• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    極小Cayley圖的確定性小世界網絡模型

    2014-09-21 01:38:00劉艷霞奚建清
    哈爾濱工業(yè)大學學報 2014年7期
    關鍵詞:生成元確定性常數

    劉艷霞,奚建清,張 芩

    (1.華南理工大學軟件學院,510006廣州;2.華南理工大學計算機科學與工程學院,510006廣州)

    小世界網絡在自然界和人類社會中普遍存在,如蛋白質網絡、科學家協(xié)作網絡、WWW網絡、通信網絡等,都具有明顯的小世界特性.通常一個稀疏網絡,如果其直徑(或是網絡平均距離)隨著網絡規(guī)模的增大呈對數或小于對數形式增長,網絡有相對較高的聚集系數,則該網絡稱為小世界網絡.

    為再現(xiàn)真實網絡中存在的小世界特性,揭示小世界網絡的內在生成機理,各種小世界模型不斷涌現(xiàn).這些模型主要分為:1)隨機性模型.通過概率分析技術和隨機連邊方法生成網絡,如最初的 WS 模型[1]及其變體 NW 模型[2]、二維的Kleinberg 模型[3]、動態(tài)演化的 OHO 模型[4];2)確定性模型.網絡節(jié)點和連邊完全由確定的規(guī)則形成.隨機性模型盡管符合大多數真實網絡的生成特性,但無法直觀、清晰地反映網絡的形成機制以及解析計算網絡特性,也不適合以確定方式構造的具有固定節(jié)點度的通信網絡,因此確定性的小世界模型逐漸成為研究熱點,基于各種構造方法的確定性模型相繼被提出.

    最早的確定性小世界模型由Comellas等[5]提出,采用基于循環(huán)圖擴展的方法,通過降低直徑或提高聚集系數,將高直徑或低聚集的循環(huán)圖轉變?yōu)樾∈澜缇W絡.樹通常具有低的對數級直徑和小的節(jié)點度,因此基于樹結構的推廣或改造也可生成小世界網絡,如遞歸團樹(recursive clique tree[6])是2-團樹至K-團樹的推廣,二叉樹可簡單改造為小世界網絡[7].經典的數學問題或數學理論同樣可用于小世界網絡的構造,如Corso[8]的自然數網絡、Chandra等[9]的素數網絡源自于素因數分解理論和哥德巴赫猜想;Boettcher等[10]提出的Hanoi網絡源自經典的Hanoi塔問題.除了采用全新的構造方法,已有的網絡模型也可以成為確定性小世界模型的基礎,如ZRG模型[11]是隨機性OHO模型的確定性版本,LG模型[12]是確定性均勻遞歸樹DURT的小世界版本.最近,GovorcIn等[13]將線圖作為確定性小世界模型,使用圖論中的線圖運算也獲得了小世界網絡.

    Cayley圖是運用有限群構造高對稱網絡的圖論模型,在互連網絡設計中有重要應用,Xiao等[14]曾于2006年首次提出Cayley圖可作為確定性的小世界網絡模型,并通過兩個應用實例予以說明.本文在此基礎上進行了形式化描述和擴展,引入了Cayley圖的極小性概念,通過分析極小性和聚集系數的關聯(lián),建立了形式化的Cayley圖擴展模型.該模型通過增加極小Cayley圖的生成集,可靈活地構造出對稱性強且結構規(guī)則的常數度和非常數度的小世界網絡,在通信網絡、P2P覆蓋網絡等實際領域具有廣泛應用.

    1 極小Cayley圖及其聚集系數

    首先引入極小Cayley圖的概念及其聚集性質,作為小世界網絡模型的理論基礎.為便于建模,只考慮無向圖的情況,以下的Cayley圖在不作特殊說明的情況下都為無向Cayley圖.

    定義1(Cayley圖[15]) 設G是一個有限群,e為G的單位元,S是G的一個子集且滿足以下條件:1)e?S;2)g-1∈S當且僅當g∈S,則群G關于子集S的Cayley圖Γ=Cay(G,S)定義為V(Γ)=G,E(Γ)=

    定義2(極小對稱生成集[15]) 設G是一個有限群,S是G的子集且不含單位元,即S?G{e},若S滿足 ?s∈S,Gr(S{s,s-1})為G的真子群,則S稱為G的極小對稱生成集.

    定義3(極小Cayley圖[15]) 設 Γ 為 Cayley圖Cay(G,S),若子集S為極小對稱生成集,則Γ被稱為極小Cayley圖.

    聚集系數是小世界網絡的重要度量指標.如果網絡中某個節(jié)點v的度為deg(v),則節(jié)點v的聚集系數cc(v)=其中,Mv為v的所有鄰節(jié)點之間實際存在的邊數,也可理解為v連接的三角形個數.由于Cayley圖具有點對稱性,整個網絡的聚集系數CC(Γ)即為任意節(jié)點v的聚集系數CC(v),顯然,0≤CC(Γ)≤1.由此,本文給出極小Cayley圖的如下性質.

