• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A quantitative assessment on groundwater salinization in the Tarim River lower reaches, Northwest China

    2014-10-09 08:12:00JianHuaXuWeiHongLiYuLianHongChunMengWeiJieTang
    Sciences in Cold and Arid Regions 2014年1期

    JianHua Xu , WeiHong Li , YuLian Hong ,ChunMeng Wei , Jie Tang

    1. The Research Center for East-West Cooperation in China, the Key Laboratory of Geographic Information Science, the Ministry of Education of PRC, East China Normal University, Shanghai 200062, China

    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China

    1 Introduction

    Groundwater salinization, which is commonly found in coastal, arid and semi-arid areas, refers to the enrichment of a variety of dissolved substances in groundwater under the cooperative influence of human activity and natural evolution (Karroet al., 2004;Subyani, 2005). Many factors lead to continuing groundwater salinization, such as dissolution of soluble minerals, rising groundwater level, strong evaporation,scarce precipitation, large-scale exploitation of groundwater, inappropriate agricultural irrigation and excessive use of chemical fertilizers (Chourasia and Tellam, 1992; Fisher and Mulican, 1997). The study of groundwater salinization characteristics, material sources and influencing factors can provide a scientific basis for groundwater resource planning, utilization and management, and prevention of soil salinization.

    In a number of chemical parameters, total dissolved solids (TDS) is an important indicator that describes groundwater salinization. It is often used to characterize the regional groundwater hydrochemical characteristics. Studies (Salamaet al., 1999; Wanget al., 2008) show that the higher the TDS’s value of shallow groundwater, the more serious soil salinization becomes when groundwater depth is lower than the critical depth of salt uprising. Otherwise the degree of soil salinization will become mild. Therefore,TDS is considered as one of the important groundwater salinization indicators.

    In arid and semi-arid areas of Northwest China,groundwater salinization has become common forms of groundwater pollution. A variety of studies have defined groundwater salinization, and can be interpreted as follows: along the direction of groundwater flow, chemical composition changes from the recharge zone to discharge zone, due to an increase of TDS in the groundwater and the concentration of chemical components (Richter and Kreitler, 1993;Wenet al., 2006).

    Based on monitored data from 840 samples from 2000 to 2009, this paper investigated the spatial and temporal variability of groundwater salinization in the Tarim River lower reaches by classical statistics and geostatistics.

    2 Study area and data

    2.1 Study area

    Tarim River is located in south Xinjiang, Northwest China, with a length of 1,321 km and watershed area of 102×104km2(39°00'N–41°40'N, 74°30'E–88°30'E)(Zhanget al.,2005). It is one of the longest inland rivers around the world, and plays a key role in the development of local society and economy. The Taklamakan Desert, the second largest desert in the world, is named after the Tarim River and Kuluke Desert. It lies to the south of the river and extends across the Tarim Basin. There are Tianshan Mountains to the north of the basin and Karakorum Mountains to the south. The Tarim River lower reaches are 321 km in length from Qiala to Taitema Lake (Figure 1).

    Figure 1 Location of the monitoring sites for groundwater of the Tarim River lower reaches

    Downstream alluvial plain area lies in the eastern part of the Tarim Basin, and the terrain is relatively flat, with an average altitude of 825 m. Major landform types are alluvial-diluvial, alluvial, aeolian and fluvial-lacustrine sedimentation. Simultaneously, the stratum structure is simple, mainly made up of Pleistocene and Holocene quaternary strata, and the surface lithology is dominated by sand, sub-sandy soil and clay. In addition, the aquifer in this study area is quaternary, and the lithology is single with predominantly river-lake facies fine sand and silty fine sand, and eolian sand locally. Divided by water-bearing media, it belongs to a typical chinky aquifer; while divided by burial condition, it belongs to a phreatic aquifer (Chenet al., 2008; Liet al., 2010;Xuet al., 2008, 2013). Thus, the permeability and water abundance are relatively poor with the permeability coefficient varying from 1.2 to 4.8 m/d, and the single-orifice water inflow is less than 150 m3/(d·m). The study area is located in a disconnection river, from Tikanlik to Taitema Lake, which has a warm-temperate, extremely arid climate with annual solar radiation of 5,692–6,360 kJ/m2. According to observations by the Tikanlik meteorological station from 1957 to 2005, average temperature, annual precipitation and annual evaporation are 10.94 °C,34.53 mm and 2,531.45 mm, respectively. Due to years of zero flow, the groundwater table mostly dropped to 8–12 m and both the degree of salinity and mineralization are relatively high.

    2.2 Data collection and analysis

    Nine groundwater monitoring sites along the Tarim River lower reaches were selected. They are Akdun (A),Yahepu (B), Yingsu (C), Abudali (D), Kardayi (E),Tugmailai (F), Alagan (G), Yiganbjima (H) and Kaogan (I). Monitoring wells, with a depth of 8–17 m,were stationed at an interval of 100 to 200 m for every monitoring site. There were 40 monitoring wells in total and they were distributed within the range of 50–1,050 m away from the watercourse. In order to analyze groundwater chemistry component change, we measured the groundwater table and collected groundwater samples regularly from each well at each site. We collected and analyzed 840 samples during the period from 2000 to 2009. The samples were stored in clean and colorless polyethylene plastic bottles, and sealed with paraffin and labeled, and placed in a shaded area until sent to the laboratory. Chemical compositions of the samples were analyzed within two days in the laboratory. The chemical analyses included total dissolved solids (TDS), pH, concentrations of CO32-,HCO3-, Cl-, SO42-, Ca2+, Mg2+, K+and Na+.

