• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Accuracy Spectral Method for the Space-Fractional Diffusion Equations

    2014-11-02 03:40:51ShuyingZhaiDongweiGuiJianpingZhaoandXinlongFeng
    Journal of Mathematical Study 2014年3期

    ShuyingZhai,DongweiGui,JianpingZhaoandXinlongFeng,?

    1School of Mathematics Science,Huaqiao University,Quanzhou,Fujian 362011,P.R.China.

    2Cele National Station of Observation&Research for Desert Grassland Ecosystem,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi,Xinjiang 830011,P.R.China.

    3College of Mathematics and Systems Science,Xinjiang University,Urumqi,Xinjiang 830046,P.R.China.

    High Accuracy Spectral Method for the Space-Fractional Diffusion Equations

    ShuyingZhai1,DongweiGui2,JianpingZhao3andXinlongFeng3,?

    1School of Mathematics Science,Huaqiao University,Quanzhou,Fujian 362011,P.R.China.

    2Cele National Station of Observation&Research for Desert Grassland Ecosystem,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi,Xinjiang 830011,P.R.China.

    3College of Mathematics and Systems Science,Xinjiang University,Urumqi,Xinjiang 830046,P.R.China.

    .In this paper,a high order accurate spectral method is presented for the space-fractional diffusion equations.Based on Fourier spectral method in space and Chebyshev collocation method in time,three high order accuracy schemes are proposed.The main advantages of this method are that it yields a fully diagonal representation of the fractional operator,with increased accuracy and efficiency compared with low-order counterparts,and a completely straightforward extension to high spatial dimensions.Some numerical examples,including Allen-Cahn equation,are conducted to verify the effectiveness of this method.

    AMS subject classifications:35K55,65M70,65L06,65L12

    Chinese Library classifications:O241.82

    Space-fractional diffusion equation,fractional Laplacian,Chebyshev collocation method,Fourier spectral method,implicit-explicit Runge-Kutta method.

    1 Introduction

    Fractional differential equations have been proved to be valuable tools in modeling of many phenomena in various fields.In water resources,fractional models provide a useful description of chemical and contaminant transport in heterogeneous aquifers[1,2].In transport dynamics,they have been used to describe transport dynamics in complexsystems which are governed by anomalous diffusion and non-exponential relaxation patterns[3].Moreover,they are also used in finance,engineering and physics(see[4–6]and references cited therein).

    In this paper,we consider the following space fractional diffusion equation

    with the homogeneous Dirichlet or homogeneous Neumann boundary conditions.Here K >0 is the conductivity or diffusion tensor,and(?Δ)α/2is the fractional Laplacian operator[7]with 1<α<2.The function f=f(x,t,u)denotes the nonlinear source term.

    There are many numerical methods to discretize the fractional Laplacian operator of problem(1.1).However,fractional differential operator is non-local red operator,which generates computational and numerical difficulties that have not been encountered in the context of the classical second-order diffusion equations.For space-fractional diffusion equations,numerical methods often generate full coefficient matrices with complicated structures[8–11].In this paper we use Fourier spectral methods[12-14]to discretize the space-fractional derivative.This approach gives a full diagonal representation of the fractional operator and achieves spectral convergence regardless of the fractional power in the problem.Meanwhile,the application to high spatial dimensions is the same as the one-dimensional problem.For the temporal discretization,based on Chebyshev nodes[15,16],the second-order Crank-Nicolson(CN)method and third-order implicitexplicit(IMEX)Runge-Kutta method[17]are used on the Chebyshev grids,respectively.Numerical experiments in Section 3 show that the time accuracy using Chebyshev grids is more accurate than using uniform grids.

    The outline of this paper is as follows.In Section 2,three collocation/spectral numerical schemes are given for the space fractional diffusion equation(1.1).In Section 3,three numerical examples are carried out to verify the high efficiency of the proposed method,including the space-fractional Allen-Cahn equation in two dimensions.Finally,conclusions are drawn in Section 4.

    2 High-order accurate schemes

    In this section,we present three numerical schemes to simulate the asymptotic behavior of solution for the space fractional diffusion equation(1.1).The proposed schemes are based on Fourier spectral method in space and the collocation technique in time.In order to simplify the notations and without lose of generality,we only present numerical schemes for the one-dimensional space-fractional diffusion equation.

    2.1 Fourier spectral spatial discretization

    This subsection starts to present high-order accurate spectral method approximating the initial boundary value problem(1.1).The symbol(?Δ)α/2has the usual meaning as a function of Laplacian(?Δ),which is defined in terms of its spectral decomposition.In order to illustrate the main idea of the proposed method,the following definition is adopted.

    Definition 2.1.Suppose the one-dimensional Laplacian(?Δ)has a complete set of orthonormal eigenfunctions ?icorresponding to eigenvalues λion the bounded region[a,b],i.e.,(?Δ)?i=λi?i.Let

    Then for any u∈Uα,the Laplacian(?Δ)α/2is de fined by

    where λiand ?iwill depend on the speci fied boundary conditions:

    (1)Homogeneous Dirichlet boundary condition

    (2)Homogeneous Neumann boundary condition

    From Definition 2.1,we know thatcan be used to approximate the exact

    solution u(x),where N is a positive integer.

