• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved fast alignment method of strapdown INS using bidirectional processes and denoising

    2014-10-21 01:13:54QINFangjunLIAnXUJiangning
    關(guān)鍵詞:前向捷聯(lián)慣導(dǎo)

    QIN Fang-jun, LI An, XU Jiang-ning

    (Electrical Engineering College, Naval University of Engineering, Wuhan 430033, China)

    Improved fast alignment method of strapdown INS using bidirectional processes and denoising

    QIN Fang-jun, LI An, XU Jiang-ning

    (Electrical Engineering College, Naval University of Engineering, Wuhan 430033, China)

    To solve fast alignment problem for strapdown inertial navigation system(INS), an improved alignment method is proposed using bidirectional processes and inertial sensors denoising. It is proved that repeatedly making use of the bidirectional processes(forward and backward ) to process the saved inertial measurement unit(IMU) data sequence could help fast alignment. A new relationship between forward and backward processes for alignment is deviated. In order to reduce the effect of angular random walk error, a wavelet-based demoising method is adopted to suppress the noises of fiber optical gyroscopes(FOGs) and accelerometers. And the whole procedure of the improved method based on gyrocompassing loop is given. The fast alignment method has been tested on a self-made FOG strapdown INS. The experiment results show that the improved method has great advantage in alignment speed, which costs less than 3 min to complete the alignment mission, and also has higher alignment accuracy after offline denoising the inertial sensors.

    strapdown; INS; alignment; bidirectional processes; denoising

    Strapdown inertial navigation system(INS) necessitates an alignment stage to determine the initial attitudes before the navigation operation, which is of vital importance in Strapdown INS, because the performance of INS is largely determined by the accuracy and rapidness of the alignment[1-5]. Poor initial alignment accuracy will end up with poor navigation accuracy[2]. While under usual circumstances the speed of alignment contradict with the accuracy[4]. To address the alignment problem, two categories of alignment methods are mainly used i.e. gyrocompassing alignment method and state estimation method[6-13]. The classic gyrocompassing alignment method can achieve fast alignment(about 10 min)[13-16]. But it can’t estimate the biases of gyroscopes or accelerometers, neither eliminate effect of noise from the inertial sensors. State estimation method[9-10,12-13], such as Kalman filter, extended Kalman filter and Unscented Kalman Filter, can estimate the biases, and online eliminate effect of noise. But during a short time, state estimations can’t converge[2,10]. If the filters are not designed reasonably, they even get diverged.

    Authors[6]have proposed a smart method for rapid alignment by using the saved IMU data sequences forward and backward repeatedly to obtain initial attitude matrix. The main procedure of the method is to save all the outputs of gyroscopes and accelerometers firstly when the navigation computer calculates forward in normal manner, and repeat the calculation starting from the end of the data sequence in backward process. This method can be regarded as the third kind of alignment method(we call this idea as “bidirectional processes” in this paper). Kalman filter is also applied in [6] to correct error of gyroscopes and accelerometers in inertial frame.

    After careful study, we find that the relationship between bidirectional processes(formulas in “Backward Process for Strapdown INS Velocity” part[6]) is incomepletely rigorous, which is only an approximation in the low dynamic conditions during a short time. Then the general equations of backward process are further modified in the paper, and a new relationship between forward and backward processes is presented. Considering our goal is to design a very fast alignment method with reasonable accuracy, and the facts that biases can’t be estimated correctly online in a short time(except for bias of north gyroscope) by Kalman filter[5,8-9],we propose an improved gyrocompassing alignment method hybridized by bidirectional processes in this paper to achieve fast alignment. Unlike Kalman filter, conventional gyrocompassing alignment method can’t eliminate effect of noise of gyroscopes or accelerometers, which is harmful for alignment accuracy. Specially the angle random walk error of FOG deteriorates the azimuth accuracy[16]. To achieve high accuracy alignment, some kind of denoising method should be applied. Wavelet transform has an important ability to perform local analysis for all kinds of signals, specially for offline data, so it had been utilized to process signals of FOGs[17-20]. Reference [17] proposed a wavelet de-noising method for alignment, which was applied on a navigational grade inertial measurement unit(LTN90-100). Results showed that accurate alignment procedure and fast convergence of the estimation algorithm could be obtained. Wavelet together with Allan variance was use to model inertial sensor stochastic error in [18]. It is urgent to eliminate uncertain disturbances from outputs of sensors in application environments. So the adaptive fuzzy-wavelet method[13]is adopted to reduce noise of inertial sensors offline during bidirectional processes in this paper.

    The new alignment method using bidirectional processes and inertial sensors denoising has been tested on our self-made FOG Strapdown INS. From the results of experiments, we find that the proposed alignment method has the same accuracy of pitch and roll compared with conventional method. While the former has great advantage over the alignment speed, which costs only about 3 minutes to complete the alignment mission, and also has better performance on yaw accuracy after offline denoising of inertial sensors.

