• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用隱Markov模型的陀螺電機(jī)故障診斷方法

    2014-10-21 01:07:34SchoolofMechanicalEngineeringHebeiUniversityofTechnologyTianjin300130ChinaTianjinNavigationInstrumentsResearchInstituteTianjin300131ChinaSchoolofControlScienceandEngineeringHebeiUniversityofTechnologyTianjin300130China
    關(guān)鍵詞:陀螺儀工程學(xué)院陀螺

    (1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; 2. Tianjin Navigation Instruments Research Institute, Tianjin 300131, China; 3. School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

    (1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; 2. Tianjin Navigation Instruments Research Institute, Tianjin 300131, China; 3. School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

    To meet the reliability requirement of electro mechanical gyroscopes, a new method for accurately detecting and diagnosing the faults of gyro motors is presented, which is a pattern recognition method based on hidden markov model (HMM) and uses time domain features extracted from the bus current signals as health indicators. By using a sequential backward selection (SBS) method, the best features are selected to build the representation space and train the parameters of HMM. Then the HMMs are used as classifier for failure detection and diagnosis. The proposed method has been tested on a brushless DC gyro motor to detect bearing faults and stator faults at different temperature levels. The experimental results show that the accuracy of the proposed method is 96.8% for failure detection and diagnosis of gyro motors.

    failure detection; failure diagnosis; hidden Markov models; gyro motor

    Gyro motors, as a class of important inertial sensors, are widely used in all kinds of electro mechanical gyroscopes. Failure detection and diagnosis of gyro motors have been a focus for all gyro-motor researchers, because the malfunction can lead to a catastrophic failure of gyroscope if undetected. Although gyro motors have been extensively used for a century, their failure detection and diagnosis are a relatively new research area. The aim of such work is to accurately diagnose the health condition of gyro motors, and improve the reliability of gyroscopes.

    In previous work, some research has been carried out for failure detection and diagnosis, which was based on Motor Current Signature Analysis (MCSA)[1-2]. The techniques can be classified into time domain, frequency domain and time-frequency domain. However, the electrical signals of gyro motors are very noisy, and it is necessary to use a new type of method to reduce the effect of noise measurements. One of the popular choices is pattern recognition method, combining MCSA and feature signatures extraction. The proposed approach is that the Hidden Markov Model is used as a new type of classification technique to detect and diagnose the abnormal condition.

    The Hidden Markov Model is a powerful statistical modeling tool, which is widely used for speech recognition[3], bearing and gear faults prognosis[4-5]and diagnosis of induction motor fault[6-8]. In this paper, we present a feature extraction method based on time domain representation, and the features extracted from transformations are used to train HMMs, which stand for various fault conditions, such as bearing faults, stator faults and so on. Then the HMMs are used to detect and diagnose the faults of brushless DC gyro motor.

    1 Failure diagnosis architecture

    Fig.1 HMM-based failure diagnosis approach

    Fault detection and diagnosis, based on Hidden Markov Model, includes two stages: signal processing and classification. The first stage includes feature extraction and feature selection, and it is necessary to build the representation space using the set of features, but not all of them are sensitive to faults, so some appropriate features should be selected by the feature selection method. In the second stage, Hidden Markov Models are used, and the kinds of fault states will be divided into the M different classes (M-classes) by clustering techniques. In the d-dimensional space, every class can be represented by a geometric area, and all are used to design HMMs. A feature vector, xi=(x1, x2,…,xd),is characterized by a d-dimensional vector, and the aim is to decide if the measurexishould be assigned to one of the M-classes (HMM1, HMM2,…or HMMm). The HMM, for which the probability to come into being the measure is maximum, determines the type of faults. The process is shown in Fig.1.

    2 Feature extraction and selection

    The Motor Current Signature Analysis (MCSA) is one of the popular machine diagnosis techniques, and it has been successfully applied for the fault detection and diagnosis of major machines[9]. So the time domain features can be used as diagnosis indicators for gyro motors, and it can give information on bearing faults and stator faults. One can distinguish the following:

    An experimental value: xi

    The mean value of current:

    The standard deviation of current:

    Crest factor:

    Kurtosis:

    Skewness:

    The average power of current:

    In order to build the multidimensional feature space, effective features should been extracted, but it is possible that the extracting features are irrelevant and redundant, which affects the quality of diagnosis. In the paper [10], the Sequential Backward Selection (SBS) method was presented, and the principles of the feature selection were conducive to: - better classification results; - removing irrelevant, noisy and misleading features; - reducing complex computation; - better understanding the essential process characteristics.