    Meanwhile,by combined with Eq.(2.1),the i-th Fourier mode of Eq.(1.1)becomes

    Remark 2.1.For the one-dimensional problems,it is widely assumed that fractional Laplacian operatoris equivalent to the Riesz fractional derivativeunder homogeneous Dirichlet boundary conditions[24].However,it is difficult to extend this method to Caputo or Riemann Liouville derivative.For both kinds of fractional derivatives,much effort has been devoted to develop high order spectral methods,such as least square spectral method[25],spectral collocation method[26,27].The research on these aspects will be reported in our future work.

    2.2 Chebyshev collocation time discretization

    It is well known that Chebyshev points are the best for Cauchy optimality and they are very powerful in high order polynomial approximation.Continuous functions defined on[-1,1]can be approximated very accurately by using the polynomial interpolation with enough Chebyshev points.Above all,the rate of convergence of a scheme can be accelerated using Chebyshev points.In this subsection,we use Chebyshev points to discrete the time variable,and three high order accuracy schemes are proposed based on CN method[21,22]and IMEX Runge-Kutta method with the non-uniform time step size.

    Chebyshev polynomials are a well known family of orthogonal polynomials that have many applications[19,20].They are define don the interval[?1,1]and relatedre cursively by

    where T0(z)=1 and T1(z)=z.

    The Chebyshev nodes zmof degree M are the zeros of TM,namely

    For practical use of the Chebyshev nodes on the time interval of interest t∈[0,T],it is necessary to shift these nodes by the following relationship:

    Then the Chebyshev gridsT={tm|0≤m≤M+1}with t0=0,tM+1=T are given correspondingly.

    Based on the time interval[tm,tm+1],a CN type finite difference scheme for Eq.(2.2)can be given as follows:

    However,for the nonlinear case,we need use an iterative method to solve the resulting algebraic system.In order to overcome this drawback,the following linearization scheme is needed

    where τ=max0≤m≤M?1(tm+1?tm).

    Then,it follows from scheme S1 that

    Scheme S2 can be seen as an IMEX scheme,which is a combination of second-order Adams-Bashforth scheme for the explicit term f(t,u)and CN scheme for the implicit term(?Δ)α/2u.

    Note that both schemes are only second-order accuracy in time.In order to construct higher-order scheme,we will investigate the performance of IMEX Runge-Kutta scheme for the stiff and non stiff terms.The s-stage IMEX Runge-Kutta scheme from tm?1to tmcan be generally represented as:

    with internal stages given by

    where δτ=tm?tm?1,and g1is the implicitly treated part,while g2is the explicitly treated part.

    IMEX Runge-Kutta schemes can be represented concisely by two Butcher tableaus[17],and notationscanbede fined similarly.Moreover,the coefficients c and e c are given respectively by the usual relation

    where

    Now we use a third-order accurate IMEX Runge-Kutta scheme

    to solve Eq.(2.2).The scheme,which will be called S3,consists of applying an implicit discretization forand an explicit one for

    Remark 2.2.Note that the two-dimensional case can be handled trivially in the previous formulations by simply replacing λrespectively,where

    and the orthonormal eigenfunctions ?ijcorresponding to eigenvalues λi+λjin a rectangular region[a,b]2.

    Remark 2.3.It is well known that the CN scheme is an unconditionally stable,implicit scheme with second-orderaccuracy in time[21,22],i.e.,scheme S1 in this paper is unconditionally stable.Nevertheless,scheme S2 is conditionally stable,which has a reasonable time step restriction for largerKand small space step[23].For scheme S3,we know from the discussion given in[17]that it is L-stable.

    3 Numerical experiments

    In this section,three numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method.We compute the maximum norm errors

    for one-and two-dimensional cases,respectively.We also compute the temporal convergence order

    The order of accuracy is formally defined when the mesh size approaches to zero.Therefore,when M is relatively small,the numerical scheme may not achieve its formal order of accuracy.

    Comparison with the related work[28]is presented to show the effectiveness of the proposed method.Meanwhile,numerical results on the uniform time step sizes are also provided.

    Problem 1

    In order to compare our schemes with Bueno-Orovib et al.’scheme[28](denoted by S0),we first consider a one-dimensional problem with homogeneous Dirichlet boundary conditions in their paper.The exact analytical solution and the corresponding force term inx∈(0,1)are given by

    The data in Tables 1 and 2 show the maximum norm errors for the numerical solution withα=1.5,K=10,N=51 andT=1.From both tables we find that the numerical results on Chebyshev grids are much better than those on uniform grids in time.As predicted,all of them generate the correspondingly temporal convergence orders whenMis large enough.