    1 Problem statement

    In Fig.1, Ayis north acceleration of vehicle,Δ Ayis bias of north accelerometer,V˙yis north acceleration calculated by INS, Vyis north velocity, εxis east gyroscope drift, φ0is initial angle error, R is radius of the earth, g is acceleration of gravity, φxis angle error around east axis,1/sis integral operator.

    Recent years the capability of the computer and flash memory rapidly expands. So the navigation computer can save IMU data and process them immediately[6]. Bidirectional processes utilize the saved IMU data sufficiently in the forward and backward process, and make rapid alignment possible, as shown in Fig.1.

    Fig.1 Flow chart for bidirectional processes proposed by Reference [6]

    Reference [6] has proposed a set of formulas for backward process to calculate both attitude and velocity. In this paper we point out that the equations for the velocity calculation are only approximations to some extent and can be further improved.

    For the convenience of the reader, “equations (28)(31)(30) and (33)” in [6] are rewritten as (1)-(4) respectively in this comment.

    Where (1) and (2) are discrete velocity equations for forward and backward process respectively, (3) and (4) are relationship equations between the forward and backward processes for gravity and specific force respectively, the superscript" ← "denotes the terms for backward process, discrete time index for forward computation is k(k=1,2,…,m), time index for backward computation is n(n =1,2,…,m).

    From (1)(2) and (3), it can be easily concluded that

    Reference [6] reverses the sign of the acceleration (shown as (3) and (4)). So in the backward process, position of vehicle calculated by strapdown INS will keep moving forward until the sign of velocity is reversed. Then the total range calculated by a forward and backward process will not be zero. In other words, strapdown INS will not return to the starting points after one forward process and one backward process with the backward equations derived in [6].

    In order to demonstrate the aforementioned statements, we have simulated the forward and backward process, and found that the calculated positions(longitude, latitude) and velocities(Vx,Vy) can not return to the starting points as expected. Though the differences of positions and velocities between starting points and ending points are small in low dynamic conditions for a short time, they will still deteriorate precision of calculated attitude to some extent, shown as Fig.2, which is not good for INS alignment.

    Fig.2 Navigation results after a forward andbackward process based on Reference [6]

    2 Re-derivation of backward process for strapdown INS

    In this section the rigorous strapdown equations for the backward process will be presented. Firstly two scenarios for forward and backward process of navigation are given.

    Scenario I: trajectories of vehicle for forward and backward process are same.

    Scenario II: for any two points on the trajectory, time intervals of forward and backward are same, with directions reversed.

    Given two arbitrary pointsAand A'on the trajectory, lAand lA'← are tw←oposition vectors on forward trajectory, lAand lA'are two position vectors on backward trajectory. They have the following relationship according to Scenario I.

    From (6)(7), we have

    From (6)-(9), we can obtain that

    In the same way, we can draw a similar conclusion that

    From equations(7)(10)(11), we know that the accelerations between forward and backward process have following relationship:

    Where AA( AA'),() are accelerations for forward and backward respectively. As can be seen from (10)-(12), every point on the trajectory has contrary velocity, but same acceleration for forward and backward process. Using the discrete time index for forward and backward process, we get the following more rigorous relation equations from (11) and (12), which are obviously different from previous equations (5)(4) and (3).

    Fig.3 shows the new simulation results of our modification substituting (13)(14) and (15) for (5)(4) and (3) respectively with simulation conditions are completely the same as Fig.2. It can be seen that attitude angles (shown as Fig.3) all return to the original points after a forward and backward process.

    Fig.3 Navigation results after a forward and backward process using our modifications

    In the same manner as derivation of linear motion equations (6)(10)(11), the angular motion equations (angular and angular rate ) for bidirectional processes are as follows, which completely coincide with the part of“Backward Process for strapdown INS Attitude”in [6]

    3 Improved gyrocompassing alignment in bidirectional processes

    Considering our goal is to design a very fast alignment method with reasonable accuracy, in this paper the improved fast gyrocompassing alignment for strapdown INS using bidirectional processes and inertial sensor denoising is as follows:

    STEP 1: Navigation computer starts gyrocompassing alignment in normal manner using the outputs of FOGs and accelerometers while saves a block of inertial sensors outputs. Where(k ) and(k) are outputs of FOGs and accelerometers respectively;[1...m] and[1...m] are saved IMU data in time sequence;ωcis control angular rate vector of gyrocompassing loop, determined by equations (18)-(20) in gyrocompassing alignment loop.

    Where ωcN,ωcE,ωcUare three components of the control angular rate vector ωc; KE1,KE2,KE3,KN1, KN2, KN3, KU1, KU2, KU3, KU4are gyrocompassing loop parameters;,are east and north velocity; pE,pNare east and north position;is the attitude DCM determined by

    STEP 2: The saved IMU data sequences[1...m] and[1...m]are reversed into[1...m] and[1...m] according to relationship equation←s (14) and (17). Then the data sequences[1...m] and[1...m]are denoised. Because IMU data has been saved, the offline denoising method is suitable. So a wavelet-based← denoising method[13]is adopted to obtain[1...m]and [1...m]. There are a family of dyadic wavelet functions φj,p(k) and a family of dyadic scaling functions φj,p(k)to decompose original signal. Given output of inertial sensor with noise ~s( k), the wavelet coefficients are obtained as follows:

    Where cj,pand dj,pare approximations coefficients and details coefficients, respectively. They represent information of signal in frequency domain. Wavelet coefficients are processed in different frequency band as follows:

    Where λcjand λdjare filtering thresholds of approximations and details coefficients in the j-th scale, respectively. Those new wavelets coefficients Cj,kand Dj,kare used to reconstruct data. The denoised data is calculated by

    Equations (22)-(24) show main procedure of wavelet denoising. After inertial sensor denoising, the accuracy of alignment can be improved.