    3 Hidden Markov Model

    A Hidden Markov Model, as a kind of statistical model, is used to characterize a modeling system for the future state estimation. Each HMM is defined by states, which include a set of feature vectors. To estimate the HMM parameters, the features are converted into observation sequences and grouped into classes. With the Markov Process, an addition has been finished, and the observations are probabilistic functions of the states rather than the states themselves. The Markov Process is shown in Fig.2.

    Fig.2 Generalized architecture of an HMM[6]

    3.1 Elements of HMM

    HMM is characterized by five elements:

    M: The number of observation symbols per state from v1to vM.

    The qtdenotes the current state, the aijis the probability of being in state Sjat time t+ 1, provided that it is in state Siat time t.

    The otdenotes the observation at time t.

    The evaluation, decoding and learning are three basic problems which have been solved by the HMM, and the evaluation and learning can be used to solve the classification problem.

    3.2 Evaluation

    The αt(i ) denotes the probability of the observation sequence O= (o1,o2,…, oT) and state Siat time t. Initialization:

    Recursion:

    Termination:

    In this way, we can calculate P(O |λ).

    In the backward algorithms, the variable βt(i ) is defined as:

    Where, βT(i ) =1.

    Initialization:

    Recursion:

    Termination:

    In this way, we can also calculate P(O |λ).

    3.3 Training

    The Baum-Welch method is used to solve the learning problem for finding the best HMM parameters. The ξt(i,j )denotes the probability of obtaining the model in state Siat time t and the state Sjat time t+ 1, given a training observation sequence and the model λ. The ξt(i,j )is defined as:

    This probability can also be expressed as:

    The γt(i ) is defined as:

    The current model is defined as λ= (A,B,π) and the re-estimated model is defined as= (,,). By using ξt(i,j )and γt(i ), we can obtain the re-estimated formulas as:

    3.4 Diagnosis

    To identify the gyro motor faults, firstly we need train HMM parameters by the above method, and the process is shown in Fig.3. Once the models are trained, the sequence λ is gained, and a gyro motor fault can be diagnosed by the steps shown in Fig.4.

    Fig.3 HMM training

    Fig.4 Approach of HMM-based diagnosis

    4 Experimental results

    To acquire the current signals, a brushless DC gyro motor (24 V, 6000rpm, 1.5 W) is selected as a specimen. The acquisition of current signals is the bus current signals, which are the easiest acquired signals. The number of samples per signal is 3000, and the sampling rate is 20 Hz. A gyro motor usually operates at the same speed to gain a constant moment of momentum, and the work temperature will affect the motor state. So the data acquisition consists of 3 levels of temperature: -40℃, 20 ℃, and 50 ℃.

    The gyro motor is artificially introduced three kinds of condition: healthy, bearing faults and stator faults. Every condition is sampled 10 examples at the same temperature, and 90 acquisitions have been made. Among the 90 examples, the 27 acquisitions are used to select the best feature, and the remaining 63 acquisitions are used to verify the method efficiency. The training and test samples are defined in Tab.1.

    Tab.1 Composition of the training and test samples

    The Fig.5 shows the best three features space (Fo= [δt,,σ]) by the sequential backward selection (SBS) method, the features are: - Attack timeδt: the time from the motor start to the current stable;

    - The mean value of the bus current;

    - The standard deviation of the bus currentσ.

    Fig.5 Feature space by the best feature

    We use a set of 3 observation sequences (Oi={oi1, oi2, …, oiT}, for i= 1,2,3 and T= 3) to train each HMM, with S1,S2,and S3stand for the healthy mode, the bearing faults, and stator faults separately. The initial parameters are defined as:

    The observation matrix B is given by:

    where: μjis the gravity center of the training date in the class Sj; Ejis the training data of the class Sj; (·)′ is matrix transpose;Covdenotes the covariance matrix.

    By training each HMM, the best HMMs parameters (Ai,πi), which make the probabilityP(Oi|λi)maximum, are given in Tab.2 to Tab.4.

    Tab.2 HMM of the healthy mode

    Tab.3 HMM of bearing faults mode

    Tab.4 HMM of stator faults mode

    The remaining 63 classification results are presented in Tab.5, which shows that the right rate is equal to 96.8%. These results show that the new scheme can detect and diagnose the typical faults of gyro motors.