    Meanwhile,numerical results in Table 1 show that schemes S1-S3 are more accurate than S0 whenM≥1000,and scheme S1 can obtain the highest accuracy.Of course,this scheme need iteration.In fact,we find four or less iterations are sufficient to obtain high precise numerical solution in our computation.Moreover,although scheme S3 is thirdorder accurate in time,it does not show a selective superiority untilM=4000.Asa whole,scheme S1 would be the best choice.

    Table 1:Numerical results of Problem 1 using Chebyshev collocation points in time at T=1,N=51 and α=1.5 withK=10.

    Table 2:Numerical results of Problem 1 using uniform grids in time at T=1,N=51 and α=1.5 withK=10.

    Problem 2

    To better illustrate the efficiency of the proposed method,we extend Problem 1 to two dimensional case.The exact solution and the corresponding force term in(x,y)∈(0,1)2are given by

    In this test,we fixα=1.5,K=10 andN=51.The numerical results atT=1 are presented in Tables 3 and 4.Again,the data in Table 3 are more accurate than those in Table 4,which further con firm that scheme S1 is the best choice.

    Table 3:Numerical results of Problem 2 using Chebyshev collocation points in time at T=1,N=51 and α=1.5 withK=10.

    Table 4:Numerical results of Problem 2 using uniform grids in time at T=1,N=51 and α=1.5 withK=10.

    Problem 3

    The Allen-Cahn equation represents a model for anti-phase domain coarsening in a binary mixture.The continuous problem has a decreasing total energy[29–31].Now we consider the following space-fractional Allen-Cahn equation

    with homogeneous Neumann boundary conditions,and the initial conditions are

    and

    for one-and two-dimensional cases,respectively.

    In this test,settingK=0.01,N=100 and τ=1.All numerical results are obtained by scheme S1.Fig.1(a-c)show the time evolution of the one-dimensional Allen-Cahn equation for varying α.Fig.1(a)shows that the initial datum evolves to an intermediate unstable equilibrium,followed by a rapid transition to stable state of u=±1.As the fractional power is decreased,Fig.1(b)shows the lifetime of the unstable interface is largely prolonged,eventually becoming fully stable due to the long-tailed influence of the fractional diffusion process(Fig.1(c)).Correspondingly,Fig.1(d-e)show the trend of energy evolution E(u),which can be written as

    Figure 1:Numerical solution and corresponding energy of the one-dimensional space-fractional Allen-Cahn equation for varying α.

    Figure 2:The contour plots of numerical solution of the two-dimensional space-fractional Allen-Cahn equation for varying α.

    Figs. 2 and 3 show the contour plots and corresponding energy of the two-dimensional space-fractional Allen-Cahn equation for varying a. The same conclusions as the one-dimensional case can be obtained.

    Figure 3:The energy of the two-dimensional space-fractional Allen-Cahn equation for varying α.

    4 Conclusions

    In this work,three numerical schemes for solving space-fractional diffusion equation are proposed based on Fourier spectral method in space and collocation method in time.Numerical experiments have shown that the numerical results on Chebyshev grids are more accurate than those on the uniform grids in time,and scheme S1 may be the best choice in this work.Meanwhile,although scheme S3 has third-order convergence in time,the precision advantage would not be displayed unless the Chebyshev nodes M is big enough.So scheme S3 is not applicable to long time behavior,such as Allen-Cahn equation.Moreover,the delay effects[18]of fractional operator are also con firmed.

    The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper.This work is in parts supported by the Distinguished Young Scholars Fund of Xinjiang Province(No.2013711010),the Western Light Program of Chinese Academy of Sciences(No.XBBS201105),and the NSF of China(No.11271313,No.61163027,No.41471031).

    [1]D.A.Benson,S.Wheatcraft and M.M.Meerschaert.Application of a fractional advection-dispersion equation.Water Resources Res.,36:1403–1412,2000.

    [2]M.M.Meerschaert,D.A.Benson and S.W.Wheat craft.Subordinated advection-dispersion equation for contaminant transport.Water Resource Res.,37:1543–1550,2001.

    [3]R.Metzler and J.Klafter.The random walk’s guide to anomalous diffusion:a fractional dynamics approach.Phys.Rep.,339:1–77,2000.

    [4]W.H.Deng and C.P.Li.The evolution of chaotic dynamics for fractional unified system.Phys.Lett.A,372:401–407,2008.

    [5]S.Y.Zhai,X.L.Feng and Z.F.Weng.New high-order compact ADI algorithms for 3D nonlinear time-fractional convection-diffusion equation.Math.Probl.Engrg.,http://dx.doi.org/10.1155/2013/246025.

    [6]S. Y. Zhai, X. L. Feng and Y. N. He. An unconditionally stable compact ADI method for three dimensional time-fractional convection-diffusion equation. J. Comput. Phys., 269: 138–155,2014.

    [7]Q.Q.Yang,I.Turner,F.W.Liu and M.Ili’c.Novel numerical methods for solving the time space fractional diffusion equation in 2D.SIAM J.Sci.Comp.,33:1159–1180,2011.

