• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The atmospheric circulation patterns influencing the frequency of spring sand-dust storms in the Tarim Basin

    2014-10-09 08:12:08HongJunLiXinHuaYangYongZhaoMinZhongWangWenHuo
    Sciences in Cold and Arid Regions 2014年2期

    HongJun Li , XinHua Yang, Yong Zhao, MinZhong Wang, Wen Huo

    Urumqi Institute of Desert Meteorology, China Meteorological Administration, Urumqi, Xinjiang 830002, China

    1 Introduction

    The Tarim Basin (75°E–91°E, 37°N–41°N) is located in an extremely arid climate zone, with the Taklimakan Desert (the largest desert in China) dominating vast parts of the region. Frequent sand-dust storms occur in spring and summer when its surface temperature rises and the surface winds strengthen (Qianet al., 2002). The observed wind velocity threshold of sand movement is only 5.2 m/s (Chen, 1994). Consequently, the Tarim Basin is a major origin of severe and extremely severe sand-dust storm events (Qianet al., 2002; Wanget al., 2003; Wanget al., 2010) affecting China (Gao and Jiang, 2002; Wanget al., 2003; Liuet al., 2004; Liet al., 2008). Within the Tarim Basin, the most frequent sandstorms occur in the Taklimakan Desert, with pronounced interannual and decadal variations. Sand-dust storms in the Taklimakan Desert mainly occur from March to August, with April to June being the most active period (Gao and Jiang, 2002;Maet al., 2006). A large number of sandstorms were observed in the 1970s, but the number dramatically declined in the 1990s, although the total number of weak and localized sand-dust storms increased (Zhou, 2001;Gao and Jiang, 2002; Maet al., 2006; Fenget al., 2010).

    Based on satellite images of sandstorms in the hinterland of the basin in recent decades, it is generally acknowledged that there are four types of air motions generating the dust storms in the Tarim Basin: (1) strong,large-scale cold air invasions from the west and north; (2)cold air invasions coming from the east; (3) the combination of downslope cold air flow and east-originating cold air; and (4) the basin’s middle air is pumped from low level to upper level (Li and Xiao, 1999). These systems are largely influenced by the unique topographic features of the Tarim Basin, with the Tibetan Plateau at its south,the Kunlun Mountains at its west, and the Tianshan Mountains at its north (Xu, 1997).

    The synoptic cause for the sand-dust storms in the basin is that, due to the strong surface heating in its warm seasons, a shallow thermal depression normally dominates the region. When cold air invades the basin, a strong, low-level atmospheric convergence forms over the areas of Hetian-Yutian-Minfeng and Keping. The associated strong ascending motion in the atmospheric boundary layer provides the dynamic lifting mechanism for sand dust, causing these two areas to have the most frequent sand-dust storms in all of China (Heet al., 1998;Hanet al., 2005). Furthermore, corresponding to the low-level heat system, the upper atmosphere is dominated by strong atmospheric divergence and a descending motion in the upper-level jet stream inlet area. This leads to the downward propagation of the high-level momentum, which further enhances the middle and low-level wind speeds and develops a cold front moving southward.This finally triggers the outbreaks of sandstorm events(Wanget al., 2008; Penget al., 2009).

    Besides these large-scale synoptic patterns, the frequency of sand-dust storms is also influenced by local climate factors such as precipitation, relative humidity,surface temperature, and wind velocity (Zenget al.,2010). Previous research (e.g., Weiet al., 2004) reported rising temperatures in recent past decades in the Tarim Basin. At the same time, precipitation has increased and the near-surface winds have declined. Those researchers concluded that these changes have contributed to the decline of sand-dust storm days in South Xinjiang.

    Although there is a reasonable understanding of the synoptic setup and local climate conditions that are favorable for sandstorms to develop in the basin, the causes of the remarkable year-to-year variation in sandstorm occurrences are less clear. Liet al. (2008) posited that sandstorms have a quasi 3-year cycle, and other studies have shown that the spring and summer sand-dust weather patterns are influenced by many circulation systems ranging from polar regions to the low latitudes, such as the polar front embedded in the westerlies in the middle latitudes, the East Asia trough, and the position and strength of the subtropical high (Maoet al., 2005; Wanget al., 2007; Zenget al., 2010). Most of the analyses of the relationship between sand-dust storms and circulations have focused on the dust storms in northern China and the eastern part of northwest China. Less is understood about the atmospheric circulation systems influencing the dust storms in the Tarim Basin. This was the purpose of this study.

    2 Data

    We used the monthly sand-dust storm data from 37 meteorological stations situated in the Tarim Basin for the period of January 1961 to December 2009. Studies by Wang and Dong (2000) and Qianet al. (2002) showed that the data are of good quality. We mainly focused on the dust storm activities in the boreal spring season by averaging the sandstorm days during March-April-May to obtain the interannual time-series of the spring sandstorm frequencies. The atmospheric circulation data used in this study are from the NCEP/NCAR monthly reanalysis grid data at the spatial resolution of 2.5°×2.5° (Kalnayet al., 1996).