    Tab.5 The results of diagnosis

    5 Conclusion

    In this paper, we present a new method for failure detection and diagnosis of gyro motors based on Hidden Markov Model (HMM). In this new approach, the motor bus current signature is analyzed, and the features are extracted from transformation made on the bus current signals based on the time domain. The most valuable feature vectors by using HMM models are used to detect and diagnose two faults of gyro motors: bearing faults and stator faults. The experimental data are collected from a brushless DC gyro motor, and the obtained results prove that the method is effective in faults detection and diagnosis of gyro motors.

    Reference:

    [1] Pons-Llinares J, Antonino-Daviu J A, Riera-Guasp M, et al. Induction motor diagnosis based on a transient current analytic wavelet transform via frequency b-splines[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1530-1544.

    [2] Pineda-Sanchez M, Riera-Guasp M, Roger-Folch J, et al. Diagnosis of induction motor faults in time-varying conditions using the polynomial-phase transform of the current[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1428-1439.

    [3] Rabiner L, Juang B H. An introduction to hidden Markov models[J]. ASSP Magazine, IEEE, 1986, 3(1): 4-16.

    [4] Soualhi A, Razik H, Clerc G, et al. Prognosis of Bearing Failures using Hidden Markov Models and the Adaptive Neuro-Fuzzy Inference System[J]. Industrial Electronics, IEEE Transactions on, 2014, 61(6): 2864-2874.

    [5] Zaidi S S H, Aviyente S, Salman M, et al. Prognosis of gear failures in DC starter motors using hidden Markov models[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1695-1706.

    [6] Soualhi A, Clerc G, Razik H, et al. Fault detection and diagnosis of induction motors based on hidden Markov model[C]//Electrical Machines (ICEM), 2012 XXth International Conference on. IEEE, 2012: 1693-1699.

    [7] Abdesselam L, Guy C. Diagnosis of induction machine by time frequency representation and hidden Markov modelling[C]//2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives. 2007: 272-276.

    [8] Nakamura H, Chihara M, Inoki T, et al. Impulse testing for detection of insulation failure of motor winding and diagnosis based on Hidden Markov Model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(5): 1619-1627.

    [9] Pineda-Sanchez M, Riera-Guasp M, Roger-Folch J, et al. Diagnosis of induction motor faults in time-varying conditions using the polynomial-phase transform of the current[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1428-1439.

    [10] Ondel O, Boutleux E, Clerc G. Feature selection by evolutionary computing: Application on diagnosis by pattern recognition approach[C]//Proceedings of the 18th International Conference on Computer Applications in Industry and Engineering. 2005: 219-225.

    1005-6734(2014)06-0829-05

    10.13695/j.cnki.12-1222/o3.2014.06.024

    用隱Markov模型的陀螺電機(jī)故障診斷方法

    董 磊1,2,李德才2,韋俊新2,李為民1,潘龍飛2,孫曉晉3,陳云飛3
    (1. 河北工業(yè)大學(xué) 機(jī)械工程學(xué)院,天津 300130;2. 天津航海儀器研究所 天津 300131;3. 河北工業(yè)大學(xué) 控制科學(xué)與工程學(xué)院,天津 300130)

    為滿足機(jī)電陀螺儀高可靠性的要求,準(zhǔn)確地檢測(cè)和診斷陀螺儀核心部件——陀螺電機(jī)的各類故障是十分必要的。提出了一種陀螺電機(jī)檢測(cè)和診斷的新方法,即基于隱Markov模型的模式識(shí)別方法。該方法從母線電流時(shí)域信號(hào)提取特征并作為電機(jī)狀態(tài)的監(jiān)測(cè)指標(biāo),通過順序后推法選擇最佳信號(hào)特征建立特征空間,并用于隱Markov模型的參數(shù)訓(xùn)練,進(jìn)而使用隱Markov模型作為分類器對(duì)陀螺電機(jī)進(jìn)行故障檢測(cè)和診斷。為驗(yàn)證方法的有效性,用一臺(tái)無刷直流陀螺電機(jī)作為樣本進(jìn)行了實(shí)驗(yàn),構(gòu)造了軸承故障和定子故障,并在不同的溫度條件下進(jìn)行了測(cè)試。實(shí)驗(yàn)結(jié)果表明:該方法對(duì)于陀螺電機(jī)故障檢測(cè)和診斷的正確率達(dá)到96.8%。