    This study adopted an appropriate method to measure each parameter. The pH was measured using a pH meter (APHA, 1995). Calcium (Ca2+) and magnesium(Mg2+) were determined using the EDTA titrimetric method (APHA, 1995). Chloride (Cl-) was determined by standard AgNO3titration. Carbonate (CO32-) and bicarbonate (HCO3-) were determined by titration with HCl (APHA, 1995). Sodium (Na+) and potassium (K+)were measured by flame photometry, while sulphate(SO42-) by spectrophotometer turbidimetry (APHA,1995). Total dissolved solids (TDS) was determined by the gravimetric method (MEP PRC, 1999).

    3 Methods

    3.1 Classical statistics

    Although groundwater salinization in the Tarim River lower reaches is affected by various factors, the correlation between groundwater salinization and parameters describing chemical components can still be established, as is commonly performed in numerous studies (Xu, 2002; Tardyet al., 2004; Giridharanet al.,2008; Chenini and Khemiri, 2009; Xuet al., 2012).For the purpose of comparison, this work also conducted regression analysis to examine the correlation among TDS and ions.

    3.2 Geostatistics

    Studies have shown that groundwater chemistry parameters are typical regionalized variables, which are structural as well as stochastic (Ahmadi and Sedghamiz, 2008; Wanget al., 2008; Wanget al.,2011). Thus, the spatial variability of groundwater salinization in the Tarim River lower reaches can be analyzed by the geostatistic method (Journel and Huijbregts, 1978; Marchant and Lark, 2004).

    3.2.1 The semivariogram

    In geostatistics (Journel and Huijbregts, 1978;Marchant and Lark, 2004), the regionalized variable,such as TDS or groundwater depth, is regarded as the value of a variable at a locationxas a realization of a random functionZ(x). This random function is assumed to be intrinsically stationary. This is a weak form of second-order stationarity and is met if two conditions hold. The first is that the expected value of the random function,E[Z(x)], is constant for allx.Secondly, the variance of the differences between the value of the variable at two different locations depends only on the lag vector separating the two locations and not on absolute locations. In general, this variance may be a function of both the direction and length of the lag vector. If the regionalized variable is isotropic, the semivariogram is purely a function of the length of the vector which we denoteh. Thus, the relationship between values from different locations is described by the semivariogram.

    The semivariogram is estimated from variable values observed at sampled points,xs,s=1, . . . ,n.The method of moments estimator is the average of squared differences between observations separated by distancehas follows:

    whereZ(xi) indicates the magnitude of regionalized variable, andN(h) is the total number of pairs of attributes that are separated by a distanceh.

    This study used the semivariogram to reveal the spatial variability of TDS and groundwater level in each year.

    3.2.2 Kriging and Cokriging methods

    Based on the semivariogram, Kriging and Cokriging can be used to estimate the values of regionalized variable at unsampled locations (Goovaerts, 1997).

    Ordinary Kriging can mathematically be defined as given in the following:

    whereZ*Xis the estimated value, andλiis the corresponding weight of each observationZ(Xi) on the estimation. These weights are calculated to ensure that the estimator is unbiased and the estimation variance is a minimum. The nonbias condition requires that:

    whereγ(Xi,Xj) is the semivariogram between sampled pointiand pointj,γ(Xi,X*) is the semivariogram between sampled point and estimated point, andμis the Lagrange multiplier of minimum condition.

    The general form of Cokriging equations are:

    whereuandvare the primary and covariate (secondary)variables, respectively. In the Cokriging method, theuandvare cross-correlated and the covariate contributes to the estimation of the primary variable. Generally,measuring the covariate is simpler than measuring the primary variable. For the Cokriging analysis, the cross semivariogram (or cross-semivariogram) should be determined in prior. Provided that there are points where bothuandvhave been measured, the cross-semivariogram is estimated by:

    In order to reveal the spatial pattern of groundwater level and TDS, the two interpolation methods, ordinary Kriging and Cokriging were used and cross-checked for interpolation test. Our results show that the accuracy of Cokriging is higher than that of ordinary Kriging.Based on interpolation test, selecting groundwater and altitude as the first and second co-variable, we used the Cokriging method to compute the interpolation values of TDS from 2001 to 2009.

    4 Results and discussion

    4.1 Groundwater salinization and its related major chemical parameters

    The basic statistical parameters and the t-test results for 840 samples are presented in table 1. Overall,the groundwater in the lower reaches of the Tarim River shows slight alkalinity, with a mean pH of 7.66±0.02 and a mean TDS of 5.333±0.450 g/L. As for the anions of CO32-, HCO3-, Cl-and SO42-, the contents are 0.002±0.000, 0.363±0.006, 2.047±0.233 and 1.002±0.052 g/L, respectively. Similarly, the contents for cations of Ca2+, Mg2+, Na+and K+are 0.180±0.009, 0.220±0.012, 1.299±0.140 and 0.036±0.002 g/L, respectively.