    3 Analysis results

    3.1 Changes in sandstorm frequencies

    Sand-dust storms in the Tarim Basin exhibit significant interannual and decadal variations. Sand-dust storms occurred frequently during the 1960s and the 1970s and declined significantly in the 1980s. Since the 1990s,sandstorm occurrence in the basin has become less frequent (Figure 1). Calculation of the linear trend over the whole period revealed a declining trend of -1.2 sandstorm days per decade, which is statistically significant at the 99% confidence level. This result is consistent with the conclusions derived from other studies (Liet al.,2008).

    Figure 1 The variation of sand-dust days in the Tarim Basin in spring during 1961–2009

    3.2 Atmospheric circulation patterns associated with spring sandstorms

    The dynamic and thermodynamic conditions that affect the variation of sand-dust storms are closely related to the large-scale atmospheric circulation background(Wang and Dong, 2000; Ren and Wang, 2009). Figure 2 shows correlations of the spring 500-hPa geopotential height and the sand-dust storm frequency in the Tarim Basin during the study period. It clearly displays a "- +-" pattern from the west to the east crossing the Eurasian continent, with negative correlations over the Paris Basin and the Zara region in midwestern Mongolia. In between, there is a weak positive correlation pattern near the Ural River region. The correlations over the Zara region have the highest negative values, with the correlation coefficient reaching -0.6. The correlation patterns over both the Zara region and the Paris Basin are statistically significant at the 95% confidence level.Combined with the mean circulation background (with a ridge system over the Urals and a trough over the midwestern Mongolia region), and the rising of the geopotential height at 500 hPa over midwestern Mongolia and its decline over the Ural region, the correlation patterns suggest a weakening of the meridional circulation between the two regions, and the prevailing circulation in the middle troposphere becomes more zonally oriented.This makes it difficult for high-latitude cold air masses to penetrate southward, resulting in weakened low-level winds and reduced frequency. The weakened low-level winds cannot easily cross over the Tianshan Mountains into the Tarim Basin. This also means that the cold air mass which often accumulates along the northern side of the Tianshan Mountains becomes weak and there is less east-originating cold air invasion into the Tarim Basin.

    Figure 2 Correlations between sand-dust storm frequency in the Tarim Basin and atmosphere circulations in spring

    Because the 500-hPa geopotential height over midwestern Mongolia has the most significantly negative correlation with the sand-dust storm frequency in the Tarim Basin, we further explored the relationship between the long-term variation of the height field and the sandstorm frequency in the basin. Figure 3 shows the interannual variation of the 500-hPa height over the area of 30°N–70°N, 80°E–120°E, where statistically negative correlations are shown in figure 2. The 500-hPa height in this region has experienced steady increases, and its correlation coefficient with the sandstorm frequency in the Tarim Basin reaches -0.69, passing the significance test at the 99% confidence level. The 500-hPa geopotential height has an increasing linear trend of 7.0 gpm per decade. Such an increase indicates that the low-value cyclone system is weakened and the large-scale winter monsoon circulation is also weakened. This means the southward intrusion of cold air from high latitudes is reduced. Associated with weakened surface winds in the spring, the sand-dust storm events are significantly reduced. This finding is in good agreement with the results of Zheng (2004).

    3.3 Sandstorms and the abrupt increase in the 500-hPa geopotential height

    Figures 1–3 show that the spring sandstorms vary significantly in response to changes in the regional atmospheric circulation. We used the Mann-Kendall rank statistical method (hereafter, MKT) (Fu and Wang, 1992)to test whether the variations of the sand-dust storms and geopotential height were significant during different periods, and whether the timing of the abrupt changes was consistent between the two.

    Figure 3 Time-series of the average geopotential height departure from 500 hPa over the area located in 30°N–70°N and 80°E–120°E

    Figure 4 shows the time-series of the MKT curves for sandstorms in the Tarim Basin, and the 500-hPa geopotential height averaged over the areas of significantly negative correlations in the Zara region. In the early 1960s, the trend of sand-dust storm days was positive but became negative in the mid-1960s. From the late 1970s,the MKT curve of sand-dust storm frequency (line c1)dropped sharply. After 1984, the number of sand-dust storm days reached a significant decrease of 5%.

    Figure 4 Abrupt changes of sand-dust storm frequency (a) and 500-hPa geopotential height (b) over the significantly negative correlation areas. c1 and c2 represent abrupt test statistical series in positive sequence and statistical series in reverse sequence, respectively.