    STEP 3: Navigation computer starts gyrocompassing alignment in backward process using the reversed IMU data. According to relationship equations(14)(16) and (17), the inputs and outputs of gyrocompassing alignment in backward process are relative to the ones in forward process as equations (25) and (26) respectively.

    STEP 4: Denoised data sequences[1...m] and [1...m]are reversed into normal sequence as

    STEP 5: Navigation computer calculates alignment using sequential denoised IMU data in forward process again, which is similar to STEP 1.But IMU data no longer need to be saved.

    STEP 6: To repeat steps (3)(4) and (5), and calculate the alignment outputsθ,γandψ( pitch, roll and yaw).

    4 Experimental Results

    We have tested the improved fast alignment method on the FOG Strapdown INS developed by our research team. In order to evaluate the accuracy of alignment, the IMU is installed on a turntable.

    In the experiment, the turntable keeps level with heading of 36.7° (2202 arcmin). The conventional method completes alignment in 660 s. The improved method uses IMU data of 100 s length to complete fast alignment using forward processes 5 times and backward processes 4 times. The first forward process(F1) calculates online (as described in “STEP 1”), which costs 100 s. The 100 s length data is saved in external FLASH, denoised using wavelet, and aligned offline in bidirectional processes. The remaining 8 bidirectional processes cost navigation computer about 80 s. So the whole procedure needs about 180 s to complete fast alignment. Curves of alignment are shown in Fig.4. Total compared performances of experiment are listed in Tab.1

    In the experiment, the random noise has been reduced obviously. Because the angle random walk errors are greatly repressed, the improved method has better performance on yaw alignment with offline denoising of inertial sensors using wavelet, as shown in Fig.4c while with almost the same accuracy of pitch and roll compared with conventional method as shown in Fig.4a and 4b. The conventional method costs about 11 min to complete alignment, while the improved method needs only about 3 min. The improved method has great advantage on alignment speed. A faster and more accurate alignment can be obtained.

    Fig.4a Pitch error (last 9000 samples)

    Fig.4b Roll error (last 9000 samples)

    Fig.4c Yaw error (last 9000 samples)

    Tab.1 Performances comparison

    5 Main Conclusions

    Initial alignment is an essential part of navigation calculation in Strapdown INS. To solve the fast alignment problem for FOG Strapdown INS, an improved alignment using bidirectional processes and inertial sensors denoising is proposed in this paper. At first, we point out that formulas in the backward process in [6] are incompletely rigorous, because the calculated positions, velocities, and attitude angles can not return to the exact starting points after a forward and backward process. These equations are only approximations in the low dynamic conditions for a short time. Then we modify the equations for backward process, a new relationship between forward and backward processes for Strapdown INS is presented. Considering the limitation of online estimation of inertial error in a short time, we choose an improved gyrocompassing alignment method instead of Kalman filter, hybridized by bidirectional processes in this paper. In order to reduce the effect of angular random walk, a wavelet-based denosing method is adopted to reduce noise of the saved IMU data offline.

    We have tested the improved fast alignment method on the FOG Strapdown INS which is developed by our research team. From the results of experiments, we can tell that both the conventional and the improved methods have almost the same accuracy of pitch and roll. But the improved method has great advantage on the alignment speed. The conventional method costs about 11 min to complete alignment, while the improved method needs less than 3 min. And the improved method also has better performance on yaw accuracy with offline denoising of inertial sensors. A faster and more accurate alignment can be obtained.

    [1] Wu Y X, Zhang H L, Wu M P, Hu X P, et al. Observability of strapdown INS alignment: A global perspective[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 78-102.

    [2] Jamshaid A, Fang J C. Alignment of strapdown inertial navigation system: A literature survey spanned over the last 14 years, 2006. [2014-04-20]. http://www.robstoddard. com/ kalmanlib/StrapdownAlignment.pdf

    [3] Chung D Y, Lee J G, Park C G, Park H W. Strapdown INS error model for multiposition alignment[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1362-1366.

    [4] Fang J C, Wan D J. A fast initial alignment method for strapdown inertial navigation system on stationary base[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1501-1505.

    [5] Groves P D. Principles of GNSS, inertial, and multisensor integrated navigation systems[M]. Boston, London: Artech House, 2008.

    [6] Gao W, Ben Y Y, Zhang X, Li Q, Yu F. Rapid fine strapdown INS alignment method under marine mooring condition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2887-2896.

    [7] Bose A, Puri S, Banerjee P. Modern inertial sensors and systems[M]. Prentice Hall of India, New Delhi, 2008.