    故障檢測(cè);故障診斷;隱Markov模型;陀螺電機(jī)

    TH165.3

    A

    2014-07-07;

    2014-11-11

    裝備預(yù)研支撐技術(shù)項(xiàng)目(62101050802);國(guó)防預(yù)先研究重點(diǎn)項(xiàng)目(513090501)

    董磊(1979—),男,博士研究生,高工,主要從事慣性元件及可靠性的研究。E-mail:dongleihit@126.com

    聯(lián) 系 人:李為民(1964—),男,教授,博士生導(dǎo)師。E-mail:vmin@hebut.edu.cn

    Failure detection and diagnosis of gyro motors using hidden Markov models

    DONG Lei1,2, LI De-cai2, WEI Jun-xin2, LI Wei-min1, PAN Long-fei2, SUN Xiao-jin3, CHEN Yun-fei3

    猜你喜歡
    陀螺儀工程學(xué)院陀螺
    福建工程學(xué)院
    福建工程學(xué)院
    基于EMD的MEMS陀螺儀隨機(jī)漂移分析方法
    做個(gè)紙陀螺
    福建工程學(xué)院
    玩陀螺
    陀螺轉(zhuǎn)轉(zhuǎn)轉(zhuǎn)
    軍事文摘(2018年24期)2018-12-26 00:58:18
    我最喜歡的陀螺
    快樂語文(2018年36期)2018-03-12 00:56:02
    福建工程學(xué)院
    我國(guó)著名陀螺儀專家——林士諤
    九九在线视频观看精品| 精品久久久久久久人妻蜜臀av| 日韩欧美 国产精品| 少妇裸体淫交视频免费看高清| 黑人高潮一二区| 一进一出抽搐gif免费好疼| 欧美又色又爽又黄视频| 最新中文字幕久久久久| 日韩三级伦理在线观看| 久久精品国产清高在天天线| 国产精品av视频在线免费观看| 亚洲无线观看免费| 青青草视频在线视频观看| 免费av毛片视频| 久久午夜亚洲精品久久| 国内少妇人妻偷人精品xxx网站| 国产高潮美女av| 九九在线视频观看精品| 在线观看av片永久免费下载| 亚洲真实伦在线观看| 亚洲精品日韩在线中文字幕 | 看十八女毛片水多多多| 中文欧美无线码| 久久精品综合一区二区三区| 热99re8久久精品国产| 午夜久久久久精精品| 久久这里有精品视频免费| 亚洲无线观看免费| 91精品一卡2卡3卡4卡| av专区在线播放| 亚洲18禁久久av| 成人特级黄色片久久久久久久| 国产伦一二天堂av在线观看| 国产伦精品一区二区三区四那| 人人妻人人看人人澡| 12—13女人毛片做爰片一| 爱豆传媒免费全集在线观看| 好男人在线观看高清免费视频| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 久久久久久久久大av| 亚洲国产精品成人综合色| 国产精品久久久久久久久免| 一个人看的www免费观看视频| 久久国产乱子免费精品| 日韩av在线大香蕉| 国产又黄又爽又无遮挡在线| 12—13女人毛片做爰片一| 国产精品无大码| 国产私拍福利视频在线观看| 色综合站精品国产| 亚洲国产欧美人成| 成人国产麻豆网| 麻豆久久精品国产亚洲av| 久久这里只有精品中国| 最近视频中文字幕2019在线8| 国产成人精品婷婷| 日韩欧美一区二区三区在线观看| 中文字幕人妻熟人妻熟丝袜美| 十八禁国产超污无遮挡网站| 精品少妇黑人巨大在线播放 | 久久久久久久亚洲中文字幕| 日本在线视频免费播放| 少妇的逼水好多| 精品国内亚洲2022精品成人| 精品久久久久久久人妻蜜臀av| 日韩在线高清观看一区二区三区| 欧美+日韩+精品| 天天一区二区日本电影三级| 麻豆一二三区av精品| 亚洲,欧美,日韩| 2022亚洲国产成人精品| 深爱激情五月婷婷| 欧美高清性xxxxhd video| 亚洲色图av天堂| 