    The crossing point of lines c1 and c2 of the MKT appears in 1985, suggesting an abrupt change point of the dust storms around that time. The abrupt change in the spring sand-dust storms is related to the abrupt change in the geopotential height at 500 hPa. Figure 4b shows that the geopotential height (line c1) was in a negative trend in the early 1960s, and in the mid-1960s it turned into a positive trend. From the late 1970s to the 2000s, it has kept increasing significantly. According to the MKT curves in figure 4b, the abrupt changes in geopotential height which occurred in 1980 and 1984 coincide with the rapid declines in the sand-dust storm frequencies around 1985.

    To further illustrate the influence of the atmospheric circulations on the sand-dust storms in the Tarim Basin,we conducted a composite analysis by calculating the mean atmospheric circulation anomalies during the years with higher and lower numbers of the spring sandstorms in the Tarim Basin. Out of the 49 spring seasons, we selected the years of 1962, 1979, 1971,1963, and 1966 as representing higher numbers of dust storms, and the years of 2005, 1997, 1996, 2000, and 2009 as representing lower numbers of the dust storms.The corresponding 500-hPa circulation patterns for more-frequent dust storms in the basin are related to the fact that the Tarim Basin is located in front of a high-pressure ridge, with cold air from the northwest travelling southward and eastward and then entering the Tarim Basin, causing strong surface winds and sandstorms (Figure 5).

    Figure 5 The circulation departure field at 500 hPa in years with more (a) and fewer (b) sand-dust storms, and the circulation field (c) and wind departure field (d) at 850 hPa in years with more sand-dust storms

    Figure 5a shows that the 500-hPa geopotential height has a positive anomaly center in the west and a negative center in the east. The negative anomaly over the western part of Mongolia extends farther north to the polar region.Meanwhile, the positive anomaly is located over the East European plains to the west of the Urals, and its northern boundary extends to the high-latitude region. The large pressure gradient between the two centers causes the zonal westerlies to be distorted and the circulation becomes more meridional. This kind of circulation situation formed by the high pressure (ridge) near the East European plains and the low pressure (trough) over Mongolia is a typical synoptic pattern that is often observed in the development of sand-dust storm weather in the Tarim Basin. In contrast, for the years with few sandstorms(Figure 5b) the synoptic pattern is almost opposite to the one shown in figure 5a, with a negative anomaly over eastern Europe and positive anomalies over western Mongolia. Under such conditions, the meridional circulation is weakened and the circulations become more stable,resulting in conditions that are not favorable for the development of sandstorms.

    In the lower troposphere, figures 5c and 5d show the 850-hPa height and wind conditions favorable for dust storm development in the Tarim Basin. Over western Asia there exists one high pressure ridge, and from the Okhotsk Sea to the Tarim Basin is a trough in the northeast–southwest direction. The Tarim Basin is located in front of the ridge and in the back of the trough, so the prevailing airflow draws more cold air from the north into the basin from the northeast. The low-pressure system over western Mongolia is the primary factor that influences the occurrence of sand-dust storms in the Tarim Basin.

    4 Conclusions

    Based on NCEP/NCAR reanalysis data and sandstorm frequency data from the Tarim Basin, the impact of atmosphere patterns on sand-dust storms was investigated by correlations and atmosphere field composite analysis. The main conclusions are as follows:

    1) The sand-dust storm frequency in the Tarim Basin in the spring season is closely related to certain patterns of large-scale atmospheric circulation. It has significantly negative correlations with the 500-hPa geopotential height over the Paris Basin and midwestern Mongolia,but positive correlations with the 500-hPa height over the Ural River region.

    2) The 1985 abrupt decline in spring sandstorms in the Tarim Basin was accompanied by an abrupt increase in the 500-hPa height field over western Mongolia. This followed abrupt increases in the 500-hPa height in 1980 and 1984.

    3) At the interannual scale, strengthened cyclonic circulation patterns over western Mongolia and anticyclones in the East European plains at 500-hPa geopotential height, are the typical background conditions conducive to more sand-dust storms in the Tarim Basin.

    This work was supported by the Special Fund of the Central Scientific Research Institution (No. IDM201203),the National Natural Science Foundation of China (No.41305107), and the Nonprofit Sector Specific Research(Nos. GYHY201106025 and GYHY201006012).

    Chen WN, Dong ZB, Yang ZT,et al., 1995. Threshold velocities of sand-driving wind in the Taklimakan Desert. Acta Geographica Sinica, 50(4): 360–367. DOI: 10.3321/j.issn:0375-5444.1995.04.009.

    Gao WD, Jiang W, 2002. Discussion on the formation and harms of the sand-dust storms in the west and the south of Taklimakan Desert. J. Arid Land Resources and Env., 16(3): 64–70. DOI:10.3969/j.issn.1003-7578.2002.03.012.

    Feng XY, Wang SG, Cheng YF,et al., 2010. Climatic features of sandstorms in the central and western part of the north in China. J. Desert Res., 30(2): 394–399.

    Fu CB, Wang Q, 1992. The definition and test method of abrupt climate change. Chinese J. Atmos. Sci., 16(1): 111–119. DOI:10.3878/j.issn.1006-9895.1992.04.11.

