焦鉻 范雙南
摘要:減少SoC的測(cè)試時(shí)間是降低測(cè)試成本的有效方法。提出一種二次排序組合的掃描鏈平衡算法以減少IP核測(cè)試時(shí)間。算法首先對(duì)內(nèi)部掃描鏈按升序排列,然后對(duì)其進(jìn)行mod n(封裝后掃描鏈的條數(shù))劃分,得到n個(gè)余數(shù)序列,將余數(shù)為0的序列按降序排列,與其它余數(shù)序列組合成新的序列;對(duì)新序列再進(jìn)行一次mod n劃分,再次得到n個(gè)余數(shù)序列,最后對(duì)各余數(shù)序列分別求和,求和的結(jié)果即為n條掃描鏈封裝后的掃描鏈長(zhǎng)度。在ITC02基準(zhǔn)電路上的實(shí)驗(yàn)結(jié)果表明,該算法能有效地縮短IP核測(cè)試時(shí)間。
關(guān)鍵詞:劃分SoC測(cè)試;掃描鏈平衡;二次排序組合
中國分類號(hào):TP391 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-3044(2014)29-7000-03
Abstract: Reducing SoC test time is an effective way to reduce testing costs.This paper proposes a scan chain balance algorithm based on two times reordering and combination for minimizing IP testing time. Firstly, the internal scan chains in ascending order, then its mod n (the number of packaged scan chain) division, get the n remainder sequence, the remainder of the sequence 0, in descending order, and other than a few sequences combined into a new sequence; once again for the new sequence mod n is divided to obtain a sequence of residues n again, and finally the remainder of the respective sequences are summed, the result is the sum of the length n of the scan chain after scan chains package.Experimental results on ITC'02 benchmark circuits show that the method can effectively reduce the test time.
Key words: SoC test; scan chain balance; two times reordering and combination
1 概述
隨著超大規(guī)模集成電路設(shè)計(jì)技術(shù)的發(fā)展,集成度和復(fù)雜度的不斷提高,SoC的測(cè)試問題也越來越突出。對(duì)SoC的測(cè)試實(shí)際上就是對(duì)單個(gè)IP(intellectual property)核的測(cè)試,如果能減少IP核的測(cè)試時(shí)間,就能有效地縮短SoC的測(cè)試時(shí)間。IP核的掃描測(cè)試時(shí)間由測(cè)試殼中最長(zhǎng)的掃描鏈決定。因此,掃描鏈的平衡處理是有效降低IP核測(cè)試時(shí)間的有效方法之一。
2 相關(guān)研究工作
已有很多學(xué)者提出了各種掃描鏈平衡的算法來降低SoC的測(cè)試時(shí)間。文獻(xiàn)[1]提出了一種最佳遞減匹配(best fit decrease,BFD)算法,該算法對(duì)IP核內(nèi)部的掃描鏈進(jìn)行逐條分配,具有運(yùn)行效率高、結(jié)構(gòu)簡(jiǎn)單的優(yōu)點(diǎn),在掃描鏈平衡處理中應(yīng)用廣泛。但是該算法只能得到局部最優(yōu)解,存在很大的改進(jìn)空間。文獻(xiàn)[2]提出了一種基于平均值(mean value approximation,MVA)的掃描鏈平衡算法,MVA算法以Wrapper掃描鏈的平均值為基準(zhǔn),分配時(shí)利用平均值對(duì)結(jié)果進(jìn)行預(yù)估和控制,能得到相對(duì)較好的結(jié)果,但是當(dāng)遇到內(nèi)部掃描鏈長(zhǎng)度的分布離散程度較大時(shí),結(jié)果不理想。文獻(xiàn)[3]提出了一種基于差值2次分配的掃描鏈平衡算法,其主要思想是選擇一個(gè)基準(zhǔn)掃描鏈,分別選擇長(zhǎng)度大于和小于基準(zhǔn)的掃描鏈與之做差,按差值進(jìn)行2次分配,該算法實(shí)現(xiàn)簡(jiǎn)單,算法復(fù)雜度低。
