区二区三区| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 十八禁人妻一区二区| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 久久久精品区二区三区| 国产黄频视频在线观看| 韩国高清视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 欧美成人午夜精品| 青草久久国产| 少妇粗大呻吟视频| 99热国产这里只有精品6| 蜜桃国产av成人99| 精品熟女少妇八av免费久了| 三上悠亚av全集在线观看| 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 午夜av观看不卡| 免费看av在线观看网站| 午夜av观看不卡| 久久久精品区二区三区| 欧美人与性动交α欧美精品济南到| 久久精品久久久久久久性| 超色免费av| 亚洲午夜精品一区,二区,三区| 日本a在线网址| 一本综合久久免费| 亚洲人成77777在线视频| 99久久99久久久精品蜜桃| 大香蕉久久网| 真人做人爱边吃奶动态| 最近中文字幕2019免费版| 91精品国产国语对白视频| 成年人免费黄色播放视频| 国产av国产精品国产| 十八禁网站网址无遮挡| 一区二区三区四区激情视频| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 成人免费观看视频高清| 99久久99久久久精品蜜桃| 99精国产麻豆久久婷婷| 国产在视频线精品| 性色av乱码一区二区三区2| 老司机深夜福利视频在线观看 | 一本—道久久a久久精品蜜桃钙片| 久久精品国产a三级三级三级| 极品人妻少妇av视频| 亚洲图色成人| 日韩一卡2卡3卡4卡2021年| 涩涩av久久男人的天堂| 桃花免费在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 高清av免费在线| 午夜福利乱码中文字幕| 青春草亚洲视频在线观看| 黄片小视频在线播放| 国产精品一区二区免费欧美 | 一区二区三区精品91| 午夜两性在线视频| 99精品久久久久人妻精品| 晚上一个人看的免费电影| 美女主播在线视频| 嫩草影视91久久| 国产成人一区二区三区免费视频网站 | 五月开心婷婷网| 91精品伊人久久大香线蕉| 亚洲国产精品999| 日韩大片免费观看网站| 婷婷色av中文字幕| 黑丝袜美女国产一区| www.熟女人妻精品国产| 黑人巨大精品欧美一区二区蜜桃| 亚洲激情五月婷婷啪啪| 午夜福利影视在线免费观看| 啦啦啦 在线观看视频| 亚洲免费av在线视频| 亚洲成人免费电影在线观看 | 在线观看国产h片| 亚洲伊人色综图| 欧美精品一区二区大全| 丁香六月欧美| 日本欧美视频一区| 免费看十八禁软件| 99九九在线精品视频| 欧美黑人精品巨大| 国产国语露脸激情在线看| 一级a爱视频在线免费观看| 午夜福利在线免费观看网站| 亚洲情色 制服丝袜| 国产在线观看jvid| 在线观看免费午夜福利视频| 五月天丁香电影| 欧美激情极品国产一区二区三区| 国产精品人妻久久久影院| 丝袜在线中文字幕| 精品福利永久在线观看| 一区二区三区精品91| 国产视频一区二区在线看| 日韩大码丰满熟妇| 天天躁夜夜躁狠狠躁躁| 十分钟在线观看高清视频www| 美女午夜性视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 精品视频人人做人人爽| 两个人看的免费小视频| 十八禁网站网址无遮挡| 大片免费播放器 马上看| 你懂的网址亚洲精品在线观看| 色婷婷久久久亚洲欧美| 免费看十八禁软件| 狠狠精品人妻久久久久久综合| 两人在一起打扑克的视频| 天天影视国产精品| 国产日韩一区二区三区精品不卡| 看免费成人av毛片| 又黄又粗又硬又大视频| 精品福利永久在线观看| 日韩中文字幕欧美一区二区 | 国产一区有黄有色的免费视频| 色综合欧美亚洲国产小说| 亚洲视频免费观看视频| 日日爽夜夜爽网站| 香蕉丝袜av| 亚洲欧美精品综合一区二区三区| 只有这里有精品99| 国产深夜福利视频在线观看| 一边亲一边摸免费视频| 亚洲,欧美精品.