    Han YX, Fang XM, Song LC,et al., 2005. Discussion on atmospheric circulations and the cause of sand-dust storms in Tarim Basin, based on the desert aeolian deposit landform and wind fields reestablished by meteorological observations. Chinese J. Atmos. Sci., 29(4):627–635.

    He Q, Xiang M, Tang SJ, 1998. Analysis on two severe sandstorms in the hinterland of Taklimakan Desert. J. Desert Res., 18(1): 320–327.

    Kalnay E, Kanamitsu M, Kistler R, 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77: 437–471. DOI:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Li HJ, Li J, He Q, 2008. Study on the trends and sudden changes of sand-dust storms in Xinjiang. J. Desert Res., 28(5): 915–919.

    Li H, Xiao JD, 1999. Remote monitoring to the sandstorms in the hinterland of Taklimakan Desert. J. Xinjiang Agri. Univ., 22(3):219–223.

    Li SK, Lu M, Wang KR,et al., 2008. The effect of soil erosion to the ground surface in south Xinjiang on the formation of sand-dust weathers. Agricul. Sci. in China, 141(10): 3158–3167. DOI:10.3864/j.issn.0578-1752.2008.10.032.

    Liu XD, Tian L, Zhang XY, 2004. Impact of the sand-dust events in Taklimakan Desert on the atmospheric PM10concentration in the lower reaches. China Env. Sci., 24(5): 528–532. DOI:10.3321/j.issn:1000-6923.2004.05.005.

    Ma Y, Xiao KT, Wang X, 2006. Climatic features of the sand-dust weathers in Tarim Basin. Acta Sientiarum Naturalium Universitatis Pekinensis, 42(6): 784–790. DOI: 10.3321/j.issn:0479-8023.2006.06.016.

    Mao WY, Ai L, Chen S,et al., 2005. Correlations between spring dust weathers in Xinjiang and characteristic quantities of month circulations in the earlier stages. Arid Land Geog., 28(2): 171–175. DOI:10.3321/j.issn:1000-6060.2005.02.007.

    Peng Y, Wang Z, Xu XT, 2009. Analysis on the dynamic characteristics of circulations during a large-scale sand-dust weather event in the northwest. J. Desert Res., 29(4): 766–772.

    Qian ZA, Song MH, Li WN, 2002. Analysis on the distribution and variation trend of sandstorms in the last 50 years in China. J. Desert Res., 22(2): 106–110. DOI: 10.3321/j.issn:1000-694X.2002.02.002.

    Ren YL, Wang JS, 2009. Analysis on the factors affecting the changes of sandstorm weathers in the northwest and Tibetan Plateau of China. J. Desert Res., 29(4): 734–743.

    Wang CZ, Niu SJ, Wang LN, 2010. Variation features of sand-dust storms in the past 50a in China. J. Desert Res., 30(4): 933–939.

    Wang JY, Wang SG, Ma Y,et al., 2007. The relations between sandstorms in spring in the north of China and climatic factors. J. Desert Res., 27(2): 296–300. DOI: 10.3321/j.issn:1000-694X.2007.02.022.

    Wang MZ, Wei WS, Yang LM,et al., 2008. Analysis on the dynamic structure of circulations in the process of one east-coming sandstorm event in Tarim Basin. J. Desert Res., 28(2): 370–376.

    Wang SG, Dong GR, 2000. The development of the study on sand-dust storms. J. Desert Res., 20(4): 349–356. DOI:10.3321/j.issn:1000-694X.2000.04.002.

    Wang SG, Wang JY, Zhou ZJ,et al., 2003. Regional characteristics of sand-dust storms in China. J. Geog. Sci., 58(2): 193–200. DOI:10.3321/j.issn:0375-5444.2003.02.005.

    Wei WS, Gao WD, Shi YG, 2004. Study on the effect of the climate and environment changes on sand-dust storms in Xinjiang.Arid Land Geography, 27(2): 138–141. DOI:10.3321/j.issn:1000-6060.2004.02.002.

    Xu XH, 1997. Analysis and study on the satellite imagery of sand-dust storms in Tarim Basin. Research on Sand-Dust Storms in China.Meteorological Press, Beijing, pp. 88–91.

    Zeng SL, Cheng YF, Wang SG,et al., 2010. Investigation on the inter-annual variations and the causes of spring sandstorms in the northwest and Inner Mongolia in China. J. Desert Res., 30(5):1200–1206.

    Zheng XJ, 2004. Analysis on some characteristics of sand-dust weathers in Beijing region. Clim. and Env. Res., 9(1): 14–23. DOI:10.3969/j.issn.1006-9585.2004.01.003.

    Zhou ZJ, 2001. Flying dust and sandstorm weathers in the last 45 years in China. Quaternary Sci., 21(1): 9–17. DOI:10.3321/j.issn:1001-7410.2001.01.002.