    [8] David H T, John L. W. Strapdown inertial navigation technology[M]. 2nd Ed. MPG Books Limited, Bodmin, Cornwall, 2004.

    [9] Qin Y Y. Inertial navigation[M]. Beijing: Science Press, 2006: 14-26.

    [10] Grewal M S, Miyasako R S. Application of Kalman filtering to the calibration and alignment of inertial navigation systems[J]. IEEE Transactions on Automatic Control, 1991, 36(1): 4-13.

    [11] Acharya A. Improving self-alignment of Strapdown INS using measurement augmentation[C]//Proceedings of the 12th International Conference on Information Fusion. July 2009: 1783-1789.

    [12] Savage P G. Strapdown analytics[M]. Strapdown Associates, Inc., Maple Plain, Minnesota, 2000.

    [13] Charles B. Inertial navigation systems[M]. McGraw-Hill Book Company, 1964.

    [14] Hua C. Gyrocompass alignment with base motions: Results for a 1 nmi/h INS/GPS system[J]. Journal of the Institute of Navigation, 2000, 47(2): 65-74.

    [15] Jiang Y F. Error analysis of analytic coarse alignment methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34: 334-337.

    [16] Zheng E. Performance analysis on gyrocompassing alignment of strapdown inertial navigation system[J]. Journal of Northwestern Polytechnical University, 1988, 6(1): 119-126.

    [17] Naser E S, Noureldin A. Wavelet de-noising for IMU alignment[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(10): 32-39.

    [18] Sabatini A M. A wavelet-based bootstrap method applied to inertial sensor stochastic error modeling using the Allan variance[J]. Measurement Science and Technology, 2006, 17(11): 2980-2988.

    [19] Noureldin A, Osman A, Naser E. A neuro-wavelet method for multi-sensor system integration for vehicular navigation[J] Measurement Science and Technology, 2004, 15(2): 404-412.

    [20] Han D G, Li Y F, Mei S Q, Fu J. An adaptive fuzzywavelet method of signal processing for fiber optic gyroscopes[J]. International Journal of Fuzzy Systems, 2011, 13(4): 276-281.

    1005-6734(2014)04-0453-06

    10.13695/j.cnki.12-1222/o3.2014.04.006

    基于正逆向與降噪的捷聯(lián)慣導(dǎo)改進(jìn)快速對(duì)準(zhǔn)方法

    覃方君,李 安,許江寧

    (海軍工程大學(xué) 電氣工程學(xué)院,武漢 430033)

    針對(duì)捷聯(lián)慣性導(dǎo)航系統(tǒng)(INS)的快速對(duì)準(zhǔn)問題,基于雙向過程和慣性傳感器的降噪方法,提出了一種改進(jìn)的對(duì)準(zhǔn)方法。利用雙向過程(前向和逆向)反復(fù)處理保存的慣性測量單元(IMU)的數(shù)據(jù)序列實(shí)現(xiàn)快速對(duì)準(zhǔn),推導(dǎo)了一種新的前向與逆向?qū)?zhǔn)關(guān)系。為了減少角隨機(jī)游走誤差的影響,基于小波變換的降噪方法抑制光纖陀螺(FOGs)和加速度計(jì)噪聲,給出陀螺羅經(jīng)回路的改進(jìn)方法的整個(gè)流程,并在自研的光纖陀螺捷聯(lián)慣導(dǎo)系統(tǒng)上進(jìn)行測試。實(shí)測數(shù)據(jù)實(shí)驗(yàn)結(jié)果表明,經(jīng)正逆向與降噪改進(jìn)后的快速對(duì)準(zhǔn)方法具有更快的收斂速度,能在不到3 min內(nèi)完成對(duì)準(zhǔn)任務(wù),同時(shí)也具有更好的對(duì)準(zhǔn)精度。

    捷聯(lián);慣導(dǎo);對(duì)準(zhǔn);雙向過程;降噪

    U666.1

    A

    2014-02-28;

    2014-07-06

    國家自然科學(xué)基金(61104184);湖北省自然科學(xué)基金(2011CDB054)