成人国产麻豆网| 毛片一级片免费看久久久久| 亚洲欧美日韩高清在线视频| 神马国产精品三级电影在线观看| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 久久亚洲国产成人精品v| 免费看a级黄色片| 青青草视频在线视频观看| 欧美丝袜亚洲另类| 赤兔流量卡办理| 波多野结衣高清无吗| 淫秽高清视频在线观看| 三级毛片av免费| 亚洲欧美成人精品一区二区| 少妇被粗大猛烈的视频| 插阴视频在线观看视频| 老女人水多毛片| 亚洲电影在线观看av| 精品午夜福利在线看| 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 99国产极品粉嫩在线观看| 久久久精品欧美日韩精品| 日本黄色片子视频| 国产精品一区二区在线观看99 | 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区免费观看| 国产成人aa在线观看| 亚洲欧美成人精品一区二区| 搡女人真爽免费视频火全软件| 亚洲高清免费不卡视频| 国产av一区在线观看免费| 成人永久免费在线观看视频| 99久久九九国产精品国产免费| 插阴视频在线观看视频| 亚洲欧美日韩卡通动漫| 亚洲av免费高清在线观看| 女的被弄到高潮叫床怎么办| 亚洲欧美精品综合久久99| 午夜久久久久精精品| 人人妻人人看人人澡| www.av在线官网国产| 亚洲成人av在线免费| 免费无遮挡裸体视频| 狂野欧美激情性xxxx在线观看| 观看美女的网站| 春色校园在线视频观看| 夜夜夜夜夜久久久久| 国产综合懂色| 欧美+亚洲+日韩+国产| a级毛片免费高清观看在线播放| 久久人人爽人人片av| 国产精品99久久久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产v大片淫在线免费观看| 人人妻人人澡人人爽人人夜夜 | 欧美日韩一区二区视频在线观看视频在线 | 99国产极品粉嫩在线观看| 日本av手机在线免费观看| 亚洲精品乱码久久久v下载方式| 美女脱内裤让男人舔精品视频 | 亚洲国产精品国产精品| 欧美+亚洲+日韩+国产| 精品免费久久久久久久清纯| 国产色爽女视频免费观看| 国产精品综合久久久久久久免费| 亚洲七黄色美女视频| 高清在线视频一区二区三区 | 久久99蜜桃精品久久| 日日摸夜夜添夜夜爱| 最近最新中文字幕大全电影3| 少妇高潮的动态图| av在线观看视频网站免费| 插逼视频在线观看| 麻豆乱淫一区二区| 真实男女啪啪啪动态图| 国产精品不卡视频一区二区| 99精品在免费线老司机午夜| 久久国内精品自在自线图片| 欧美色欧美亚洲另类二区| 亚洲精品乱码久久久v下载方式| 中文字幕久久专区| 在线a可以看的网站| 男人舔奶头视频| av在线观看视频网站免费| 精品国内亚洲2022精品成人| 成人亚洲欧美一区二区av| 国产精品无大码| 淫秽高清视频在线观看| 人妻系列 视频| 十八禁国产超污无遮挡网站| 国产熟女欧美一区二区| 久久这里只有精品中国| 在线观看午夜福利视频| 最近最新中文字幕大全电影3| 不卡一级毛片| 精品国内亚洲2022精品成人| 此物有八面人人有两片| 一夜夜www| 亚洲欧美精品综合久久99| 中国美白少妇内射xxxbb| 国产精品无大码| 国产不卡一卡二| 久久中文看片网| 天天躁日日操中文字幕| 美女高潮的动态| 久久久久久久久中文| 成人毛片a级毛片在线播放| 黑人高潮一二区| 最近手机中文字幕大全| 高清毛片免费看| 看免费成人av毛片| 91av网一区二区| 超碰av人人做人人爽久久| 99热6这里只有精品| 国产在线男女| 久久热精品热| 精品久久久久久久久av| 性色avwww在线观看| 高清在线视频一区二区三区 | 国产黄色视频一区二区在线观看 | 不卡视频在线观看欧美| 最好的美女福利视频网| 久久久精品欧美日韩精品| 热99re8久久精品国产| 成人午夜精彩视频在线观看| 日本免费一区二区三区高清不卡| 精品久久久久久久久av| 国产人妻一区二区三区在| 99热精品在线国产| 身体一侧抽搐| 