    日本成人三级电影网站| 99热精品在线国产| 中文字幕人妻熟人妻熟丝袜美 | 日韩人妻高清精品专区| 国产精品影院久久| eeuss影院久久| 午夜a级毛片| 国产不卡一卡二| 国产主播在线观看一区二区| 亚洲av熟女| 亚洲欧美激情综合另类| 小蜜桃在线观看免费完整版高清| 国产精品综合久久久久久久免费| 一区福利在线观看| 免费搜索国产男女视频| 熟女少妇亚洲综合色aaa.| 欧美乱码精品一区二区三区| 男女午夜视频在线观看| 免费观看人在逋| 男人的好看免费观看在线视频| 99久国产av精品| 成人精品一区二区免费| 亚洲一区二区三区色噜噜| 国产精品av视频在线免费观看| 极品教师在线免费播放| 色视频www国产| 夜夜躁狠狠躁天天躁| 国产老妇女一区| 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 欧美中文综合在线视频| 久久国产精品影院| 丰满人妻一区二区三区视频av | 欧美乱码精品一区二区三区| 啦啦啦免费观看视频1| 深爱激情五月婷婷| 99久国产av精品| 内射极品少妇av片p| 亚洲精品一区av在线观看| 丰满乱子伦码专区| 色视频www国产| 久久久久免费精品人妻一区二区| 午夜福利在线在线| 久久久国产精品麻豆| 在线观看日韩欧美| 国产伦在线观看视频一区| 国产精品影院久久| 欧美一区二区亚洲| 午夜福利成人在线免费观看| 一级黄色大片毛片| 国产精品一区二区三区四区久久| 日韩有码中文字幕| 亚洲国产欧美网| 97碰自拍视频| 99国产综合亚洲精品| 一级黄片播放器| 一区二区三区国产精品乱码| 国产三级在线视频| 69av精品久久久久久| 免费看日本二区| 搞女人的毛片| 精品久久久久久,| 久久久久久大精品| eeuss影院久久| 国产一级毛片七仙女欲春2| 精品不卡国产一区二区三区| 亚洲18禁久久av| 午夜福利视频1000在线观看| 免费在线观看日本一区| 国产精品影院久久| 国产精品久久久久久人妻精品电影| 色综合欧美亚洲国产小说| 欧美绝顶高潮抽搐喷水| 国产精品av视频在线免费观看| 欧美黑人巨大hd| 高清在线国产一区| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 熟女人妻精品中文字幕| 又黄又粗又硬又大视频| 日韩欧美一区二区三区在线观看| 成人av在线播放网站| 丁香六月欧美| 国产av在哪里看| 欧美一区二区亚洲| 午夜久久久久精精品| 国产精品亚洲一级av第二区| 亚洲精品国产精品久久久不卡| 在线免费观看不下载黄p国产 | 国产97色在线日韩免费| 少妇熟女aⅴ在线视频| 欧美av亚洲av综合av国产av| 免费看美女性在线毛片视频| 熟女少妇亚洲综合色aaa.| 在线观看66精品国产| 欧美午夜高清在线| 熟女人妻精品中文字幕| 国产探花极品一区二区| 久久久久亚洲av毛片大全| 听说在线观看完整版免费高清| 97超级碰碰碰精品色视频在线观看| 亚洲国产欧美网| av中文乱码字幕在线| 国产欧美日韩一区二区三| 精品免费久久久久久久清纯| 首页视频小说图片口味搜索| 成人一区二区视频在线观看| 成人三级黄色视频| 欧美xxxx黑人xx丫x性爽| 91在线观看av| 黄色视频,在线免费观看| 欧美黄色片欧美黄色片| 亚洲av日韩精品久久久久久密| 色播亚洲综合网| 老司机福利观看| 成人高潮视频无遮挡免费网站| 欧美区成人在线视频| 精品人妻偷拍中文字幕| 香蕉av资源在线| av欧美777| 亚洲精品粉嫩美女一区| 色精品久久人妻99蜜桃| 校园春色视频在线观看| 国产伦一二天堂av在线观看| 此物有八面人人有两片| 一级a爱片免费观看的视频| 欧美性猛交黑人性爽| 麻豆国产av国片精品| 蜜桃久久精品国产亚洲av| 欧美+日韩+精品| 又黄又粗又硬又大视频| 日韩免费av在线播放| 久久久久久久久大av| 亚洲无线在线观看| 在线观看日韩欧美| 午夜福利成人在线免费观看| 国产高清三级在线| 欧美最新免费一区二区三区 | 成人亚洲精品av一区二区| 99久久精品一区二区三区| 国产老妇女一区| 美女免费视频网站| 日韩欧美免费精品| 老司机午夜福利在线观看视频| 国产毛片a区久久久久| 午夜福利欧美成人| 亚洲av第一区精品v没综合| 青草久久国产| 非洲黑人性xxxx精品又粗又长| 久久久久久久亚洲中文字幕 | 欧美日韩瑟瑟在线播放| 成年女人看的毛片在线观看| 午夜福利欧美成人| 黄片小视频在线播放| 国产黄a三级三级三级人| 午夜精品久久久久久毛片777| 午夜激情福利司机影院| 亚洲第一电影网av| 国语自产精品视频在线第100页| 少妇人妻一区二区三区视频| 午夜a级毛片| 老汉色av国产亚洲站长工具| 