| 中文字幕av电影在线播放| 国产熟女欧美一区二区| 久久久久国产精品人妻一区二区| 免费观看a级毛片全部| 黑人巨大精品欧美一区二区蜜桃| 日韩av免费高清视频| 1024香蕉在线观看| 丁香六月欧美| 国产福利在线免费观看视频| 一级黄色大片毛片| 18禁黄网站禁片午夜丰满| 精品亚洲成a人片在线观看| 亚洲欧洲日产国产| 大香蕉久久网| 超碰成人久久| 青草久久国产| 精品人妻一区二区三区麻豆| 黑人猛操日本美女一级片| 亚洲国产日韩一区二区| 一本综合久久免费| 超色免费av| 韩国精品一区二区三区| 午夜久久久在线观看| 日韩,欧美,国产一区二区三区| 丝袜美足系列| 伊人亚洲综合成人网| 欧美成人精品欧美一级黄| 日本wwww免费看| 男女无遮挡免费网站观看| 国产视频首页在线观看| 午夜福利免费观看在线| 国产黄色视频一区二区在线观看| 男人操女人黄网站| 免费少妇av软件| 国产高清国产精品国产三级| 五月开心婷婷网| 亚洲欧美精品综合一区二区三区| 国产精品一国产av| 国产亚洲精品第一综合不卡| 欧美大码av| 女性生殖器流出的白浆| 色婷婷久久久亚洲欧美| 麻豆国产av国片精品| 97在线人人人人妻| 2018国产大陆天天弄谢| 岛国毛片在线播放| 老司机深夜福利视频在线观看 | 久久人人爽av亚洲精品天堂| 99国产综合亚洲精品| 一级黄色大片毛片| 黄色片一级片一级黄色片| avwww免费| 啦啦啦在线免费观看视频4| 99国产综合亚洲精品| 精品少妇一区二区三区视频日本电影| bbb黄色大片| 国产一区有黄有色的免费视频| 亚洲情色 制服丝袜| 免费高清在线观看日韩| 秋霞在线观看毛片| 国产一区二区在线观看av| av视频免费观看在线观看| 91精品伊人久久大香线蕉| 国产福利在线免费观看视频| 中文字幕制服av| 亚洲国产欧美在线一区| 人人妻人人爽人人添夜夜欢视频| 一区二区三区乱码不卡18| 男女边摸边吃奶| 老熟女久久久| 免费av中文字幕在线| 久久久国产精品麻豆| 97精品久久久久久久久久精品| 午夜老司机福利片| 蜜桃在线观看..| 午夜日韩欧美国产| 日韩大码丰满熟妇| 国产亚洲精品第一综合不卡| 亚洲情色 制服丝袜| 少妇裸体淫交视频免费看高清 | 亚洲专区中文字幕在线| 又粗又硬又长又爽又黄的视频| 在线天堂中文资源库| 老司机亚洲免费影院| 精品熟女少妇八av免费久了| av欧美777| 国产成人a∨麻豆精品| a级毛片在线看网站| 天天躁夜夜躁狠狠躁躁| www.熟女人妻精品国产| 久久精品人人爽人人爽视色| 亚洲精品第二区| 亚洲伊人久久精品综合| 亚洲精品一二三| 亚洲国产最新在线播放| 日韩大码丰满熟妇| 天天躁狠狠躁夜夜躁狠狠躁| 校园人妻丝袜中文字幕| 男的添女的下面高潮视频| 亚洲国产欧美日韩在线播放| 欧美中文综合在线视频| 女性生殖器流出的白浆| 97精品久久久久久久久久精品| 99热网站在线观看| 热99久久久久精品小说推荐| 夜夜骑夜夜射夜夜干| 国产色视频综合| 搡老岳熟女国产| 一级毛片女人18水好多 | 美女视频免费永久观看网站| xxx大片免费视频| 五月开心婷婷网| 九色亚洲精品在线播放| 桃花免费在线播放| 午夜福利,免费看| 免费在线观看视频国产中文字幕亚洲 | 69精品国产乱码久久久| 午夜福利乱码中文字幕| av国产久精品久网站免费入址| 欧美成狂野欧美在线观看| 国产精品久久久av美女十八| 国产av国产精品国产| 精品福利永久在线观看| 精品亚洲乱码少妇综合久久| 激情五月婷婷亚洲| 黄频高清免费视频| 中文字幕制服av| 中文字幕最新亚洲高清| 黄频高清免费视频| 好男人电影高清在线观看| 免费av中文字幕在线| 国产精品av久久久久免费| 少妇粗大呻吟视频| 男女国产视频网站| 51午夜福利影视在线观看| 18禁观看日本| 丰满迷人的少妇在线观看| 国产福利在线免费观看视频| 亚洲伊人色综图|