亚洲自偷自拍三级| 一本一本综合久久| a级一级毛片免费在线观看| 只有这里有精品99| 99九九线精品视频在线观看视频| videossex国产| 日韩三级伦理在线观看| 成人午夜高清在线视频| 午夜福利视频1000在线观看| 国产v大片淫在线免费观看| 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 少妇丰满av| 校园人妻丝袜中文字幕| 在线观看av片永久免费下载| 久久精品人妻少妇| 欧美日韩精品成人综合77777| 97人妻精品一区二区三区麻豆| 国产乱人视频| 国产高潮美女av| 午夜久久久久精精品| 国产综合懂色| 亚洲成av人片在线播放无| 99久久九九国产精品国产免费| 91精品国产九色| 在线国产一区二区在线| 91久久精品电影网| 欧美一区二区国产精品久久精品| 非洲黑人性xxxx精品又粗又长| 少妇的逼水好多| 神马国产精品三级电影在线观看| 中国国产av一级| 欧美丝袜亚洲另类| 日韩在线高清观看一区二区三区| 国产精品福利在线免费观看| 午夜亚洲福利在线播放| 晚上一个人看的免费电影| 婷婷亚洲欧美| 久久久成人免费电影| 一本久久精品| 国产成人精品一,二区 | 日日干狠狠操夜夜爽| 午夜福利成人在线免费观看| h日本视频在线播放| 草草在线视频免费看| 18禁裸乳无遮挡免费网站照片| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| 精品久久久久久久久av| 人妻系列 视频| 国产精品乱码一区二三区的特点| 久久精品夜夜夜夜夜久久蜜豆| 能在线免费看毛片的网站| 天堂影院成人在线观看| 91久久精品电影网| 精品免费久久久久久久清纯| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜 | 99久久人妻综合| 欧美日韩一区二区视频在线观看视频在线 | 丝袜喷水一区| 99视频精品全部免费 在线| 99热网站在线观看| 在线观看午夜福利视频| 麻豆一二三区av精品| 99久久精品热视频| 午夜精品国产一区二区电影 | 老熟妇乱子伦视频在线观看| 在线观看美女被高潮喷水网站| 啦啦啦韩国在线观看视频| 日韩精品有码人妻一区| 晚上一个人看的免费电影| 男女啪啪激烈高潮av片| 国产淫片久久久久久久久| 亚洲经典国产精华液单| 91在线精品国自产拍蜜月| 看黄色毛片网站| 黑人高潮一二区| 高清毛片免费看| 久久久午夜欧美精品| 亚洲精品国产av成人精品| 九草在线视频观看| 日本爱情动作片www.在线观看| 波多野结衣巨乳人妻| 免费不卡的大黄色大毛片视频在线观看 | 国产视频首页在线观看| 成人午夜精彩视频在线观看| 精品久久国产蜜桃| 成人一区二区视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 一夜夜www| 中文字幕av在线有码专区| 亚洲av免费在线观看| 午夜精品国产一区二区电影 | 国产片特级美女逼逼视频| 在线观看66精品国产| 日本爱情动作片www.在线观看| 少妇的逼水好多| 国产成人精品婷婷| 日韩视频在线欧美| 国产男人的电影天堂91| 成人美女网站在线观看视频| 国产成年人精品一区二区| 亚洲第一电影网av| 久久精品夜夜夜夜夜久久蜜豆| 干丝袜人妻中文字幕| 日韩人妻高清精品专区| 一进一出抽搐动态| 日韩欧美 国产精品| 男插女下体视频免费在线播放| 大香蕉久久网| 欧美zozozo另类| 色5月婷婷丁香| a级毛片免费高清观看在线播放| 欧美一级a爱片免费观看看| 菩萨蛮人人尽说江南好唐韦庄 | 又黄又爽又刺激的免费视频.