    [8]M.M.Meerschaert and C.Tadjeran.Finite difference approximations for fractional advection-dispersion flow equations.J.Comput.Appl.Math.,172:65–77,2004.

    [9]V.J.Ervin,N.Heuer and J.P.Roop.Numerical approximation of a time dependent,nonlinear,space-fractional diffusion equation.SIAM J.Numer.Anal.,45:572–591,2007.

    [10]H.K.Pang and H.W.Sun.Multigrid method for fractional diffusion equations.J.Comput.Phys.,231(2):693–703,2012.

    [11]H.Wang and N.Du.A super fast-preconditioned iterative method for steady-state space-fractional diffusion equations.J.Comput.Phys.,240:49–57,2013.

    [12]Y.M.Lin and C.J.Xu.Finite difference/spectral approximations for the time-fractional diffusion equation.J.Comput.Phys.,225:1533–1552,2007.

    [13]X.J.Li and C.J.Xu.A space-time spectral method for the time fractional diffusion equation.SIAM J.Numer.Anal.,47:2108–2131,2009.

    [14]J.Shen,T.Tang and L.Wang.Spectral Methods:Algorithms,Analysis and Applications,volume 41 of Springer Series in Computational Mathematics.Springer,2011.

    [15]J.C.Mason and D.C.Handscomb.Chebyshev Polynomials.Chapman and Hall/CRC,2003.[16]X.L.Feng,T.Tang and J.Yang.Long time numerical simulations for phase- field problems using p-adaptive spectral deferred correction methods.Preprint,2013.

    [17]U.M.Ascher,S.J.Ruuth and R.J.Spiteri.Implicit-explicit Runge-Kutta methods for time dependent partial differential equations.Appl.Numer.Math.,25:151–167,1997.

    [18]K.Seki,M.Wojcik and M.Tachiya.Fractional reaction-diffusion equation.J.Chem.Phys.,119(4):2165–2170,2003.

    [19]J.Shen.efficient Spectral-Galerkin method II.Direct solvers of second-and fourth-Order equations using Chebyshev polynomials.SIAM J.Sci.Comput.,16(1):74–87,1995.

    [20]K.Maleknejad,S.Sohrabi and Y.Rostami.Numerical solution of nonlinear Volterra integral equation of the second kind by using Chebyshev polynomials.Appl.Math.Cmput.,188:123–128,2007.

    [21]J.C.Strikwerda.Finite Difference Schemes and Partial Differential Equations.Pacific Grove,CA:Brooks/Cole,1989.

    [22]J.W.Thomas.Numerical Partial Differential Equations:Finite Difference Methods.New York:Springer-Verlag,1998.

    [23]U.Ascher,S.Ruuth and B.Wetton.Implicit-explicit methods for time-dependent PDE’s.SlAM J.Numer.Anal.,32:797–823,1995.

    [24]Q.Yang,F.Liu and I.Turner.Numerical methods for fractional partial differential equations with Riesz space fractional derivatives.Appl.Math.Model.,34:200–218,2010.

    [25]A.R.Carella and C.A.Dorao.Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation.J.Comput.Phys.,232:33–45,2013.

    [26]M.M.Khader.On the numerical solutions for the fractional diffusion equation.Commun.Nonlinear Sci.Numer.Simul.,16:2535–2542,2011.

    [27]M.Zayernouri and G.E.Karniadakis.Fractional Spectral Collocation Methods.SIAM J.Sci.Comput.,36(1):40–62,2014.

    [28]A.Bueno-Orovio,D.Kay and K.Burrage.Fourier spectral methods for fractional-in-space reaction-diffusion equations.BIT Numer.Math.,DOI 10.1007/s10543-014-0484-2.

    [29]X.B.Feng and A.Prohl.Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows.Numer.Math.,94:33–65,2003.

    [30]X.L.Feng,T.Tang and J.Yang.Stabilized Crank-Nicolson/Adams-Bash forth schemes for phase field models.East Asian J.Appl.Math.,3:59–80,2013.

    [31]X.L.Feng,H.L.Song,T.Tang and J.Yang.Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation.Inverse Problems&Imaging,7(3):679–695,2013.

    6 January 2014;Accepted 13 July 2014

    ?Corresponding author.Email addresses:zhaishuying123456@163.com(S.Zhai),guidwei@163.com(D.Gui),zhaojianping@126.com(Z.Zhao),fxlmath@xju.edu.cn(X.Feng)