    覃方君(1979—),男,工學(xué)博士,講師,從事船用慣性技術(shù)及應(yīng)用研究。E-mail:haig2005@126.com

    猜你喜歡
    前向捷聯(lián)慣導(dǎo)
    一種基于前向防碰撞系統(tǒng)的汽車防追尾裝置
    大眾汽車(2018年11期)2018-12-26 08:44:18
    自適應(yīng)模糊多環(huán)控制在慣導(dǎo)平臺(tái)穩(wěn)定回路中的應(yīng)用
    無人機(jī)室內(nèi)視覺/慣導(dǎo)組合導(dǎo)航方法
    彈道導(dǎo)彈的捷聯(lián)慣性/天文組合導(dǎo)航方法
    基于Bagging模型的慣導(dǎo)系統(tǒng)誤差抑制方法
    捷聯(lián)慣性/天文/雷達(dá)高度表組合導(dǎo)航
    半捷聯(lián)雷達(dá)導(dǎo)引頭視線角速度提取
    基于規(guī)范變換的前向神經(jīng)網(wǎng)絡(luò)的洪水災(zāi)害評(píng)估模型
    基于多線程的慣導(dǎo)邏輯仿真器設(shè)計(jì)
    基于壓電陶瓷直驅(qū)的前向像移補(bǔ)償系統(tǒng)
    液晶與顯示(2015年3期)2015-05-10 01:46:06
    欧美xxxx性猛交bbbb| 国产视频内射| 水蜜桃什么品种好| 国产日韩欧美亚洲二区| 国产av码专区亚洲av| 黄片wwwwww| 日韩强制内射视频| 国产视频内射| 免费看光身美女| 成年女人看的毛片在线观看| 国产精品国产三级国产av玫瑰| 久久97久久精品| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验| 国产乱人视频| 精品一区在线观看国产| 久久久久性生活片| 久久久久久久久久成人| 亚洲精品乱码久久久久久按摩| 亚洲精品日韩av片在线观看| 国产成人精品久久久久久| 禁无遮挡网站| 欧美3d第一页| av专区在线播放| 在线精品无人区一区二区三 | 黄色视频在线播放观看不卡| 麻豆精品久久久久久蜜桃| 婷婷色av中文字幕| 欧美成人午夜免费资源| 欧美成人午夜免费资源| 极品少妇高潮喷水抽搐| 国产色爽女视频免费观看| 新久久久久国产一级毛片| 久久久久久久国产电影| 亚洲天堂国产精品一区在线| 天堂网av新在线| 国产伦精品一区二区三区四那| 欧美老熟妇乱子伦牲交| 内射极品少妇av片p| 亚洲av二区三区四区| 免费观看在线日韩| 大话2 男鬼变身卡| 亚洲av中文av极速乱| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影| 中国三级夫妇交换| 简卡轻食公司| 尾随美女入室| 欧美bdsm另类| 成人无遮挡网站| 久久精品国产鲁丝片午夜精品| 伦理电影大哥的女人| 免费观看a级毛片全部| 偷拍熟女少妇极品色| 青春草国产在线视频| 久久久欧美国产精品| 日韩一本色道免费dvd| 国产男女内射视频| 亚洲欧美日韩另类电影网站 | 久久久精品免费免费高清| 大话2 男鬼变身卡| 一级毛片电影观看| 欧美丝袜亚洲另类| 九草在线视频观看| 久久国产乱子免费精品| 一区二区三区四区激情视频| 97在线人人人人妻| 国产精品一区二区性色av| 国产av不卡久久| 男人爽女人下面视频在线观看| 午夜精品一区二区三区免费看| 天堂中文最新版在线下载 | 九九爱精品视频在线观看| 国产成人精品福利久久| 国产精品久久久久久精品电影| 最后的刺客免费高清国语| 观看免费一级毛片| av.在线天堂| 中国三级夫妇交换| 少妇人妻精品综合一区二区| 国产欧美亚洲国产| 一级毛片 在线播放| 美女内射精品一级片tv| 日韩 亚洲 欧美在线| 免费观看的影片在线观看| 一区二区三区精品91| 免费高清在线观看视频在线观看| 国产男人的电影天堂91| 国产高清有码在线观看视频| 成人无遮挡网站| a级毛色黄片| 高清毛片免费看| 久热这里只有精品99| 最近中文字幕2019免费版| 日韩av在线免费看完整版不卡| 国产一区二区在线观看日韩| 久久久久久国产a免费观看| 久久综合国产亚洲精品| 久久亚洲国产成人精品v| 尤物成人国产欧美一区二区三区| 老女人水多毛片| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久 | 免费观看av网站的网址| 大码成人一级视频| 久久久久性生活片| 成人免费观看视频高清| 亚洲精品乱久久久久久| 99热这里只有是精品在线观看| 人妻一区二区av| 精品久久久久久久久亚洲| 大片免费播放器 马上看| 日日啪夜夜爽| 国产免费福利视频在线观看| 中国国产av一级| 成人二区视频| 美女脱内裤让男人舔精品视频| 大码成人一级视频| 