    定理1 如果Γ=Cay(G,S)是極小Cayley圖,則CC(Γ)≠0當且僅當存在生成元a,b∈S,a與b互逆,且a3=b3=e.

    證 明 首先,證明充分性.若存在生成元a,b∈S,b=a-1且a3=b3=e,則b=a2,對于任意的g∈G,有(ga)a=gb∧(gb)b=ga,即g的兩個鄰節(jié)點ga與gb之間存在一條連邊,因此CC(Γ)≠0.

    其次,證明必要性.若CC(Γ)≠0,則對于任意的節(jié)點g∈G,其鄰居之間至少存在一條連邊.由于Cayley圖的點對稱性,在此僅需考慮單位元e的聚集系數,其鄰節(jié)點的集合為生成集S.假設與e形成三角形的兩個鄰居分別為a與b,a,b∈S∧a≠b,則必定存在h,h-1∈S,滿足ah=b且bh-1=a;由于S不含單位元,則有h≠b∧h≠a-1.進一步,若h≠b-1∧a≠b-1,則S{b,b-1}仍可生成G,同樣的,若h≠a∧b≠a-1,則S{a,a-1}仍可生成G的所有元素,這與Γ是極小Cayley圖相矛盾的,因此必有a=b-1,即a與b互逆.接下來,考慮h的取值,若h是不同于a和b的第3個生成元,即h≠a∧h≠b,由于ah=b以及a與b互逆,則h=a-1b=b2,即h可由b生成;同樣地,h-1也可由a生成;也就是說S{h,h-1}仍可生成G的所有元素,這也與Γ是極小Cayley圖相矛盾的,因此必有h=a或h=b成立.又因為ah=b且a非單位元,自然有h≠b.由此,可知h=a=b-1成立,即a與b互逆且a3=b3=e,得證.

    很多著名的互連網絡都是Cayley圖且具有極小性,如圈Cn、交錯群圖AGn、超立方體Qn、立方連通圈CCCn等,定理1提供一種簡單的方式判斷這些Cayley圖是否具有較高的聚集性.而且,從定理1的證明可知,若極小Cayley圖的生成集中存在一對互逆的生成元,并且其3次冪為單位元,則該對生成元之間一定具有連邊,形成且僅形成一個三角形;進一步,若生成集中存在n對互逆的生成元,其3次冪都為單位元,則形成的三角形個數為n,因此容易得到如下推論.

    推論1 如果Γ=Cay(G,S)是極小Cayley圖,則CC(Γ)=n/C2|s|當且僅當生成集S中存在n對互逆且3次冪為e的生成元.

    例1 圈Cn是極小Cayley圖Γ=Cay(Zn,{-1,+1}),其中:“+”和“-”分別為模n的加減運算;Cn的度為2.很明顯,僅當n=3時,滿足13=(-1)3=1,圈C3為三角形,其聚集系數為1,其余情況圈Cn的聚集系數都為0.

    例2 交錯群圖AGn=Cay(An,S)[16]是針對偶置換群An構造的一類Cayley圖,設g+i=(12i),g-i=(1i2),則生成集S=…,n}i=3,4,…,n}.AGn是度為2(n-2)的極小Cayley圖,所有生成元都是3-輪換并且兩兩互逆,對所有的i=3,4,…,n,(12i)與(1i2)互逆,并且滿足(12i)3=(1i2)3=e.因此其聚集系數為如圖1是交錯群圖AG3和AG4,從圖1中可看出,其具有較高的聚集系數.

    圖1 交錯群圖AG3和AG4

    2 極小Cayley圖的小世界特性

    在最早提出的 WS小世界的基礎上,Cont等[17]用圖論的語言描述了小世界網絡模型的基本原則.

    定義4(小世界網絡模型[17]) 一個網絡模型Ω被稱為小世界的,如果其生成圖Γ滿足以下條件,其中,V(Γ)和E(Γ)分別為Γ的節(jié)點集和邊集.

    1)圖 Γ是稀疏的,即 deg(Γ)∈O(log|V(Γ)|);

    2)圖Γ具有較小的直徑,即D(Γ)∈O(log|V(Γ)|);

    3)圖Γ具有較高的聚集系數,即存在大于0的常數c,使得CC(Γ)≥c成立.

    必須說明的是,該定義可以進行小的調整,如稀疏圖中關于節(jié)點度的條件可以替換為E(Γ)的條件,即|E(Γ)|∈O(|V(Γ)|log|V(Γ)|),較小的直徑可以替換為較小的平均距離,Γ的聚集系數也可表示為CC(Γ)≈c(c>0),但由此可知,其本質是相同的.