乱人视频在线观看| 在线观看午夜福利视频| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品久久久com| 精品久久久久久成人av| 熟妇人妻久久中文字幕3abv| 97碰自拍视频| 长腿黑丝高跟| 午夜福利在线观看吧| 人妻久久中文字幕网| 内射极品少妇av片p| 久久人人精品亚洲av| 最近视频中文字幕2019在线8| 成人av在线播放网站| 中文字幕高清在线视频| 国产精品,欧美在线| 精品一区二区三区视频在线 | 久久精品91无色码中文字幕| 看片在线看免费视频| 日韩成人在线观看一区二区三区| 成人无遮挡网站| 窝窝影院91人妻| 国产一区二区在线观看日韩 | 色老头精品视频在线观看| 亚洲av美国av| 精品99又大又爽又粗少妇毛片 | 亚洲av五月六月丁香网| 天天添夜夜摸| 高清在线国产一区| 午夜影院日韩av| 嫩草影院入口| 好看av亚洲va欧美ⅴa在| 婷婷六月久久综合丁香| 美女cb高潮喷水在线观看| 日韩欧美在线乱码| 中文字幕人妻丝袜一区二区| 日本三级黄在线观看| 91字幕亚洲| 女人十人毛片免费观看3o分钟| 高潮久久久久久久久久久不卡| 村上凉子中文字幕在线| 国产精华一区二区三区| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| e午夜精品久久久久久久| 变态另类成人亚洲欧美熟女| 免费看美女性在线毛片视频| 最近最新中文字幕大全电影3| 国产男靠女视频免费网站| 亚洲精华国产精华精| 窝窝影院91人妻| 五月伊人婷婷丁香| 中文字幕精品亚洲无线码一区| 国产精品99久久99久久久不卡| 有码 亚洲区| 成熟少妇高潮喷水视频| 2021天堂中文幕一二区在线观| 久久久久九九精品影院| 手机成人av网站| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 久久久久久人人人人人| 天天躁日日操中文字幕| 特级一级黄色大片| 免费高清视频大片| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 日本 欧美在线| 亚洲成av人片在线播放无| 国产精品免费一区二区三区在线| 又爽又黄无遮挡网站| 久久精品91蜜桃| 在线观看美女被高潮喷水网站 | 亚洲无线观看免费| 变态另类丝袜制服| 日本三级黄在线观看| 国产av在哪里看| 一本一本综合久久| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 最好的美女福利视频网| 日韩国内少妇激情av| 欧美av亚洲av综合av国产av| 色播亚洲综合网| 免费观看精品视频网站| 人人妻人人澡欧美一区二区| 色精品久久人妻99蜜桃| 久久久精品大字幕| 久久精品人妻少妇| 欧美性猛交黑人性爽| 首页视频小说图片口味搜索| 天堂网av新在线| 婷婷亚洲欧美| 久久国产乱子伦精品免费另类| 国产三级黄色录像| 午夜精品久久久久久毛片777| 淫妇啪啪啪对白视频| 久久国产精品影院| 国内揄拍国产精品人妻在线| 久久久久久国产a免费观看| 麻豆成人午夜福利视频| 亚洲avbb在线观看| 在线观看舔阴道视频| 色在线成人网| 1024手机看黄色片| 手机成人av网站| 国产精品精品国产色婷婷| 国内精品久久久久精免费| 精华霜和精华液先用哪个| 亚洲欧美日韩高清专用| 亚洲人成网站在线播放欧美日韩| 成人午夜高清在线视频| 色综合婷婷激情| 99久久精品热视频| 色综合欧美亚洲国产小说| 久久久久久九九精品二区国产| 午夜老司机福利剧场| 在线国产一区二区在线| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品久久男人天堂| 最新中文字幕久久久久| 国产成人欧美在线观看| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看| 国产乱人伦免费视频| 90打野战视频偷拍视频| 成人欧美大片| 高清日韩中文字幕在线| 亚洲avbb在线观看| 亚洲精品成人久久久久久| 热99re8久久精品国产| 亚洲电影在线观看av| 欧美激情在线99| 日韩欧美在线乱码| 九九热线精品视视频播放| 观看免费一级毛片| 精品国产美女av久久久久小说| 国产视频内射| 欧美日韩黄片免| 亚洲五月天丁香| 特级一级黄色大片| 男女之事视频高清在线观看| 国产精品亚洲美女久久久| 亚洲精品粉嫩美女一区| 免费人成在线观看视频色| 国产欧美日韩一区二区三| 色av中文字幕| 午夜a级毛片| 久久草成人影院| 此物有八面人人有两片| 99热6这里只有精品| 老汉色∧v一级毛片| 