又爽又黄无遮挡网站| 欧美激情久久久久久爽电影| 黑人高潮一二区| 色婷婷久久久亚洲欧美| 一个人看视频在线观看www免费| 日韩中字成人| 亚洲精品日本国产第一区| 80岁老熟妇乱子伦牲交| 26uuu在线亚洲综合色| 成人毛片a级毛片在线播放| 国产乱人视频| 我的女老师完整版在线观看| 日本av手机在线免费观看| 亚洲人与动物交配视频| 国产高清三级在线| 久久久久久久久久久免费av| 欧美bdsm另类| 国产综合精华液| 狂野欧美白嫩少妇大欣赏| 精品久久久噜噜| 亚洲国产高清在线一区二区三| 中文欧美无线码| 国产男人的电影天堂91| 日本猛色少妇xxxxx猛交久久| 丝袜美腿在线中文| 亚洲精品日本国产第一区| 欧美高清成人免费视频www| 欧美日韩视频精品一区| 色婷婷久久久亚洲欧美| 黄色配什么色好看| 2018国产大陆天天弄谢| 美女高潮的动态| 国产白丝娇喘喷水9色精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 五月开心婷婷网| 99久久中文字幕三级久久日本| 男人爽女人下面视频在线观看| av在线亚洲专区| 久久精品国产自在天天线| 亚洲国产最新在线播放| 人人妻人人看人人澡| 日本午夜av视频| 国模一区二区三区四区视频| 晚上一个人看的免费电影| 国产91av在线免费观看| 午夜老司机福利剧场| 国产精品国产三级国产专区5o| 国产 一区 欧美 日韩| 一个人看视频在线观看www免费| 久久精品人妻少妇| 亚洲欧美精品专区久久| 99久久中文字幕三级久久日本| 日韩av免费高清视频| 一个人观看的视频www高清免费观看| 99热全是精品| 欧美97在线视频| 成人亚洲精品一区在线观看 | 美女国产视频在线观看| 久久精品国产亚洲网站| av.在线天堂| 欧美性感艳星| 天堂网av新在线| 欧美日韩在线观看h| 欧美xxxx黑人xx丫x性爽| 精品视频人人做人人爽| 国产精品秋霞免费鲁丝片| 亚洲四区av| 日韩成人伦理影院| 久久人人爽人人爽人人片va| 99久久人妻综合| 国内少妇人妻偷人精品xxx网站| 久久久久久久精品精品| 人妻 亚洲 视频| 亚洲精品成人久久久久久| 男插女下体视频免费在线播放| 国产又色又爽无遮挡免| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 国产永久视频网站| 久久久久九九精品影院| 看免费成人av毛片| 欧美少妇被猛烈插入视频| 国产91av在线免费观看| 国产极品天堂在线| 久久久久九九精品影院| 亚洲国产日韩一区二区| av一本久久久久| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 亚洲,一卡二卡三卡| 国产色婷婷99| 亚洲av.av天堂| 乱系列少妇在线播放| 黄色一级大片看看| 男女国产视频网站| 国产色爽女视频免费观看| 中文欧美无线码| 亚洲va在线va天堂va国产| 熟女av电影| 国产精品秋霞免费鲁丝片| 99热6这里只有精品| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 九九爱精品视频在线观看| 男女边摸边吃奶| 国产免费视频播放在线视频| 久久久久久久久久成人| 国国产精品蜜臀av免费| 精品久久久噜噜| 精品国产乱码久久久久久小说| 精品一区二区三区视频在线| 看十八女毛片水多多多| 青春草亚洲视频在线观看| 国产色爽女视频免费观看| 国产一区二区三区av在线| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 欧美激情在线99| 最近的中文字幕免费完整| 亚洲一级一片aⅴ在线观看| av国产精品久久久久影院| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 欧美最新免费一区二区三区| 日韩制服骚丝袜av| 亚洲色图综合在线观看| 嘟嘟电影网在线观看| 大话2 男鬼变身卡| 一本久久精品| 天天一区二区日本电影三级| 国产亚洲最大av| 国产 一区 欧美 日韩| 欧美日韩视频精品一区| a级毛色黄片| 麻豆久久精品国产亚洲av| 久久97久久精品| 国产精品国产av在线观看| 免费电影在线观看免费观看| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品日本国产第一区| h日本视频在线播放| av在线天堂中文字幕| 新久久久久国产一级毛片| 国产 一区精品| 亚洲成人久久爱视频| 99精国产麻豆久久婷婷| 性插视频无遮挡在线免费观看| 久久亚洲国产成人精品v| 大码成人一级视频| 欧美成人午夜免费资源| 久久精品国产自在天天线| 久久人人爽人人片av| 国产成年人精品一区二区| 免费看av在线观看网站| 国产亚洲5aaaaa淫片| 