| 久久精品国产亚洲av香蕉五月| 91精品国产九色| 亚洲乱码一区二区免费版| 午夜激情欧美在线| 欧美又色又爽又黄视频| 人妻系列 视频| 在线观看av片永久免费下载| 亚洲人与动物交配视频| 国产女主播在线喷水免费视频网站 | 男女下面进入的视频免费午夜| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区| 在现免费观看毛片| 在线观看免费视频日本深夜| 久久久久九九精品影院| 欧美三级亚洲精品| 久久九九热精品免费| 高清午夜精品一区二区三区 | 一进一出抽搐gif免费好疼| 国产亚洲精品久久久com| 国产白丝娇喘喷水9色精品| 综合色丁香网| 日韩国内少妇激情av| 欧美一区二区亚洲| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6| 国产精品不卡视频一区二区| 乱人视频在线观看| 欧美激情国产日韩精品一区| 亚洲av第一区精品v没综合| 欧美日本视频| 我要搜黄色片| 亚洲在久久综合| 91久久精品国产一区二区三区| 直男gayav资源| 久久99精品国语久久久| 高清毛片免费观看视频网站| 久久久a久久爽久久v久久| 欧美高清性xxxxhd video| 伦精品一区二区三区| 99热网站在线观看| 麻豆av噜噜一区二区三区| 日本成人三级电影网站| or卡值多少钱| 欧美zozozo另类| 干丝袜人妻中文字幕| 成人毛片a级毛片在线播放| 国产高清有码在线观看视频| 亚洲人成网站高清观看| 亚洲欧美精品专区久久| 国产私拍福利视频在线观看| 久久久久久久久久黄片| 精品人妻熟女av久视频| 久久久久久久久中文| 美女被艹到高潮喷水动态| 精品人妻视频免费看| 亚洲高清免费不卡视频| 99精品在免费线老司机午夜| 哪个播放器可以免费观看大片| 成人性生交大片免费视频hd| 天天一区二区日本电影三级| 国产一区二区亚洲精品在线观看| 九九爱精品视频在线观看| 日韩一本色道免费dvd| 国产黄片视频在线免费观看| 黄色欧美视频在线观看| 午夜a级毛片| 少妇熟女欧美另类| 亚洲欧美精品专区久久| 午夜福利成人在线免费观看| 色综合亚洲欧美另类图片| 天堂影院成人在线观看| 国产成人精品婷婷| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件| 国内精品一区二区在线观看| 中国美女看黄片| 女同久久另类99精品国产91| 在现免费观看毛片| 男人舔奶头视频| 青春草国产在线视频 | 国产精品精品国产色婷婷| 中国美白少妇内射xxxbb| 超碰av人人做人人爽久久| 两性午夜刺激爽爽歪歪视频在线观看| 色播亚洲综合网| 黄色日韩在线| 国产高清有码在线观看视频| 天堂网av新在线| 日韩制服骚丝袜av| 一个人观看的视频www高清免费观看| 97热精品久久久久久| 人人妻人人看人人澡| 国产成人91sexporn| 中出人妻视频一区二区| 两个人的视频大全免费| 成人无遮挡网站| 干丝袜人妻中文字幕| 一进一出抽搐gif免费好疼| 国模一区二区三区四区视频| 91精品一卡2卡3卡4卡| 亚洲国产欧洲综合997久久,| 久久草成人影院| 午夜福利高清视频| 亚洲va在线va天堂va国产| 熟妇人妻久久中文字幕3abv| 男女边吃奶边做爰视频| 亚洲图色成人| 久久久国产成人免费| 国产老妇女一区| 久久韩国三级中文字幕| 特级一级黄色大片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久99热6这里只有精品| 成人三级黄色视频| 亚洲不卡免费看| 亚洲av.av天堂| 午夜精品一区二区三区免费看| 少妇的逼好多水| 老女人水多毛片| 国产成年人精品一区二区| 日韩一区二区视频免费看| 舔av片在线| 国产精品乱码一区二三区的特点| videossex国产| 日本-黄色视频高清免费观看| 乱系列少妇在线播放| 精品人妻偷拍中文字幕| 久久99热6这里只有精品| 久久精品国产自在天天线| 国产在视频线在精品| 久久精品影院6| 人人妻人人看人人澡| 舔av片在线| 小蜜桃在线观看免费完整版高清| 精品午夜福利在线看| 一本久久精品| 麻豆av噜噜一区二区三区| 天堂中文最新版在线下载 | 亚洲激情五月婷婷啪啪| 久久久久九九精品影院| 国产成人一区二区在线| 亚洲av成人av| 在线播放国产精品三级| 久久人人精品亚洲av| 免费观看的影片在线观看| 国产精品.