    Table 1 Basic statistical analysis of groundwater salinization

    Studies (Salamaet al., 1999; Wanget al., 2008)show that the higher the TDS’s value of shallow groundwater, the more serious soil salinization becomes. Otherwise the degree of soil salinization will become mild. Therefore, TDS was considered as one of the important indicators for groundwater salinization in the Tarim River lower reaches.

    Stepwise regression analysis was performed by taking TDS as dependent variable and other parameters as independent variables. The regression equation is as follows:

    The t-test results are presented in table 2 and indicate that the screened independent variables are Na+,Mg2+, Ca2+, Cl-and K+. The partial regression coefficient of the first four independent variables,i.e., Na+,Mg2+, Ca2+, Cl-, are all highly significant (Sig.=0.0000),as well as the independent variable,i.e., K+, shows high significance (Sig.=0.0495). This indicates that Na+,Mg2+, Ca2+, Cl-and K+are the main chemical variables to affect TDS.

    The main reason why the regression of TDS exhibits high correlations with Na+, Mg2+, Ca2+, Cl-and K+is that the lower reaches of the Tarim River is a salt accumulation zone, with high salt content in the soil and groundwater (Chenet al., 2005). Moreover, due to implementation of the ecological water delivery project since 2000 (Gaoet al., 2007), the groundwater tables in the lower reaches were uplifted and the concentrations of various chemical substances were diluted. In other words, the lower the groundwater table, the higher the salinity concentration. This result is consistent with studies of Liet al. (2010) and Xuet al. (2012).

    Table 2 The correlation between TDS and cations in groundwater chemical components

    4.2 Spatial variability of groundwater level and TDS

    Our study shows that both groundwater level and TDS have isotropic characteristics for each year from 2001–2009, and their semivariogram conform to the spherical model as follows:

    whereC0is the nugget that reflects spatial heterogeneity caused by random factors,ais the maximum range of spatial autocorrelation, andC0+Cis the sill that represent total variance.

    Table 3 shows the related semivariogram parameters for groundwater level and TDS. Evidently, both the nugget of groundwater level and TDS are lower,which indicates that the variable error caused by sampling and analyzing is smaller. The maximum range of the groundwater level and TDS reached 90.3 km and 81.1 km respectively, which means that ground water level and TDS presented spatial autocorrelation characteristics in a larger space.

    C0/(C0+C) is the ratio of the nugget and sill. The high ratio shows that the spatial variability caused by randomness is dominant. Otherwise, the low ratio shows that the dominant spatial variability is caused by configurative factors. The regionalized variable has a strong spatial correlation whenC0/(C0+C) ≤25%. It is medium when 25%

    Table 3 shows that in 2000, 2001 and 2009,C0/(C0+C) of underground water level are all greater than 25%, except for 2006. Thus, it can be seen that the underground water level shows strong spatial autocorrelation in 2002, 2003, 2004, 2005 and 2007. In the remaining years, however, underground water level shows medium spatial autocorrelation due toC0/(C0+C)greater than 25%.

    4.3 The assessment of groundwater salinization

    Using the Cokriging method, we selected groundwater and altitude as the first and second co-variables,TDS from 2001 to 2009 was drawn respectively. Figures 2–3 shows the spatial patterns of TDS for 2006 and 2009, respectively.

    Based on the results of Cokriging interpolation for TDS, according to the classification criteria of division of groundwater salinization degree proposed by Robinoveet al. (1958), the assessment results of groundwater salinization in the Tarim River lower reaches from 2001 to 2009 are presented in table 4.TDS is basically greater than 1 g/L but less than 2 g/L in the Tarim River lower reaches, which indicates that salt stagnation pollution is more serious.The most serious salinization (3 g/L < TDS ≤35 g/L)contaminated area is mainly in the middle and lower part of the study area.

    Table 3 Semivariogram and its parameters of groundwater level and TDS

    Figure 3 Spatial patterns of TDS in 2009

    Table 4 The area ratio of classification of groundwater salinization level

    The area ratio of brackish water (1 g/L < TDS ≤3 g/L) first increased, then decreased, and at last showed a smooth trend. It increased from 71.79% to 92.31% during the period of 2001 to 2003 and then smooth in the following years. The area ratio of moderate salt water (3 g/L < TDS ≤10 g/L) presented a decreasing trend first and then basically stabilized after short fluctuations, but with a slight upward trend in 2009. In addition to more than 7% in 2004 and 2009,the area ratio of extreme salt water (10 g/L < TDS ≤35 g/L) stabilized at around 5.1% in other years. The area proportion of brine (TDS >35 g/L) was very low, and it even was 0% in 2002 and 2003.

    5 Conclusions

    Temporal and spatial variability of groundwater salinization in the Tarim River lower reaches were analyzed by a combined method of classical statistics,geostatistics and geographic information system. The main findings are as follows:

    (1) As one of the important indicators for groundwater salinization in the Tarim River lower reaches,TDS is related with other chemical parameters, such as Ca2+, Mg2+, Na+, K+, CO32-, HCO3-, Cl-and SO42-.There is significant correlation between TDS with other related ions, such as Na+, Mg2+, Ca2+, Cl-and K+.