    亚洲一区高清亚洲精品| 精品少妇黑人巨大在线播放 | 亚洲人成网站在线播| 亚洲国产精品成人久久小说 | 六月丁香七月| 狠狠狠狠99中文字幕| 欧美性猛交╳xxx乱大交人| 亚洲自偷自拍三级| 一级a爱片免费观看的视频| 悠悠久久av| 小说图片视频综合网站| 亚洲欧美日韩东京热| 午夜视频国产福利| 黄色欧美视频在线观看| 日本一本二区三区精品| 观看免费一级毛片| 99久国产av精品| 欧美极品一区二区三区四区| 性欧美人与动物交配| 欧美色视频一区免费| 一本一本综合久久| 97热精品久久久久久| 久久6这里有精品| 国产黄a三级三级三级人| 久久人人爽人人爽人人片va| 亚洲一级一片aⅴ在线观看| 色噜噜av男人的天堂激情| 亚洲精品成人久久久久久| 亚洲激情五月婷婷啪啪| 中文字幕av成人在线电影| 国产午夜福利久久久久久| 不卡一级毛片| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区三区视频在线观看免费| 亚洲成人av在线免费| 黄色一级大片看看| 少妇熟女aⅴ在线视频| 中文资源天堂在线| 午夜视频国产福利| 久久亚洲国产成人精品v| 精品少妇黑人巨大在线播放 | 一区二区三区免费毛片| av中文乱码字幕在线| 成年女人看的毛片在线观看| 国产毛片a区久久久久| 亚洲人成网站在线播| 国产精华一区二区三区| a级毛片免费高清观看在线播放| 国产国拍精品亚洲av在线观看| 亚洲av免费在线观看| 精品午夜福利在线看| 最新中文字幕久久久久| 男女下面进入的视频免费午夜| 婷婷色综合大香蕉| av中文乱码字幕在线| 亚洲欧美日韩无卡精品| 美女免费视频网站| 国产一区二区三区av在线 | 永久网站在线| 麻豆久久精品国产亚洲av| 婷婷精品国产亚洲av在线| 日日啪夜夜撸| 精品国产三级普通话版| 亚洲av.av天堂| 97在线视频观看| 18禁在线播放成人免费| 一个人免费在线观看电影| 在线播放无遮挡| 国产av麻豆久久久久久久| 国产精品一区二区免费欧美| 国产在视频线在精品| a级毛色黄片| 成人二区视频| 久久精品国产鲁丝片午夜精品| 老师上课跳d突然被开到最大视频| 内地一区二区视频在线| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美国产在线观看| 日本三级黄在线观看| 亚洲在线自拍视频| 久久久久久久久中文| 91狼人影院| 亚洲色图av天堂| 亚洲电影在线观看av| 亚洲av中文av极速乱| 2021天堂中文幕一二区在线观| 久久人人精品亚洲av| 99国产极品粉嫩在线观看| 久久精品国产自在天天线| 99热只有精品国产| 国产成人福利小说| 成人漫画全彩无遮挡| 国产成人a∨麻豆精品| 男人的好看免费观看在线视频| 午夜福利视频1000在线观看| 亚洲最大成人手机在线| 麻豆av噜噜一区二区三区| 精品无人区乱码1区二区| 免费在线观看成人毛片| 国产单亲对白刺激| 尤物成人国产欧美一区二区三区| 天堂网av新在线| 免费av观看视频| .国产精品久久| 你懂的网址亚洲精品在线观看 | 最近在线观看免费完整版| 久久久久性生活片| 又爽又黄a免费视频| 搡老熟女国产l中国老女人| 日本黄色视频三级网站网址| 国产不卡一卡二| 国产伦精品一区二区三区视频9| 高清日韩中文字幕在线| 亚洲av成人av| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜爱| 中国美女看黄片| 在线免费十八禁| aaaaa片日本免费| 欧美3d第一页| 一本精品99久久精品77| 亚洲三级黄色毛片| 看黄色毛片网站| 日韩,欧美,国产一区二区三区 | 两个人视频免费观看高清| 亚洲精品影视一区二区三区av| 国产亚洲av嫩草精品影院| 秋霞在线观看毛片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲在线观看片| 天天一区二区日本电影三级| 精品福利观看| 精品熟女少妇av免费看| 一进一出抽搐gif免费好疼| 少妇人妻一区二区三区视频| 亚洲av.av天堂| 亚洲精品粉嫩美女一区| 九九热线精品视视频播放| 我要搜黄色片| 18禁裸乳无遮挡免费网站照片| 一进一出抽搐动态| 欧美3d第一页| 老师上课跳d突然被开到最大视频| 亚洲丝袜综合中文字幕| 亚洲中文日韩欧美视频| av福利片在线观看| 亚洲av中文av极速乱| 男女下面进入的视频免费午夜| 久久人人爽人人爽人人片va| 一夜夜www| 国产欧美日韩一区二区精品| 