久久久| 免费大片18禁| 看片在线看免费视频| 国产一区亚洲一区在线观看| 别揉我奶头 嗯啊视频| 3wmmmm亚洲av在线观看| 麻豆av噜噜一区二区三区| 在线观看一区二区三区| 久久久久久久亚洲中文字幕| 国产一区二区三区在线臀色熟女| 伦理电影大哥的女人| 男人的好看免费观看在线视频| 精品人妻偷拍中文字幕| 极品教师在线视频| 精品国产三级普通话版| 亚洲在线观看片| 狂野欧美激情性xxxx在线观看| 国内精品一区二区在线观看| 国内精品宾馆在线| 国产极品天堂在线| 午夜福利成人在线免费观看| 亚洲18禁久久av| 久久亚洲国产成人精品v| 欧美zozozo另类| 岛国毛片在线播放| 狠狠狠狠99中文字幕| 欧美激情国产日韩精品一区| 爱豆传媒免费全集在线观看| 精品国产三级普通话版| 亚洲va在线va天堂va国产| 大又大粗又爽又黄少妇毛片口| 天天躁夜夜躁狠狠久久av| 中文字幕熟女人妻在线| 高清毛片免费看| 日本免费一区二区三区高清不卡| 日本免费a在线| 亚洲在线自拍视频| 亚洲国产精品sss在线观看| 日本一二三区视频观看| 97超碰精品成人国产| 国产免费一级a男人的天堂| 成人特级黄色片久久久久久久| 亚洲精品粉嫩美女一区| 欧美成人精品欧美一级黄| 少妇熟女aⅴ在线视频| 久久亚洲精品不卡| 国产成人影院久久av| 成人午夜精彩视频在线观看| 26uuu在线亚洲综合色| 1024手机看黄色片| 日韩国内少妇激情av| 丰满人妻一区二区三区视频av| 秋霞在线观看毛片| 免费观看在线日韩| 在现免费观看毛片| ponron亚洲| 狂野欧美白嫩少妇大欣赏| 又粗又爽又猛毛片免费看| 久99久视频精品免费| 欧美精品一区二区大全| 狂野欧美白嫩少妇大欣赏| 此物有八面人人有两片| 亚洲成a人片在线一区二区| 久久人人精品亚洲av| 男人狂女人下面高潮的视频| 看非洲黑人一级黄片| 中文字幕制服av| 久久这里只有精品中国| 天堂影院成人在线观看| 国产一区亚洲一区在线观看| 成人一区二区视频在线观看| 99国产精品一区二区蜜桃av| 一区二区三区高清视频在线| 特大巨黑吊av在线直播| 天堂√8在线中文| 日韩国内少妇激情av| 男人和女人高潮做爰伦理| 亚洲自拍偷在线| 最近最新中文字幕大全电影3| 99九九线精品视频在线观看视频| 高清午夜精品一区二区三区 | 12—13女人毛片做爰片一| 国产v大片淫在线免费观看| 亚洲18禁久久av| 日韩国内少妇激情av| 一本一本综合久久| 哪个播放器可以免费观看大片| 久久久精品大字幕| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 国产v大片淫在线免费观看| 亚洲国产欧美在线一区| 看免费成人av毛片| 成人性生交大片免费视频hd| 热99在线观看视频| 小蜜桃在线观看免费完整版高清| 97热精品久久久久久| 国产亚洲5aaaaa淫片| 精品久久久久久久久久久久久| 舔av片在线| av.在线天堂| 国产一级毛片在线| 又粗又硬又长又爽又黄的视频 | 哪里可以看免费的av片| 久久久久国产网址| 麻豆成人午夜福利视频| 精品国产三级普通话版| 人人妻人人看人人澡| 一级毛片我不卡| 免费看a级黄色片| 国产在线精品亚洲第一网站| 一夜夜www| 一进一出抽搐gif免费好疼| 高清毛片免费看| 噜噜噜噜噜久久久久久91| 中文亚洲av片在线观看爽| 国产精品一二三区在线看| 亚洲自偷自拍三级| 黄色一级大片看看| 日韩欧美三级三区| 国产精品99久久久久久久久| 精品一区二区三区视频在线| 久久精品夜夜夜夜夜久久蜜豆| 人人妻人人看人人澡| 最近手机中文字幕大全| 日本色播在线视频| 99热精品在线国产| 精品久久久久久久末码| 久久99蜜桃精品久久| 国内精品久久久久精免费| 亚洲av熟女| 日韩av不卡免费在线播放| 一本精品99久久精品77| 天美传媒精品一区二区| 22中文网久久字幕| 又爽又黄a免费视频| 免费观看人在逋| ponron亚洲| 日韩欧美国产在线观看| 日本爱情动作片www.在线观看| 国内少妇人妻偷人精品xxx网站| 又爽又黄a免费视频| 校园人妻丝袜中文字幕| 成人毛片a级毛片在线播放| 尤物成人国产欧美一区二区三区|