    (2) TDS and the underground water level have characteristics of spatial autocorrelation. Although the related parameters of the semivariogram are different,both groundwater level and TDS present isotropic characteristics and conform to the spherical model for each year during 2001–2009.

    (3) TDS is basically greater than 1 g/L but less than 2 g/L in the Tarim River lower reaches, which indicates that salt stagnation pollution is more serious. The most serious salinization (3 g/L < TDS ≤35 g/L) contaminated area is mainly in the middle and lower part of study area. The area proportion of brine (TDS >35 g/L)was very low.

    This work was supported by the National Basic Research Program of China (973 Program; No.2010CB951003).

    Ahmadi SH, Sedghamiz A, 2008. Application and evaluation of Kriging and Cokriging methods on groundwater depth mapping. Environmental Monitoring and Assessment, 138:357–368. DOI: 10.1007/s10661-007-9803-2.

    APHA (American Public Health Association), 1995. Standard method for the examination of water and wastewater, 19th Ed., American Public Health Association, Washington D.C..

    Chen YJ, Chen YN, Li WH,et al., 2005. The reaction of groundwater chemical characteristics to the eco-water conveyance in the lower Tarim River. Acta Geographica Sinica,60(2): 309–318.

    Chen YJ, Zhou KF, Chen YN,et al., 2008. Response of groundwater chemistry to water deliveries in the lower reaches of Tarim River, Northwest China. Environmental Geology, 53:1365–1373. DOI: 10.1007/s00254-007-0746-2.

    Chenini I, Khemiri S, 2009. Evaluation of ground water quality using multiple linear regression and structural equation modeling. International Journal of Environmental Science and Technology, 6(3): 509–519.

    Chourasia LP, Tellam JH, 1992. Determination of the effect of surface water irrigation on the groundwater chemistry of a hard rock terrain in central India. Hydrological Sciences Journal, 37(4): 313–328.

    Fisher RS, Mulican WF, 1997. Hydrochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5(2): 4–16.

    Gao QZ, Qu JJ, Wang R,et al., 2007. Impact of ecological water transport to green corridor on desertification reversion at lower reaches of Tarim River. Journal of Desert Research,27(1): 52–58.

    Giridharan L, Venugopal T, Jayaprakash M, 2008. Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. Environmental Monitoring and Assessment, 143: 161–178. DOI:10.1007/s10661-007-9965-y.

    Goovaerts P, 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.

    Journel AG, Huijbregts CJ, 1978. Mining Geostatistics. Academic Press, New York.

    Karro E, Marandi A, Vaikm?e R, 2004. The original of increase salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, Northern Estonia. Hydrogeology Journal, 12(4):424–435.

    Li WH, Hao XM, Chen YJ,et al., 2010. Response of groundwater chemical characteristics to ecological water conveyance in the lower reaches of the Tarim River, Xinjiang, China.Hydrological Processes, 24(2): 187–195. DOI:10.1002/hyp.7430.

    Marchant BP, Lark RM, 2004. Estimating semivariogram uncertainty. Mathematical Geology, 36(8): 867–898.

    MEP PRC (Ministry of Environmental Protection of the People’s Republic of China), 1999. Water Quality—Determination of Total Salt—Gravimetric Method. China Environmental Science Press, Beijing, China.

    Richter BC, Kreitler WC, 1993. Geochemical Techniques for Identifying Sources of Groundwater Salinization. CRC Press,New York, pp. 14–26.

    Robinove CC, Langford RH, Brookhart W, 1958. Saline water resources of North Dakota. In: Water Supply. US Geological Survey, pp. 1428.

    Salama RB, Otto CJ, Fitzpatrick RW, 1999. Contributions of groundwater conditions to soil and water salinization. Hydrogeology Journal, 7: 46–64.

    Subyani AM, 2005. Hydrochemical identification and salinity problem of ground-water in Wadi Yalamlam basin,Western Saudi Arabia. Journal of Arid Environment,60(1): 53–66.

    Tardy Y, Bustillo V, Boeglin JL, 2004. Geochemistry applied to the watershed survey: hydrograph separation, erosion and soil dynamics. A case study: the basin of the Niger River,Africa. Applied Geochemistry, 19(4): 469–518. DOI:10.1016/j.apgeochem.2003.07.003.

    Wang Y, Ma T, Luo Z, 2011. Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. Journal of Hydrology, 246: 223–234. DOI:10.1016/S0022-1694(01)00376-6.

    Wang YG, Xiao DN, Li Y,et al., 2008. Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: case study from the Fubei region of Xinjiang Province, China. Environmental Monitoring and Assessment, 140: 291–302. DOI: 10.1007/s10661-007-9867-z.

    Wen XH, Wu YQ, Su JP,et al., 2006. Groundwater salinization characteristics and mechanism in Ejin Basin. Journal of Desert Research, 26(5): 836–841.

    Xu JH, 2002. Mathematical Methods in Contemporary Geography. Higher Education Press, Beijing, China, pp. 37–105.

    Xu JH, Chen YN, Li WH, 2008. Grey modelling the groundwater level dynamic in the lower reaches of Tarim River affected by water delivery from upper reaches: A demonstration from Yingsu section. 2008 IEEE International Conference on Fuzzy Systems, 2008, vol. 1–5, pp. 43–48.