    針對極小Cayley圖和小世界之間的關聯(lián),可得到如下結論.

    定理2 非常數度的極小Cayley圖必定不是小世界的.

    證 明 若有非常數度的極小Cayley圖Γ=Cay(G,S),從推論1 可知,CC(Γ)=n/C2|s|其中,n為S中3次冪為e的互逆生成元的對數,易知其最大取值為|S|/2,則有CC(Γ)的最大取值為1/(|S|-1).由于deg(Γ)=|S|不為常數,則圖Γ無法滿足條件3),圖Γ不是小世界的,得證.

    例如圖1中交錯群圖AGn,屬于非常數度的極小Cayley圖,度為2(n-2),聚集系數為(n-2)/,盡管其聚集系數較高,但隨著節(jié)點規(guī)模的增大,聚集系數越來越小,按照定理2的證明可知,其不是小世界的.

    根據定義4可以發(fā)現(xiàn),極小Cayley圖可作為候選的、確定性的小世界網絡模型.遵循互連網絡設計原則,很多性質良好的極小Cayley圖都是可擴展的、稀疏的并具有低直徑,即符合小世界網絡模型定義的條件1)和條件2),為構造小世界網絡提供了很好的模型基礎.

    進一步,從定理2可知,極小Cayley圖若不是常數度網絡,則其本身一定不是小世界的.因此若要構造小世界網絡,則需要擴展生成集使其不具有極小性,并且通過恰當選擇擴展的生成集,獲得較高的聚集系數,將極小Cayley圖轉換為具有小世界特性的Cayley圖.

    3 極小Cayley圖的擴展模型

    本文詳細介紹如何通過擴展極小Cayley圖的生成集,構造小世界網絡.為便于討論,引入以下概念和符號.

    定義5(Cayley擴展圖) 設Γ為極小Cayley圖Cay(G,S),若Γ為擴展的生成集,使其增加新的生成元集H,滿足H-1,則形成新的Cayley圖Cay(G,S∪H)稱為?;贖的擴展圖,記為Ex(Γ,H);另外,Γ也可稱為Ex(Γ,H)的Cayley基圖.

    很明顯,Cayley擴展圖在其基圖上增加了節(jié)點度,使節(jié)點之間存在更多的連邊,降低了網絡直徑并且增加了聚集性.接下來,基于Cayley擴展圖的概念以及定義4中小世界網絡模型3個條件,定理3和定理4分別給出常數度和非常數度的小世界網絡的構造方法,其中N=|V(Γ)|.

    定理3 若極小Cayley圖Γ=Cay(G,S)是常數度網絡且滿足定義4的條件2),若有H∩(S∪H)2≠Φ且|H|=c(c為常數),則Ex(Γ,H)是常數度的小世界網絡.

    證 明

    1)由于|H|為常數,deg(Ex(Γ,H))=deg(Γ)+|H|=cd(cd為常數),則有Ex(Γ,H)滿足定義4的條件1),且Ex(Γ,H)是常數度網絡;

    2)由于Γ滿足定義4的條件2),即有D(Γ)∈O(lgN),又由于Ex(Γ,H)≤D(Γ),則Ex(Γ,H)滿足條件2);

    3)由于H∩(S∪H)2≠Φ,|H|為常數,即任意節(jié)點g∈G的鄰節(jié)點的連邊Mg為常數,由于deg(Ex(Γ,H))也為常數,則CC(Ex(Γ,H))==ch(ch為常數).

    由于Ex(Γ,H)滿足定義4的條件1)、2)、3),Ex(Γ,H)是小世界的且是常數度的網絡,得證.

    例3 立方連通圈CCCn(n≥3)是度為3的極小Cayley圖Cay(G,S),其中群G是Z2與Zn的圈積,表示為G=Z2?Zn,G上的操作為?(x1,y1),(x2,y2)∈ (Zn2,Zn),(x1,y1)(x2,y2)=(x1?σy1(x2),y1+y2),σy1是循環(huán)右移y1位操作,?是異或操作,生成集S=若令ck≤n/2的任意正整數,定義<i≤ck},易知H滿足定理3的條件,Cayley擴展圖Ex(CCCn,H)是常數度的小世界網絡,若ck=n/2,其節(jié)點度為 2ck,其聚集系數為 3(ck-1)/2(2ck-1);否則其節(jié)點度為1+2ck,其聚集系數為3(ck-1)/2(2ck+1).

    定理4 若極小Cayley圖Γ=Cay(G,S)滿足定義4的條件1)和條件2),且H'?S使得成立,并且有O(lgN),則Ex(Γ,H)是小世界的.