精品人妻熟女av久视频| 麻豆精品久久久久久蜜桃| 午夜久久久久精精品| 波多野结衣巨乳人妻| 国产白丝娇喘喷水9色精品| 久久久久久九九精品二区国产| 热99在线观看视频| 国产精品三级大全| 欧美激情在线99| 最近的中文字幕免费完整| 国产久久久一区二区三区| 国产伦精品一区二区三区四那| 大香蕉久久网| 麻豆久久精品国产亚洲av| 久久国产乱子免费精品| АⅤ资源中文在线天堂| а√天堂www在线а√下载| 亚洲av免费高清在线观看| 欧美丝袜亚洲另类| 成人亚洲精品av一区二区| 美女被艹到高潮喷水动态| 亚洲欧美成人综合另类久久久 | 免费一级毛片在线播放高清视频| 国产成人freesex在线 | 久久天躁狠狠躁夜夜2o2o| 麻豆成人午夜福利视频| 久久精品国产99精品国产亚洲性色| 丝袜喷水一区| 国产伦一二天堂av在线观看| 久久精品91蜜桃| 日韩中字成人| 成年女人永久免费观看视频| 精品久久久久久久末码| 国产黄色视频一区二区在线观看 | 欧美又色又爽又黄视频| 亚洲美女视频黄频| 黄色视频,在线免费观看| 禁无遮挡网站| 欧美成人精品欧美一级黄| 啦啦啦韩国在线观看视频| 特级一级黄色大片| 欧美区成人在线视频| 少妇人妻一区二区三区视频| 国产成人福利小说| 久久午夜福利片| 亚洲精品456在线播放app| 国产av麻豆久久久久久久| 少妇高潮的动态图| 亚洲精品成人久久久久久| 中文字幕熟女人妻在线| 乱系列少妇在线播放| 国产av一区在线观看免费| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 搡女人真爽免费视频火全软件 | 亚洲国产精品成人久久小说 | 亚洲第一电影网av| 国产精品乱码一区二三区的特点| 久久久久久九九精品二区国产| 深夜精品福利| 噜噜噜噜噜久久久久久91| 精品一区二区三区视频在线| 亚洲欧美精品综合久久99| 国产亚洲精品综合一区在线观看| 欧美三级亚洲精品| 久久精品国产自在天天线| 深爱激情五月婷婷| 在线免费十八禁| 老师上课跳d突然被开到最大视频| 成人永久免费在线观看视频| 中文字幕av成人在线电影| 久久久久久伊人网av| 深爱激情五月婷婷| 一级黄片播放器| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av| 97人妻精品一区二区三区麻豆| 亚洲内射少妇av| 午夜精品在线福利| 亚洲av不卡在线观看| 亚洲欧美成人精品一区二区| 不卡一级毛片| 国产精品国产三级国产av玫瑰| 欧美在线一区亚洲| 麻豆精品久久久久久蜜桃| a级一级毛片免费在线观看| 亚洲国产高清在线一区二区三| 最好的美女福利视频网| 长腿黑丝高跟| 久久九九热精品免费| 中文字幕免费在线视频6| 亚洲无线观看免费| 日本免费一区二区三区高清不卡| 精品一区二区免费观看| 国产黄色小视频在线观看| 国产精品美女特级片免费视频播放器| 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| 国产 一区精品| 床上黄色一级片| 午夜精品在线福利| 乱码一卡2卡4卡精品| 在线观看免费视频日本深夜| 欧美bdsm另类| 69人妻影院| 国产精品久久久久久久久免| 中文资源天堂在线| 亚洲精品日韩在线中文字幕 | 久久婷婷人人爽人人干人人爱| 嫩草影院新地址| 欧美丝袜亚洲另类| 赤兔流量卡办理| 日韩精品青青久久久久久| 人人妻人人澡欧美一区二区| 91av网一区二区| 欧美性猛交╳xxx乱大交人| 熟女人妻精品中文字幕| 老司机影院成人| 国内精品宾馆在线| 国产精品嫩草影院av在线观看| 少妇熟女欧美另类| 少妇的逼水好多| 男女啪啪激烈高潮av片| 九色成人免费人妻av| 亚洲av免费高清在线观看| 中文在线观看免费www的网站| 国产精品乱码一区二三区的特点| 最好的美女福利视频网| 淫秽高清视频在线观看| 成人av在线播放网站| 国产探花在线观看一区二区| 国产精品一区二区性色av| 97超视频在线观看视频| 亚洲精品国产成人久久av| 天天躁日日操中文字幕| 老司机午夜福利在线观看视频| 日韩精品中文字幕看吧| 在线免费观看的www视频| 国产淫片久久久久久久久| 亚洲在线观看片| 亚洲电影在线观看av| 在线免费观看的www视频| 亚洲精品国产av成人精品 | 亚洲激情五月婷婷啪啪| 综合色av麻豆| 99热全是精品| 中文资源天堂在线| 日本五十路高清| 欧美一区二区亚洲| 亚洲一区高清亚洲精品| 成人永久免费在线观看视频| 