中国美女看黄片| 欧美精品啪啪一区二区三区| av视频在线观看入口| 免费av观看视频| 亚洲熟妇熟女久久| 免费观看精品视频网站| 床上黄色一级片| 精品一区二区三区av网在线观看| 五月玫瑰六月丁香| 国产在线精品亚洲第一网站| 国产精品久久久人人做人人爽| 欧美日韩亚洲国产一区二区在线观看| 日韩 欧美 亚洲 中文字幕| 色视频www国产| 人人妻,人人澡人人爽秒播| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 欧美乱妇无乱码| 又紧又爽又黄一区二区| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 青草久久国产| 免费在线观看影片大全网站| 久久午夜亚洲精品久久| 欧美日韩综合久久久久久 | 搡老岳熟女国产| 最新在线观看一区二区三区| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇中文字幕五十中出| 91久久精品电影网| 亚洲精品美女久久久久99蜜臀| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 午夜老司机福利剧场| 成人永久免费在线观看视频| 成人三级黄色视频| 午夜免费激情av| 少妇的逼水好多| 日本 av在线| 久99久视频精品免费| 激情在线观看视频在线高清| 99在线人妻在线中文字幕| 校园春色视频在线观看| 91字幕亚洲| 免费看十八禁软件| 18+在线观看网站| 国产91精品成人一区二区三区| 国产中年淑女户外野战色| 一个人看的www免费观看视频| 色综合站精品国产| 日本三级黄在线观看| 又粗又爽又猛毛片免费看| 亚洲国产精品成人综合色| 国产av麻豆久久久久久久| 色综合亚洲欧美另类图片| 欧洲精品卡2卡3卡4卡5卡区| 国产免费av片在线观看野外av| 日韩欧美在线二视频| 热99在线观看视频| 久久久久精品国产欧美久久久| 一进一出好大好爽视频| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 国产成人a区在线观看| 日本精品一区二区三区蜜桃| 国产伦精品一区二区三区四那| 国产亚洲欧美在线一区二区| 亚洲国产欧美网| 深爱激情五月婷婷| 成人国产综合亚洲| 久久天躁狠狠躁夜夜2o2o| 免费av不卡在线播放| 性色avwww在线观看| 精品国产亚洲在线| 国产精品美女特级片免费视频播放器| 女人高潮潮喷娇喘18禁视频| 首页视频小说图片口味搜索| 午夜a级毛片| 丰满人妻熟妇乱又伦精品不卡| 亚洲激情在线av| 国产综合懂色| 麻豆国产97在线/欧美| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 黄色日韩在线| 美女cb高潮喷水在线观看| 人妻夜夜爽99麻豆av| 女警被强在线播放| 男女午夜视频在线观看| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 99久久成人亚洲精品观看| 91麻豆精品激情在线观看国产| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 精品久久久久久久人妻蜜臀av| 国产精品自产拍在线观看55亚洲| 岛国在线观看网站| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 亚洲人与动物交配视频| av中文乱码字幕在线| 久久精品国产99精品国产亚洲性色| 国产一区二区在线观看日韩 | 亚洲av五月六月丁香网| 午夜福利视频1000在线观看| 在线观看av片永久免费下载| 两人在一起打扑克的视频| 美女免费视频网站| 一本精品99久久精品77| 久久香蕉国产精品| 熟妇人妻久久中文字幕3abv| 欧美xxxx黑人xx丫x性爽| 国产午夜福利久久久久久| 日韩有码中文字幕| 少妇人妻一区二区三区视频| 黄色丝袜av网址大全| 欧美黄色片欧美黄色片| 亚洲中文日韩欧美视频| 成人午夜高清在线视频| 一区二区三区激情视频| 少妇人妻精品综合一区二区 | 亚洲国产欧洲综合997久久,| 亚洲午夜理论影院| 69av精品久久久久久| 中文亚洲av片在线观看爽| 一级作爱视频免费观看| 国产三级在线视频| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 久久精品国产亚洲av涩爱 | 黑人欧美特级aaaaaa片| 成年女人永久免费观看视频| 伊人久久精品亚洲午夜| 桃红色精品国产亚洲av| 亚洲精品亚洲一区二区| 欧美极品一区二区三区四区| 99精品欧美一区二区三区四区| 国产精品电影一区二区三区| 