    Xu JH, Chen YN, Li WH,et al., 2012. Statistical analysis of groundwater chemistry of the Tarim River lower reaches,Northwest China. Environmental Earth Sciences, 65(6):1807–1820. DOI: 10.1007/s12665-011-1161-2.

    Xu JH, Chen YN, Li WH,et al., 2013. The dynamic of groundwater level in the lower reaches of Tarim River affected by transported water from upper reaches. International Journal of Water, 7(1–2): 66–79. DOI: 10.1504/IJW.2013.051979.

    Zhang YM, Chen YN, Pan BR, 2005. Distribution and floristics of desert plant communities in the lower reaches of Tarim River, southern Xinjiang, People’s Republic of China. Journal of Arid Environments, 63(4): 772–784. DOI:10.1016/j.jaridenv.2005.03.023.

    91久久精品电影网| 少妇人妻一区二区三区视频| 伦理电影大哥的女人| 搞女人的毛片| 国产精品不卡视频一区二区| 人人妻人人澡人人爽人人夜夜 | 亚洲第一区二区三区不卡| 亚洲国产高清在线一区二区三| 插逼视频在线观看| 亚洲真实伦在线观看| 免费无遮挡裸体视频| 在线看三级毛片| 99riav亚洲国产免费| 免费高清视频大片| 欧美日韩精品成人综合77777| 两个人的视频大全免费| 特级一级黄色大片| 丝袜喷水一区| 给我免费播放毛片高清在线观看| 听说在线观看完整版免费高清| 久久精品夜夜夜夜夜久久蜜豆| 男女啪啪激烈高潮av片| 一级黄色大片毛片| 亚洲欧美清纯卡通| 人人妻人人看人人澡| 亚洲av一区综合| 全区人妻精品视频| 国产色婷婷99| 国产精品久久电影中文字幕| 中文字幕熟女人妻在线| 丰满人妻一区二区三区视频av| 亚洲自拍偷在线| 熟女电影av网| 成人高潮视频无遮挡免费网站| 啦啦啦韩国在线观看视频| 老司机福利观看| 精品久久久久久久久久久久久| a级一级毛片免费在线观看| 日韩在线高清观看一区二区三区| 全区人妻精品视频| 免费观看在线日韩| 亚洲丝袜综合中文字幕| 观看免费一级毛片| 国产伦一二天堂av在线观看| 婷婷精品国产亚洲av| 波野结衣二区三区在线| 日韩精品中文字幕看吧| 色5月婷婷丁香| 成人美女网站在线观看视频| 久久精品国产亚洲av涩爱 | 中出人妻视频一区二区| 在线免费观看不下载黄p国产| 老司机福利观看| 一级毛片aaaaaa免费看小| 日韩欧美国产在线观看| 亚洲精品影视一区二区三区av| 久99久视频精品免费| 午夜精品在线福利| or卡值多少钱| av在线天堂中文字幕| 观看美女的网站| 女生性感内裤真人,穿戴方法视频| 亚洲精品国产成人久久av| 精品免费久久久久久久清纯| 国产成人a∨麻豆精品| 中国国产av一级| 少妇被粗大猛烈的视频| 亚洲经典国产精华液单| 青春草视频在线免费观看| 久久精品国产亚洲av天美| 成人鲁丝片一二三区免费| 免费看av在线观看网站| 久久久久九九精品影院| av在线播放精品| 中文字幕熟女人妻在线| 少妇的逼好多水| 热99在线观看视频| av中文乱码字幕在线| 国内少妇人妻偷人精品xxx网站| 亚洲中文字幕一区二区三区有码在线看| 神马国产精品三级电影在线观看| АⅤ资源中文在线天堂| 日韩av在线大香蕉| 午夜激情欧美在线| 在线播放国产精品三级| 欧美人与善性xxx| 永久网站在线| 美女免费视频网站| 日韩强制内射视频| 美女cb高潮喷水在线观看| 一级av片app| 亚洲第一电影网av| 国产精品乱码一区二三区的特点| 一区二区三区高清视频在线| 亚洲av免费在线观看| 一夜夜www| 国产亚洲精品久久久com| 亚洲av不卡在线观看| 天堂网av新在线| 国产精品99久久久久久久久| 神马国产精品三级电影在线观看| 国产精品,欧美在线| 听说在线观看完整版免费高清| 免费观看的影片在线观看| 国产视频内射| 真人做人爱边吃奶动态| 国产成人精品久久久久久| 五月伊人婷婷丁香| 成人漫画全彩无遮挡| 在线观看午夜福利视频| 亚洲人成网站在线播| 国产伦精品一区二区三区四那| 看十八女毛片水多多多| 人人妻人人澡欧美一区二区| 亚洲国产欧美人成| 男人的好看免费观看在线视频| 国产精品一二三区在线看| 