日产精品乱码卡一卡2卡三| 亚洲无线在线观看| 久久久久性生活片| 中文资源天堂在线| 欧美日本亚洲视频在线播放| 少妇裸体淫交视频免费看高清| 啦啦啦啦在线视频资源| 国产伦在线观看视频一区| 一级a爱片免费观看的视频| 俄罗斯特黄特色一大片| 99热这里只有是精品在线观看| 亚洲精华国产精华液的使用体验 | 精品午夜福利视频在线观看一区| 午夜视频国产福利| av中文乱码字幕在线| а√天堂www在线а√下载| 欧美极品一区二区三区四区| 亚洲成av人片在线播放无| 成人av一区二区三区在线看| 长腿黑丝高跟| 国产真实乱freesex| 久久久久久久久中文| 国产三级中文精品| 黄色视频,在线免费观看| 晚上一个人看的免费电影| 看免费成人av毛片| 在线观看一区二区三区| 嫩草影院新地址| 欧美成人精品欧美一级黄| 国产精品乱码一区二三区的特点| 国产一区二区在线观看日韩| 少妇猛男粗大的猛烈进出视频 | 久久精品久久久久久噜噜老黄 | 婷婷亚洲欧美| 国产一区二区三区av在线 | 亚洲av一区综合| a级毛色黄片| 人妻制服诱惑在线中文字幕| 热99在线观看视频| 一区二区三区免费毛片| 日本一本二区三区精品| 22中文网久久字幕| 舔av片在线| 九九爱精品视频在线观看| 免费av不卡在线播放| 国产精品av视频在线免费观看| 亚洲婷婷狠狠爱综合网| 亚洲第一电影网av| 亚洲av二区三区四区| 99久久精品热视频| 亚洲精品久久国产高清桃花| 又黄又爽又刺激的免费视频.| 亚洲欧美精品自产自拍| 国产精品一区二区三区四区久久| 51国产日韩欧美| 91狼人影院| 国产一区二区在线观看日韩| 亚洲五月天丁香| 高清毛片免费看| 国产视频一区二区在线看| 亚洲内射少妇av| aaaaa片日本免费| 国产精品国产高清国产av| 日韩制服骚丝袜av| 97热精品久久久久久| av专区在线播放| 人人妻人人澡欧美一区二区| 男女之事视频高清在线观看| 中出人妻视频一区二区| 国产精品国产高清国产av| 香蕉av资源在线| 日韩亚洲欧美综合| 尾随美女入室| 亚洲美女视频黄频| 毛片女人毛片| 免费av观看视频| 精华霜和精华液先用哪个| 97热精品久久久久久| 国产色爽女视频免费观看| 99久久久亚洲精品蜜臀av| 最近视频中文字幕2019在线8| 男人狂女人下面高潮的视频| 国产黄片美女视频| 亚洲精品色激情综合| 日本黄色片子视频| 免费无遮挡裸体视频| 99久久中文字幕三级久久日本| 男插女下体视频免费在线播放| 天堂网av新在线| 国产av在哪里看| 性插视频无遮挡在线免费观看| 亚洲美女搞黄在线观看 | 亚洲av熟女| 天堂影院成人在线观看| 欧美一区二区精品小视频在线| 美女xxoo啪啪120秒动态图| 中出人妻视频一区二区| 插逼视频在线观看| a级毛片a级免费在线| 国产v大片淫在线免费观看| 久久久久国产网址| 99久久中文字幕三级久久日本| 一本一本综合久久| 欧美+日韩+精品| 精品一区二区免费观看| 简卡轻食公司| 亚洲最大成人中文| 亚洲av免费在线观看| 欧美丝袜亚洲另类| 99热6这里只有精品| 国产成人a区在线观看| 亚洲av二区三区四区| 欧美又色又爽又黄视频| 久久久午夜欧美精品| 亚洲av中文字字幕乱码综合| 免费看日本二区| 亚洲无线在线观看| 色噜噜av男人的天堂激情| 激情 狠狠 欧美| 亚洲精品乱码久久久v下载方式| 国产午夜福利久久久久久| 一个人免费在线观看电影| 国产色婷婷99| 亚洲美女黄片视频| 久久午夜福利片| 成人综合一区亚洲| 欧美日本亚洲视频在线播放| 18禁在线无遮挡免费观看视频 | 丰满人妻一区二区三区视频av| 国产成人aa在线观看| 婷婷亚洲欧美| 欧美性猛交黑人性爽| 成年av动漫网址| 欧美+亚洲+日韩+国产| 六月丁香七月| 中文字幕av在线有码专区| 99久久精品热视频| 亚洲成人久久爱视频| 变态另类成人亚洲欧美熟女| 国产精品日韩av在线免费观看| 亚洲国产精品国产精品| 国产男靠女视频免费网站| 日韩高清综合在线| 色5月婷婷丁香| 日韩三级伦理在线观看| 免费看日本二区| 欧美一区二区精品小视频在线| 97热精品久久久久久| 国产色爽女视频免费观看| 亚洲自拍偷在线| 国内精品宾馆在线| 伊人久久精品亚洲午夜| 国产成人福利小说| 国产精品久久电影中文字幕| 成人毛片a级毛片在线播放| 亚洲高清免费不卡视频| 午夜免费男女啪啪视频观看 | 色视频www国产| 亚洲电影在线观看av| 久久综合国产亚洲精品| 又黄又爽又刺激的免费视频.