針對(duì)上述掃描鏈平衡算法所存在的不足,該文提出了一種基于二次排序組合的掃描鏈平衡的測(cè)試優(yōu)化方法,該方法可以有效地縮短SoC的測(cè)試時(shí)間,降低測(cè)試成本。
4 實(shí)驗(yàn)與結(jié)果分析
為了驗(yàn)證本文算法的有效性,以ITC02基準(zhǔn)SoC內(nèi)的所有IP核作為實(shí)驗(yàn)對(duì)象。ITC02基準(zhǔn)SoC包含12個(gè)SoC、186個(gè)IP核,對(duì)于每一個(gè)IP核,用本文算法與BFD算法、MVA算法分別計(jì)算提供掃描鏈數(shù)目為2~64時(shí)的11718(186×63)種情況下,3種方法能夠得到最優(yōu)解的個(gè)數(shù)。同一個(gè)IP核,在相同的掃描鏈數(shù)目約束下,3種方法得到的測(cè)試時(shí)間的最小值為最優(yōu)解。如果3種方法得到的測(cè)試時(shí)間相等,那么對(duì)于3種算法都是最優(yōu)解,這表明3種算法的最優(yōu)解存在交集。
圖2 3種算法的最優(yōu)解分布
3種算法的最優(yōu)解個(gè)數(shù)分布如圖2所示。從圖中可以看出:
1)區(qū)域內(nèi)的數(shù)字表示最優(yōu)解的個(gè)數(shù),最優(yōu)解總共有11718個(gè);
2) BFD算法得到的最優(yōu)解的個(gè)數(shù)為:11393+45+7+29=11474,占所有最優(yōu)解的97.92%;
3) MVA算法得到的最優(yōu)解的個(gè)數(shù)為:11393+76+7+12=11488,占所有最優(yōu)解的98.04%;
4)本文算法得到的最優(yōu)解的個(gè)數(shù)為:11393+45+76+156=11670,占所有最優(yōu)解的99.59%。
以上數(shù)據(jù)表明本文提出的方法在ITC02基準(zhǔn)測(cè)試集的所有IP核上都能取得較好的效果。
5 結(jié)論
SoC掃描鏈的平衡化處理是減少SoC測(cè)試時(shí)間較好的方法。該文針對(duì)SoC封裝測(cè)試中的掃描鏈平衡問題,提出了基于二次排序組合的方法,該方法通過對(duì)內(nèi)部掃描鏈進(jìn)行兩次排序、兩次模運(yùn)算、兩次重新組合,最后對(duì)各余數(shù)序列分別求和,得到n條掃描鏈封裝后的掃描鏈長(zhǎng)度。該算法具有時(shí)間復(fù)雜度低、實(shí)現(xiàn)簡(jiǎn)單等優(yōu)點(diǎn)。實(shí)驗(yàn)結(jié)果表明,該文方法能有效地減少測(cè)試時(shí)間,較其它方法更為高效。
參考文獻(xiàn):
[1] IYENGAR V,CHAKRABARTY K,MARINISSEN E J.Test wrapper and test access mechanism co-optimization for system-on-chip[A].ITC International Test Conference[C].Baltimore:IEEE Comp.Soc.Test Technology Technical Council,2001:1023-1032.
[2] Niu D H,Wang H,Yang S Y,et al.Re-optimization algorithm for SoC wrapper-chain balance using mean-value approximation[J].Tsinghua Science and Technology,2007,12(S1):61-66.
[3] 鄧立寶,喬立巖,俞洋等.基于差值二次分配的掃描鏈平衡算法[J].電子學(xué)報(bào),2012(2):338-343.
[4] MULLANE B,HIGGINS M,NAMEE C M.An optimal IEEE 1500 core wrapper design for improved test access and reduced test time[A].IET Irish Signals and Systems Conference[C].Galway,Ireland:Institution of Engineering and Technology,2008:204-209.
[5] BENSO A,DI C S, PRINETTO P,et al.IEEE standard 1500 compliance verification for embedded cores[J].IEEE Transactions on Very Large Scale Integration(VLSI) System,2008,16(4):397-407.