日本三级黄在线观看| 欧美高清成人免费视频www| 国产精品久久久久久久电影| 国产精品久久久久久精品电影| a级毛片免费高清观看在线播放| 午夜福利在线观看吧| 春色校园在线视频观看| 1024手机看黄色片| 免费在线观看成人毛片| 日韩 亚洲 欧美在线| 亚洲国产精品成人久久小说 | 成人欧美大片| 小说图片视频综合网站| 国产高潮美女av| 菩萨蛮人人尽说江南好唐韦庄 | 欧美日韩一区二区视频在线观看视频在线 | 日韩精品中文字幕看吧| 精品午夜福利在线看| 人妻少妇偷人精品九色| 天天一区二区日本电影三级| 国产亚洲91精品色在线| 欧美中文日本在线观看视频| 国产视频一区二区在线看| 床上黄色一级片| 日本撒尿小便嘘嘘汇集6| 日韩,欧美,国产一区二区三区 | 欧美日韩在线观看h| 日日干狠狠操夜夜爽| 人妻少妇偷人精品九色| 看片在线看免费视频| 亚洲中文字幕一区二区三区有码在线看| 成人国产麻豆网| 久久久久久国产a免费观看| 欧美成人精品欧美一级黄| 亚洲人成网站高清观看| 在线观看66精品国产| 欧美日韩在线观看h| 欧美一区二区国产精品久久精品| 在现免费观看毛片| 欧美潮喷喷水| 国产午夜福利久久久久久| 久久久成人免费电影| 深爱激情五月婷婷| 久久久a久久爽久久v久久| 人人妻人人澡人人爽人人夜夜 | 欧美不卡视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 亚州av有码| 18禁在线无遮挡免费观看视频 | 国产高清视频在线播放一区| 午夜福利18| 天堂√8在线中文| 色综合站精品国产| 99九九线精品视频在线观看视频| 能在线免费观看的黄片| 亚洲成av人片在线播放无| 一进一出抽搐gif免费好疼| 高清日韩中文字幕在线| 亚洲欧美清纯卡通| 尤物成人国产欧美一区二区三区| 日韩精品中文字幕看吧| 久久这里只有精品中国| 男女视频在线观看网站免费| 老师上课跳d突然被开到最大视频| 波野结衣二区三区在线| 菩萨蛮人人尽说江南好唐韦庄 | 国产v大片淫在线免费观看| 亚洲中文日韩欧美视频| 老熟妇仑乱视频hdxx| 97超视频在线观看视频| а√天堂www在线а√下载| 最近的中文字幕免费完整| 美女高潮的动态| 在线观看午夜福利视频| 国产亚洲91精品色在线| 综合色av麻豆| 91久久精品国产一区二区三区| 九九久久精品国产亚洲av麻豆| 18禁黄网站禁片免费观看直播| 一a级毛片在线观看| 色综合亚洲欧美另类图片| 国产av在哪里看| 此物有八面人人有两片| 国产 一区精品| 男女下面进入的视频免费午夜| 亚洲av成人av| 欧美性猛交╳xxx乱大交人| 午夜亚洲福利在线播放| 黄色视频,在线免费观看| 国产精品一区www在线观看| 久久久精品大字幕| 两个人的视频大全免费| 久久久久久国产a免费观看| 在线免费十八禁| 真实男女啪啪啪动态图| 国内精品美女久久久久久| 精品久久久久久久久av| 在线播放国产精品三级| 国产午夜精品久久久久久一区二区三区 | 久久九九热精品免费| 搞女人的毛片| 久久久久久国产a免费观看| 免费黄网站久久成人精品| 国产女主播在线喷水免费视频网站 | 久久精品国产亚洲av天美| 久久热精品热| 99riav亚洲国产免费| 中国美白少妇内射xxxbb| 色吧在线观看| 成人亚洲精品av一区二区| 成人av一区二区三区在线看| 午夜福利在线观看吧| 亚洲欧美成人精品一区二区| 亚洲自偷自拍三级| 蜜桃久久精品国产亚洲av| 国产高潮美女av| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| 天堂√8在线中文| 校园春色视频在线观看| 蜜臀久久99精品久久宅男| 一边摸一边抽搐一进一小说| 欧美日韩国产亚洲二区| 99热只有精品国产| 久久久久久久久久久丰满| 国产乱人视频| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 中国国产av一级| 男女那种视频在线观看| 我的老师免费观看完整版| 看非洲黑人一级黄片| 不卡一级毛片| 女的被弄到高潮叫床怎么办| 久久草成人影院| 热99re8久久精品国产| 亚洲欧美精品综合久久99| 精品久久久噜噜| 亚洲精华国产精华液的使用体验 | 婷婷色综合大香蕉| 天堂动漫精品| 少妇裸体淫交视频免费看高清| 天天躁日日操中文字幕| 国模一区二区三区四区视频| 天堂影院成人在线观看| 欧美激情久久久久久爽电影| eeuss影院久久| 日日摸夜夜添夜夜爱| 精品日产1卡2卡| 99久久九九国产精品国产免费| 99久久精品热视频| 日韩欧美精品免费久久| 国产色婷婷99| 亚洲精品日韩在线中文字幕 | 国产精品,欧美在线| 国产淫片久久久久久久久| 大香蕉久久网| 亚洲av熟女| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 老师上课跳d突然被开到最大视频| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 