在现免费观看毛片| 肉色欧美久久久久久久蜜桃 | 久久精品国产亚洲av涩爱| 一级a做视频免费观看| 国产在线一区二区三区精| 黄片无遮挡物在线观看| 国产精品99久久99久久久不卡 | 国产精品久久久久久精品电影小说 | 国产成人a区在线观看| 精品国产乱码久久久久久小说| 久久精品国产亚洲网站| 男人舔奶头视频| 日本一二三区视频观看| 美女脱内裤让男人舔精品视频| 亚洲,一卡二卡三卡| 欧美日本视频| 91久久精品国产一区二区三区| 99热这里只有是精品50| av免费在线看不卡| 久久久久久久久久久丰满| 欧美日韩视频精品一区| 亚洲精品中文字幕在线视频 | 国产精品不卡视频一区二区| 久久精品综合一区二区三区| 欧美一级a爱片免费观看看| 亚洲伊人久久精品综合| 亚洲图色成人| 国产伦精品一区二区三区视频9| 青春草国产在线视频| 亚洲电影在线观看av| 美女xxoo啪啪120秒动态图| 亚洲精品日韩av片在线观看| 亚洲欧洲国产日韩| 久久97久久精品| 特大巨黑吊av在线直播| 亚洲经典国产精华液单| 亚洲精品色激情综合| 三级国产精品片| 两个人的视频大全免费| 在现免费观看毛片| 我的老师免费观看完整版| 性色avwww在线观看| 久久鲁丝午夜福利片| 青春草亚洲视频在线观看| 久热这里只有精品99| 777米奇影视久久| 老师上课跳d突然被开到最大视频| 成人国产麻豆网| 国产一级毛片在线| 亚洲精品,欧美精品| 免费黄色在线免费观看| 中文字幕av成人在线电影| 精品一区二区三区视频在线| 身体一侧抽搐| 麻豆成人午夜福利视频| 久久热精品热| 少妇 在线观看| av在线蜜桃| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 欧美zozozo另类| 欧美激情国产日韩精品一区| 啦啦啦中文免费视频观看日本| 日日摸夜夜添夜夜添av毛片| 在线观看美女被高潮喷水网站| 国产精品国产av在线观看| 国产一区二区亚洲精品在线观看| 国产伦精品一区二区三区四那| 大片电影免费在线观看免费| 国产色婷婷99| 国产男人的电影天堂91| 国产淫语在线视频| 久久精品综合一区二区三区| 亚洲欧美成人精品一区二区| 久久影院123| 波多野结衣巨乳人妻| 男女边吃奶边做爰视频| 国产在线男女| 噜噜噜噜噜久久久久久91| 80岁老熟妇乱子伦牲交| 嫩草影院精品99| 久久久精品免费免费高清| 国产精品三级大全| 人妻 亚洲 视频| 色哟哟·www| 国产欧美日韩精品一区二区| 精品一区在线观看国产| av在线亚洲专区| 久久人人爽av亚洲精品天堂 | 国产精品久久久久久久电影| 热99国产精品久久久久久7| 国产精品久久久久久久电影| 老司机影院成人| av.在线天堂| 久久国内精品自在自线图片| 国内精品美女久久久久久| 好男人在线观看高清免费视频| 国产精品一区二区性色av| 久久久久网色| 国产高潮美女av| 午夜爱爱视频在线播放| 男人舔奶头视频| 99热全是精品| 免费观看a级毛片全部| 国产精品蜜桃在线观看| 最新中文字幕久久久久| 日日啪夜夜爽| 中国三级夫妇交换| 一级毛片aaaaaa免费看小| 一级a做视频免费观看| 80岁老熟妇乱子伦牲交| 国产综合精华液| 日本熟妇午夜| videossex国产| 国产有黄有色有爽视频| 男人爽女人下面视频在线观看| 欧美精品人与动牲交sv欧美| 一级黄片播放器| 男人舔奶头视频| 麻豆精品久久久久久蜜桃| 亚洲自拍偷在线| 极品教师在线视频| 精品久久久久久电影网| 国产精品麻豆人妻色哟哟久久| 午夜激情久久久久久久| 国产在线男女| 日本av手机在线免费观看| 成人高潮视频无遮挡免费网站| 亚洲aⅴ乱码一区二区在线播放| 岛国毛片在线播放| 一区二区三区乱码不卡18| 亚洲成色77777| 激情 狠狠 欧美| 国产一级毛片在线| 在线 av 中文字幕| 国产一区有黄有色的免费视频| 亚洲精品自拍成人| 亚洲精品影视一区二区三区av| 欧美 日韩 精品 国产| 两个人的视频大全免费| av在线播放精品| 日韩视频在线欧美| 日韩伦理黄色片| 亚洲欧美一区二区三区国产| 国产毛片a区久久久久| 欧美国产精品一级二级三级 | 国产精品av视频在线免费观看| 午夜福利视频1000在线观看| 国产伦精品一区二区三区四那| 看非洲黑人一级黄片| 五月天丁香电影| 大香蕉久久网| 久久综合国产亚洲精品| 亚洲av二区三区四区| 亚洲欧美清纯卡通| 在线观看av片永久免费下载| 国产一级毛片在线| 久久久久久伊人网av| 夜夜爽夜夜爽视频| 成人漫画全彩无遮挡| 十八禁网站网址无遮挡 | 99九九线精品视频在线观看视频| 十八禁网站网址无遮挡 | 啦啦啦中文免费视频观看日本| 黄色日韩在线| 久久久久精品性色| 国产成人免费观看mmmm| 高清在线视频一区二区三区| 有码 亚洲区| 免费看不卡的av| 