[6] HIGGINS M,MACNAMEE C,MULLANE B. Design and implementation challenges for adoption of the IEEE 1500 standard[J].IET Computers & Digital Techniques, 2010,4(1):38-49.endprint
以上數(shù)據(jù)表明本文提出的方法在ITC02基準(zhǔn)測(cè)試集的所有IP核上都能取得較好的效果。
5 結(jié)論
SoC掃描鏈的平衡化處理是減少SoC測(cè)試時(shí)間較好的方法。該文針對(duì)SoC封裝測(cè)試中的掃描鏈平衡問題,提出了基于二次排序組合的方法,該方法通過對(duì)內(nèi)部掃描鏈進(jìn)行兩次排序、兩次模運(yùn)算、兩次重新組合,最后對(duì)各余數(shù)序列分別求和,得到n條掃描鏈封裝后的掃描鏈長(zhǎng)度。該算法具有時(shí)間復(fù)雜度低、實(shí)現(xiàn)簡(jiǎn)單等優(yōu)點(diǎn)。實(shí)驗(yàn)結(jié)果表明,該文方法能有效地減少測(cè)試時(shí)間,較其它方法更為高效。
參考文獻(xiàn):
[1] IYENGAR V,CHAKRABARTY K,MARINISSEN E J.Test wrapper and test access mechanism co-optimization for system-on-chip[A].ITC International Test Conference[C].Baltimore:IEEE Comp.Soc.Test Technology Technical Council,2001:1023-1032.
[2] Niu D H,Wang H,Yang S Y,et al.Re-optimization algorithm for SoC wrapper-chain balance using mean-value approximation[J].Tsinghua Science and Technology,2007,12(S1):61-66.
[3] 鄧立寶,喬立巖,俞洋等.基于差值二次分配的掃描鏈平衡算法[J].電子學(xué)報(bào),2012(2):338-343.
[4] MULLANE B,HIGGINS M,NAMEE C M.An optimal IEEE 1500 core wrapper design for improved test access and reduced test time[A].IET Irish Signals and Systems Conference[C].Galway,Ireland:Institution of Engineering and Technology,2008:204-209.
[5] BENSO A,DI C S, PRINETTO P,et al.IEEE standard 1500 compliance verification for embedded cores[J].IEEE Transactions on Very Large Scale Integration(VLSI) System,2008,16(4):397-407.
[6] HIGGINS M,MACNAMEE C,MULLANE B. Design and implementation challenges for adoption of the IEEE 1500 standard[J].IET Computers & Digital Techniques, 2010,4(1):38-49.endprint
以上數(shù)據(jù)表明本文提出的方法在ITC02基準(zhǔn)測(cè)試集的所有IP核上都能取得較好的效果。
5 結(jié)論
SoC掃描鏈的平衡化處理是減少SoC測(cè)試時(shí)間較好的方法。該文針對(duì)SoC封裝測(cè)試中的掃描鏈平衡問題,提出了基于二次排序組合的方法,該方法通過對(duì)內(nèi)部掃描鏈進(jìn)行兩次排序、兩次模運(yùn)算、兩次重新組合,最后對(duì)各余數(shù)序列分別求和,得到n條掃描鏈封裝后的掃描鏈長(zhǎng)度。該算法具有時(shí)間復(fù)雜度低、實(shí)現(xiàn)簡(jiǎn)單等優(yōu)點(diǎn)。實(shí)驗(yàn)結(jié)果表明,該文方法能有效地減少測(cè)試時(shí)間,較其它方法更為高效。
參考文獻(xiàn):
[1] IYENGAR V,CHAKRABARTY K,MARINISSEN E J.Test wrapper and test access mechanism co-optimization for system-on-chip[A].ITC International Test Conference[C].Baltimore:IEEE Comp.Soc.Test Technology Technical Council,2001:1023-1032.
[2] Niu D H,Wang H,Yang S Y,et al.Re-optimization algorithm for SoC wrapper-chain balance using mean-value approximation[J].Tsinghua Science and Technology,2007,12(S1):61-66.
[3] 鄧立寶,喬立巖,俞洋等.基于差值二次分配的掃描鏈平衡算法[J].電子學(xué)報(bào),2012(2):338-343.
[4] MULLANE B,HIGGINS M,NAMEE C M.An optimal IEEE 1500 core wrapper design for improved test access and reduced test time[A].IET Irish Signals and Systems Conference[C].Galway,Ireland:Institution of Engineering and Technology,2008:204-209.
[5] BENSO A,DI C S, PRINETTO P,et al.IEEE standard 1500 compliance verification for embedded cores[J].IEEE Transactions on Very Large Scale Integration(VLSI) System,2008,16(4):397-407.
[6] HIGGINS M,MACNAMEE C,MULLANE B. Design and implementation challenges for adoption of the IEEE 1500 standard[J].IET Computers & Digital Techniques, 2010,4(1):38-49.endprint