高清午夜精品一区二区三区 | 美女高潮的动态| 国产高清视频在线播放一区| 欧美色视频一区免费| 亚洲性久久影院| 国产精品三级大全| 久久久精品大字幕| 国产一区亚洲一区在线观看| av黄色大香蕉| 草草在线视频免费看| 成年女人毛片免费观看观看9| 成人毛片a级毛片在线播放| 精品久久久久久久末码| 又黄又爽又免费观看的视频| 91在线精品国自产拍蜜月| 成人精品一区二区免费| 天堂√8在线中文| 日韩欧美国产在线观看| 久久久久久伊人网av| 欧美成人免费av一区二区三区| av天堂在线播放| 亚洲欧美日韩高清专用| 免费观看在线日韩| 日韩高清综合在线| av天堂中文字幕网| videossex国产| 婷婷亚洲欧美| 日日干狠狠操夜夜爽| 国产亚洲精品av在线| 免费高清视频大片| 精品国内亚洲2022精品成人| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 国产私拍福利视频在线观看| 色视频www国产| 99视频精品全部免费 在线| 久久久久久大精品| 极品教师在线视频| 亚洲欧美精品自产自拍| 久久久精品欧美日韩精品| 中出人妻视频一区二区| 色综合色国产| 97超视频在线观看视频| 欧美色欧美亚洲另类二区| 欧美不卡视频在线免费观看| 五月玫瑰六月丁香| 久久99热6这里只有精品| 在线观看66精品国产| 久久久精品94久久精品| 人妻久久中文字幕网| 亚洲国产高清在线一区二区三| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 精品一区二区三区人妻视频| 偷拍熟女少妇极品色| 男女那种视频在线观看| 日本色播在线视频| 麻豆成人午夜福利视频| 免费av观看视频| 免费电影在线观看免费观看| 又爽又黄无遮挡网站| 国产久久久一区二区三区| 午夜久久久久精精品| 青春草视频在线免费观看| 婷婷色综合大香蕉| 国产精品美女特级片免费视频播放器| 久久久久国产网址| 亚洲国产欧美人成| 国产在视频线在精品| 麻豆久久精品国产亚洲av| 在线观看美女被高潮喷水网站| 亚洲久久久久久中文字幕| 亚洲国产高清在线一区二区三| 成人漫画全彩无遮挡| 久久久久久久久久久丰满| 神马国产精品三级电影在线观看| av卡一久久| 麻豆一二三区av精品| 一区福利在线观看| 麻豆成人午夜福利视频| 日韩成人伦理影院| 一进一出好大好爽视频| 久久精品国产亚洲网站| av天堂中文字幕网| 久久久精品欧美日韩精品| 亚洲第一电影网av| 精品一区二区三区人妻视频| 午夜亚洲福利在线播放| 日韩大尺度精品在线看网址| 黄片wwwwww| 亚洲欧美中文字幕日韩二区| 亚洲av中文字字幕乱码综合| 中文资源天堂在线| 久久这里只有精品中国| 国产一区二区三区在线臀色熟女| 精品一区二区三区av网在线观看| 国产三级中文精品| 日韩欧美精品免费久久| 亚洲,欧美,日韩| 波多野结衣高清无吗| 免费av毛片视频| 欧美3d第一页| 亚洲经典国产精华液单| 噜噜噜噜噜久久久久久91| 丝袜喷水一区| 村上凉子中文字幕在线| 亚洲精品影视一区二区三区av| 可以在线观看毛片的网站| 3wmmmm亚洲av在线观看| 成人性生交大片免费视频hd| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 内地一区二区视频在线| av天堂在线播放| 精品欧美国产一区二区三| 欧美不卡视频在线免费观看| 淫秽高清视频在线观看| 国产精品一区二区免费欧美| 日韩中字成人| 日韩 亚洲 欧美在线| 全区人妻精品视频| 日日摸夜夜添夜夜爱| a级一级毛片免费在线观看| 色哟哟·www| 中文字幕av在线有码专区| 乱人视频在线观看| 大香蕉久久网| 亚洲欧美清纯卡通| 日本免费一区二区三区高清不卡| 桃色一区二区三区在线观看| 男人舔女人下体高潮全视频| 在线播放国产精品三级| 长腿黑丝高跟| 日韩成人伦理影院| 日韩av在线大香蕉| 国产视频一区二区在线看| 夜夜爽天天搞| 真实男女啪啪啪动态图| 精品久久久久久久久亚洲| 国产精品一区www在线观看| 国产午夜福利久久久久久| 一边摸一边抽搐一进一小说| 亚洲经典国产精华液单| 亚洲三级黄色毛片| 亚洲综合色惰| 亚洲国产精品久久男人天堂| 午夜a级毛片| 如何舔出高潮| 久久欧美精品欧美久久欧美| 国产精品女同一区二区软件| 亚洲成av人片在线播放无| 亚洲自偷自拍三级| 丝袜喷水一区| 国产精品一及| 91精品国产九色| 2021天堂中文幕一二区在线观| 午夜激情欧美在线| 日本成人三级电影网站| 两个人视频免费观看高清| 91狼人影院| 丰满乱子伦码专区| 中文字幕久久专区| 99热只有精品国产| 亚洲av成人精品一区久久| 色噜噜av男人的天堂激情| 特级一级黄色大片| 国产精品亚洲美女久久久| 日本爱情动作片www.