久久精品久久精品一区二区三区| 老司机影院毛片| 日韩亚洲欧美综合| 亚洲精品日韩在线中文字幕| 如何舔出高潮| 中国三级夫妇交换| 18+在线观看网站| 午夜免费鲁丝| 在线a可以看的网站| 国产亚洲精品久久久com| 久久精品人妻少妇| 99久国产av精品国产电影| 夫妻性生交免费视频一级片| 日韩在线高清观看一区二区三区| 亚洲精品成人久久久久久| 下体分泌物呈黄色| 亚洲欧美日韩东京热| 久久久久久久午夜电影| 国产亚洲av片在线观看秒播厂| 亚洲成人中文字幕在线播放| 一本一本综合久久| 久久久久性生活片| av国产免费在线观看| 涩涩av久久男人的天堂| 97在线视频观看| 不卡视频在线观看欧美| 一区二区三区乱码不卡18| 22中文网久久字幕| 国产精品蜜桃在线观看| 大码成人一级视频| 国产毛片在线视频| 一级毛片我不卡| 成人毛片a级毛片在线播放| 热re99久久精品国产66热6| 99久久精品热视频| 成年女人在线观看亚洲视频 | 亚洲欧美成人精品一区二区| 欧美成人a在线观看| 国产精品一区二区性色av| 国产视频内射| www.色视频.com| 秋霞伦理黄片| 亚洲aⅴ乱码一区二区在线播放| 肉色欧美久久久久久久蜜桃 | 亚洲欧美成人综合另类久久久| 免费少妇av软件| 欧美性感艳星| 全区人妻精品视频| 国产精品一二三区在线看| 国产伦精品一区二区三区视频9| 精品视频人人做人人爽| 69人妻影院| 永久网站在线| 亚洲成人一二三区av| 我的女老师完整版在线观看| 在线播放无遮挡| 精品久久久久久久末码| 亚洲精品自拍成人| 亚洲精品乱码久久久v下载方式| xxx大片免费视频| 亚洲,欧美,日韩| 精品久久久精品久久久| 神马国产精品三级电影在线观看| 久久久久久久久久久丰满| 男女边吃奶边做爰视频| 亚洲色图av天堂| 午夜爱爱视频在线播放| 看非洲黑人一级黄片| 男人添女人高潮全过程视频| 91在线精品国自产拍蜜月| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产专区5o| 少妇人妻久久综合中文| 国产成人午夜福利电影在线观看| 在线观看免费高清a一片| 亚洲欧美精品自产自拍| 91精品国产九色| 欧美精品国产亚洲| 亚洲国产日韩一区二区| 亚洲国产精品成人久久小说| av国产免费在线观看| 国产色婷婷99| 久久6这里有精品| 纵有疾风起免费观看全集完整版| 女的被弄到高潮叫床怎么办| 国产成人福利小说| 欧美激情久久久久久爽电影| 黄色视频在线播放观看不卡| 国产精品av视频在线免费观看| 成人午夜精彩视频在线观看| 色播亚洲综合网| 国产精品一区二区性色av| 欧美成人精品欧美一级黄| 在线观看三级黄色| 岛国毛片在线播放| 国产黄色视频一区二区在线观看| 亚洲欧美成人综合另类久久久| 午夜视频国产福利| 性插视频无遮挡在线免费观看| 亚洲激情五月婷婷啪啪| 精品人妻一区二区三区麻豆| 国产精品精品国产色婷婷| 成人亚洲欧美一区二区av| 久久久久性生活片| 97超视频在线观看视频| 国产成人freesex在线| 国产精品嫩草影院av在线观看| 哪个播放器可以免费观看大片| 国产精品麻豆人妻色哟哟久久| 午夜亚洲福利在线播放| 永久免费av网站大全| 狠狠精品人妻久久久久久综合| 国产成人福利小说| 久久女婷五月综合色啪小说 | 成人毛片60女人毛片免费| 成人亚洲精品av一区二区| 亚洲内射少妇av| 亚洲av二区三区四区| 日韩一区二区三区影片| 日韩三级伦理在线观看| 十八禁网站网址无遮挡 | 久久久久九九精品影院| 亚洲欧美日韩无卡精品| 男人添女人高潮全过程视频| 一个人观看的视频www高清免费观看| 男女边摸边吃奶| 乱码一卡2卡4卡精品| 午夜亚洲福利在线播放| 日韩欧美 国产精品| 99久久人妻综合| 欧美性感艳星| 两个人的视频大全免费| 久久精品国产亚洲av天美| 成人漫画全彩无遮挡| 身体一侧抽搐| 亚洲不卡免费看| 成人漫画全彩无遮挡| 在线看a的网站| 亚洲人成网站在线播| 一级毛片电影观看| 国产熟女欧美一区二区| 极品教师在线视频| 一级毛片电影观看| 夜夜看夜夜爽夜夜摸| 久久久久久久大尺度免费视频| 国产黄a三级三级三级人| av天堂中文字幕网| 国产精品久久久久久精品古装| 亚洲内射少妇av| 成人亚洲欧美一区二区av| 又爽又黄无遮挡网站| 亚洲欧洲日产国产| 熟女电影av网| 特大巨黑吊av在线直播| 国产精品爽爽va在线观看网站| 天堂中文最新版在线下载 | 亚洲欧美精品专区久久| 国产淫语在线视频| 97热精品久久久久久| 亚洲自拍偷在线| 久久久久久久亚洲中文字幕| 国产精品三级大全| 十八禁网站网址无遮挡 | 丝袜脚勾引网站| 亚洲第一区二区三区不卡| 51国产日韩欧美| 欧美日韩视频精品一区| 国产在线一区二区三区精| 99九九线精品视频在线观看视频| 麻豆久久精品国产亚洲av|