亚洲自拍偷在线| 狂野欧美激情性xxxx| 国产蜜桃级精品一区二区三区| 亚洲在线观看片| 国产一区二区三区在线臀色熟女| 欧美激情久久久久久爽电影| 久久九九热精品免费| 日韩精品青青久久久久久| 国产v大片淫在线免费观看| 香蕉av资源在线| 成人欧美大片| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品999在线| 亚洲国产中文字幕在线视频| 老汉色av国产亚洲站长工具| 国产精品99久久久久久久久| 18禁裸乳无遮挡免费网站照片| 日本免费一区二区三区高清不卡| 99久久综合精品五月天人人| 18禁国产床啪视频网站| 99久久99久久久精品蜜桃| 丝袜美腿在线中文| 免费在线观看影片大全网站| 久久草成人影院| 宅男免费午夜| 91在线观看av| 在线观看午夜福利视频| 伊人久久大香线蕉亚洲五| 婷婷丁香在线五月| 亚洲,欧美精品.| 国产亚洲精品综合一区在线观看| 国产精品 国内视频| 国产一区二区三区视频了| 桃色一区二区三区在线观看| 久久久久久久久大av| 亚洲中文日韩欧美视频| 嫩草影院入口| 亚洲 国产 在线| 校园春色视频在线观看| 九色成人免费人妻av| 免费看光身美女| 久久九九热精品免费| 国产三级在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 黄色视频,在线免费观看| 婷婷精品国产亚洲av| 麻豆成人午夜福利视频| 国产一区二区在线观看日韩 | 色综合亚洲欧美另类图片| 免费一级毛片在线播放高清视频| 91在线精品国自产拍蜜月 | 成人鲁丝片一二三区免费| 欧美午夜高清在线| netflix在线观看网站| 免费搜索国产男女视频| 国产乱人视频| 日本在线视频免费播放| 亚洲av日韩精品久久久久久密| 白带黄色成豆腐渣| 操出白浆在线播放| 亚洲美女视频黄频| 久久久久久久久中文| 亚洲精华国产精华精| 亚洲 国产 在线| 法律面前人人平等表现在哪些方面| 长腿黑丝高跟| 色老头精品视频在线观看| 麻豆成人午夜福利视频| 女警被强在线播放| 婷婷六月久久综合丁香| 午夜视频国产福利| 18美女黄网站色大片免费观看| 日韩欧美国产一区二区入口| www.熟女人妻精品国产| 乱人视频在线观看| 亚洲电影在线观看av| 久久久国产成人精品二区| 五月玫瑰六月丁香| 亚洲国产精品合色在线| 日韩有码中文字幕| 久久婷婷人人爽人人干人人爱| 成人精品一区二区免费| 女人十人毛片免费观看3o分钟| 日韩欧美 国产精品| 亚洲欧美精品综合久久99| 亚洲熟妇熟女久久| 网址你懂的国产日韩在线| 精品一区二区三区视频在线观看免费| 国产日本99.免费观看| 国产精品av视频在线免费观看| 中文字幕高清在线视频| 亚洲精品久久国产高清桃花| 人人妻,人人澡人人爽秒播| 天堂影院成人在线观看| 我要搜黄色片| 免费在线观看影片大全网站| 亚洲男人的天堂狠狠| 久久香蕉国产精品| 变态另类成人亚洲欧美熟女| 在线观看日韩欧美| 九九久久精品国产亚洲av麻豆| 午夜免费男女啪啪视频观看 | 国产精品久久久久久亚洲av鲁大| 黄色丝袜av网址大全| 18禁在线播放成人免费| 精品一区二区三区视频在线观看免费| 99久国产av精品| 久久香蕉国产精品| 欧美+日韩+精品| 色播亚洲综合网| 全区人妻精品视频| 好男人在线观看高清免费视频| 麻豆久久精品国产亚洲av| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 欧美另类亚洲清纯唯美| 亚洲av免费在线观看| 中文字幕高清在线视频| 欧美成人性av电影在线观看| 久久香蕉精品热| 久久性视频一级片| 我的老师免费观看完整版| 在线观看日韩欧美| 亚洲美女黄片视频| 中文字幕人妻熟人妻熟丝袜美 | 在线观看66精品国产| 成人鲁丝片一二三区免费| 哪里可以看免费的av片| 亚洲专区国产一区二区| 亚洲一区高清亚洲精品| 亚洲熟妇熟女久久| 久久国产精品影院| 少妇的丰满在线观看| 国产av不卡久久| av福利片在线观看| 国产成人欧美在线观看| 国产一区二区亚洲精品在线观看| av天堂中文字幕网| 夜夜夜夜夜久久久久| 天堂动漫精品| 亚洲精品一卡2卡三卡4卡5卡| 国产69精品久久久久777片| 亚洲熟妇中文字幕五十中出| 国产精品98久久久久久宅男小说| 欧美丝袜亚洲另类 | 久久婷婷人人爽人人干人人爱| 在线观看舔阴道视频| 久9热在线精品视频| 他把我摸到了高潮在线观看| 老司机深夜福利视频在线观看| 久9热在线精品视频| 国产欧美日韩一区二区三| 天天一区二区日本电影三级| 精品熟女少妇八av免费久了| 国产精品,欧美在线| 99久久九九国产精品国产免费|