在线观看 | 国国产精品蜜臀av免费| av在线亚洲专区| 色播亚洲综合网| 夜夜看夜夜爽夜夜摸| 能在线免费观看的黄片| 成人三级黄色视频| 国产av一区在线观看免费| 美女黄网站色视频| 99久久精品一区二区三区| 我要看日韩黄色一级片| 亚洲色图av天堂| 俺也久久电影网| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 免费av毛片视频| 99热精品在线国产| 99九九线精品视频在线观看视频| 国产白丝娇喘喷水9色精品| 国产亚洲av嫩草精品影院| 欧美一区二区精品小视频在线| 最新在线观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产在线观看| 国产黄a三级三级三级人| 国产伦一二天堂av在线观看| 在线观看午夜福利视频| 中文字幕av成人在线电影| 亚洲精品456在线播放app| 男女做爰动态图高潮gif福利片| 欧美一级a爱片免费观看看| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 国产亚洲av嫩草精品影院| 神马国产精品三级电影在线观看| 国产精品久久电影中文字幕| 国产精品人妻久久久影院| 亚洲欧美成人精品一区二区| 亚洲高清免费不卡视频| 99久久久亚洲精品蜜臀av| 欧美色欧美亚洲另类二区| 久久亚洲精品不卡| av专区在线播放| 最近中文字幕高清免费大全6| 国产熟女欧美一区二区| 51国产日韩欧美| eeuss影院久久| 亚洲人成网站高清观看| 18禁在线播放成人免费| 九九在线视频观看精品| 亚洲人与动物交配视频| 久久精品夜夜夜夜夜久久蜜豆| 黄色欧美视频在线观看| 深爱激情五月婷婷| 熟女电影av网| 桃色一区二区三区在线观看| 91麻豆精品激情在线观看国产| 波多野结衣巨乳人妻| 亚洲七黄色美女视频| 亚洲第一区二区三区不卡| 97超级碰碰碰精品色视频在线观看| 久久精品久久久久久噜噜老黄 | 日本三级黄在线观看| 精品久久久久久久久av| 国产精品国产高清国产av| 在现免费观看毛片| 日本色播在线视频| 黄色欧美视频在线观看| 嫩草影院新地址| 全区人妻精品视频| 色视频www国产| 国产私拍福利视频在线观看| 国产亚洲精品av在线| 97热精品久久久久久| 此物有八面人人有两片| 国产乱人偷精品视频| 国产一区二区亚洲精品在线观看| 欧美不卡视频在线免费观看| 国产人妻一区二区三区在| eeuss影院久久| 国产探花在线观看一区二区| 一个人免费在线观看电影| 国产视频一区二区在线看| 久久精品国产亚洲网站| 国产精品一及| 亚洲性久久影院| 国产精华一区二区三区| 自拍偷自拍亚洲精品老妇| 亚洲国产精品国产精品| a级毛片免费高清观看在线播放| 国产黄片美女视频| 熟女人妻精品中文字幕| 在线观看一区二区三区| 99久久精品一区二区三区| 国产成人a∨麻豆精品| 成人av一区二区三区在线看| 精品久久久久久成人av| 丰满乱子伦码专区| 日本成人三级电影网站| 国产视频内射| 亚洲av免费在线观看| 久久精品国产亚洲av涩爱 | 欧美最黄视频在线播放免费| 99国产精品一区二区蜜桃av| 国产女主播在线喷水免费视频网站 | av天堂中文字幕网| 日本撒尿小便嘘嘘汇集6| 99久久中文字幕三级久久日本| 国产午夜精品论理片| 国产亚洲av嫩草精品影院| 日本色播在线视频| 可以在线观看毛片的网站| 国产精品久久久久久av不卡| 神马国产精品三级电影在线观看| 国产综合懂色| 免费看美女性在线毛片视频| 身体一侧抽搐| 蜜桃久久精品国产亚洲av| 综合色av麻豆| 夜夜看夜夜爽夜夜摸| 蜜桃亚洲精品一区二区三区| 国产亚洲91精品色在线| 白带黄色成豆腐渣| 久久人人爽人人片av| 国产精品,欧美在线| 久久精品国产亚洲av涩爱 | 天堂av国产一区二区熟女人妻| 欧美zozozo另类| 中文字幕熟女人妻在线| 国产亚洲精品久久久久久毛片| 99热这里只有是精品在线观看| 91麻豆精品激情在线观看国产| 成人永久免费在线观看视频| 麻豆国产av国片精品| 国产 一区精品| 亚洲美女搞黄在线观看 | 午夜日韩欧美国产| 久久久久九九精品影院| 成人毛片a级毛片在线播放| 色视频www国产| 久久婷婷人人爽人人干人人爱| 中国美白少妇内射xxxbb| 久久久色成人| 国产不卡一卡二| 久久久欧美国产精品| 免费观看的影片在线观看| 91av网一区二区| 看片在线看免费视频| 性插视频无遮挡在线免费观看| 国产一级毛片七仙女欲春2| 一进一出抽搐动态| 久久国产乱子免费精品| 亚洲最大成人av| 国产真实乱freesex| eeuss影院久久| 国产高清三级在线| 国产欧美日韩精品亚洲av| 尾随美女入室| 在线观看美女被高潮喷水网站| 国产视频一区二区在线看| 久久精品国产亚洲网站| 菩萨蛮人人尽说江南好唐韦庄 | 国产一区二区在线观看日韩| 日韩大尺度精品在线看网址| 欧美性猛交╳xxx乱大交人| 亚洲av二区三区四区| 国产麻豆成人av免费视频| 国产 一区精品|