| 3wmmmm亚洲av在线观看| 秋霞在线观看毛片| 精品一区二区三区人妻视频| 一区二区三区四区激情视频 | 亚洲国产精品久久男人天堂| 国产白丝娇喘喷水9色精品| 两个人的视频大全免费| 亚洲av熟女| 日韩欧美在线乱码| 国产精品人妻久久久影院| 成人亚洲精品av一区二区| 亚洲激情五月婷婷啪啪| 久久天躁狠狠躁夜夜2o2o| 亚洲中文日韩欧美视频| 日本精品一区二区三区蜜桃| 欧美国产日韩亚洲一区| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 国产精品1区2区在线观看.| 欧美性感艳星| 免费观看精品视频网站| 久久精品国产亚洲av香蕉五月| 乱系列少妇在线播放| 日本成人三级电影网站| 久久久精品欧美日韩精品| 真实男女啪啪啪动态图| 深夜a级毛片| 最近2019中文字幕mv第一页| 日本成人三级电影网站| 日本a在线网址| 免费av观看视频| 国产av不卡久久| 国产 一区 欧美 日韩| 久久国产乱子免费精品| 中文字幕精品亚洲无线码一区| 欧美区成人在线视频| 亚洲av熟女| 国产成人a区在线观看| 99热网站在线观看| 成人亚洲精品av一区二区| 国产精品无大码| 免费在线观看成人毛片| 在线a可以看的网站| 两个人视频免费观看高清| 国产亚洲精品综合一区在线观看| 国内揄拍国产精品人妻在线| 免费看av在线观看网站| 亚洲成人久久性| 亚洲va在线va天堂va国产| 婷婷精品国产亚洲av| av在线天堂中文字幕| 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 久久久久久久久久久丰满| 嫩草影视91久久| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 欧美在线一区亚洲| 亚洲,欧美,日韩| 亚洲最大成人av| 99久久精品一区二区三区| 亚洲18禁久久av| 丝袜喷水一区| 精品乱码久久久久久99久播| 尤物成人国产欧美一区二区三区| 一级a爱片免费观看的视频| 成人鲁丝片一二三区免费| 亚洲精品日韩在线中文字幕 | 国产一区二区亚洲精品在线观看| 色av中文字幕| 精品人妻偷拍中文字幕| 一级毛片我不卡| 国产黄片美女视频| 深爱激情五月婷婷| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品日韩在线中文字幕 | 五月玫瑰六月丁香| 国产久久久一区二区三区| 午夜a级毛片| 欧美3d第一页| 久久国产乱子免费精品| 性欧美人与动物交配| 亚洲av不卡在线观看| 久久热精品热| 熟女人妻精品中文字幕| 男女啪啪激烈高潮av片| 午夜激情福利司机影院| 婷婷精品国产亚洲av在线| 久久精品国产亚洲网站| 中文字幕av成人在线电影| 午夜激情福利司机影院| 日产精品乱码卡一卡2卡三| 国产日本99.免费观看| 午夜影院日韩av| 日本黄色片子视频| 国产三级在线视频| 啦啦啦啦在线视频资源| 村上凉子中文字幕在线| 国产亚洲欧美98| 欧美又色又爽又黄视频| 麻豆乱淫一区二区| 国产三级在线视频| 成年免费大片在线观看| 国产一区二区三区av在线 | 国产中年淑女户外野战色| 欧美+亚洲+日韩+国产| 麻豆精品久久久久久蜜桃| 国产男靠女视频免费网站| 久久久国产成人精品二区| 国产精品福利在线免费观看| 国产精品一二三区在线看| av中文乱码字幕在线| 亚洲一区高清亚洲精品| 亚洲精品一区av在线观看| 免费看日本二区| 一a级毛片在线观看| 校园春色视频在线观看| 久久这里只有精品中国| 久久久久精品国产欧美久久久| 国产精品久久久久久精品电影| 一本精品99久久精品77| 日韩三级伦理在线观看| 亚洲三级黄色毛片| 久久久久久国产a免费观看| 久久久欧美国产精品| 天美传媒精品一区二区| 亚洲国产精品合色在线| 夜夜爽天天搞| 在线天堂最新版资源| 最近在线观看免费完整版| 国产三级中文精品| 亚洲一区高清亚洲精品| 午夜a级毛片| 中文在线观看免费www的网站| 亚洲自偷自拍三级| 麻豆一二三区av精品| 亚洲国产欧美人成| 搡老熟女国产l中国老女人| 搡老妇女老女人老熟妇| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频 | 欧美zozozo另类| 波野结衣二区三区在线| 给我免费播放毛片高清在线观看| 精品一区二区三区人妻视频| 熟女人妻精品中文字幕| 亚洲美女黄片视频| 欧美成人免费av一区二区三区| 久久久成人免费电影| 男女那种视频在线观看| 女生性感内裤真人,穿戴方法视频| 色5月婷婷丁香|