    證 明

    1)由于 Γ 滿足條件 1),即有 deg(Γ)∈O(lgN),又因為),則deg(Ex(Γ,H))=deg(Γ)+|H|=|S|+|H|∈O(lgN),Ex(Γ,H)滿足條件1);

    2)由于 Γ 滿足條件 2),即有D(Γ)∈O(lgN),又由于Ex(Γ,H)≤D(Γ),則有Ex(Γ,H)滿足條件2);

    3)由于|S|+|H|∈O(lgN),又因為存在H'?S,使得H∪H'∪{e}是G的子群,而且滿足=|H'|+|H|∈O(lgN),則有CC(Ex(Γ,H))≥

    當n→∞ 時,CC(Ex(Γ,H))≥(其中,c1、c2分別為常量,則有CC(Ex(Γ,H))滿足條件3);

    綜上所述,Ex(Γ,H)是小世界的,得證.

    例4 超立方體Qn為極小Cayley圖Cay(G,

    S),其中:G=Zn2;S=0≤i≤n-1}.若令t=「log2n?,H'=,x2,…,xt中僅一個為1},H={(x1,x2,,其中單位元e為(0,0,…,0),易知H滿足定理4的條件,Cayley擴展圖Ex(Γ,H)是小世界的,其節(jié)點數N=2n,度和直徑都為O(lgN),聚集系數大于或等于1/4.

    從以上示例可知,定理3和定理4提供了一種基于極小Cayley圖構造小世界網絡的方法,該方法非常靈活,只要選擇滿足條件的極小Cayley圖,恰當地擴展其生成集,則可以生成一類具有小世界性質的Cayley圖.

    4 結論

    1)極小Cayley圖由于其構造簡單和高對稱性,已經廣泛應用于互連網絡拓撲結構的設計中,研究學者基于各種各樣的群結構提出了很多性質良好的極小Cayley圖,根據互連網絡的設計原則,這些圖大部分是可擴展的、稀疏的并具有低直徑,因此為構造小世界網絡提供了很好的模型基礎.

    2)深入分析了Cayley圖的極小性和小世界性質的關聯(lián),建立了形式化的極小Cayley圖擴展模型,通過恰當的擴展生成集,構造出對稱性強且結構規(guī)則的小世界網絡.

    3)本文提出的構造方法可應用于通信網絡、結構化P2P覆蓋網絡等實際互連網絡的拓撲結構設計中,這些網絡在設計時一方面需要遵循對稱性的設計原則,因為節(jié)點對稱可以簡化拓撲維護及路由算法的設計,并且有利于負載均衡,而邊對稱性可以實現(xiàn)最優(yōu)容錯,另一方面也可以引入小世界性質改進網絡性能,如具有小世界性質的通信網絡可根據數據訪問需求進行分組聚集,并使遠程通信也具有較快的通信效率,而具有小世界性質的結構化P2P覆蓋網絡可提高網絡的路由效率、查詢和檢索的命中率,并且在突發(fā)高負載時保持良好性能.

    [1]WATTS D J,STROGATZ S H.Collective dynamics of‘small-world’networks[J].Nature,1998,393(6684):440-442.

    [2]NEWMAN M E J,WATTS D J.Renormalization group analysis of the small-world network model[J].Physics Letters A,1999,263(4/6):341-346.

    [3]KLEINBERG J M.Navigation in a small world[J].Nature,2000,406(6798):845.

    [4]OZIK J,HUNT B R,OTT E.Growing networks with geographical attachment preference:emergence of small worlds[J].Physical Review E,2004,69(2):26108.

    [5]COMELLAS F,OZON J,PETERS J G.Deterministic small-world communication networks[J].Information Processing Letters,2000,76(1):83-90.

    [6]COMELLAS F,F(xiàn)ERTIN G,RASPAUD A.Recursive graphs with small-world scale-free properties[J].Physical Review E,2004,69(3):037104.

    [7]GUO Shize,LU Zheming,KANG Guangyu,et al.A tree-structured deterministic small-world network[J].IEICE Transactions on Information and Systems,2012,95(5):1536-1538.

    [8]CORSO G.Families and clustering in a natural numbers network[J].Physical Review E,2004,69(3):36106.

    [9]CHANDRA A K,DASGUPTA S.A small world network of prime numbers[J].Physica A:Statistical Mechanics and its Applications,2005,357(3/4):436-446.

    [10]BOETTCHER S,GONCALVES B,AZARET J.Geometry and dynamics for hierarchical regular networks[J].Journal of Physics A:Mathematical and Theoretical,2008,41(33):335003.

    [11]ZHANG Zhongzhi,RONG Lili,GUO Chonghui.A deterministic small-world network created by edge iterations[J].Physica A:Statistical Mechanics and its Applications,2006,363(2):567-572.

    [12]LU Zheming,GUO Shize.A small-world network derived from the deterministic uniform recursive tree[J].Physica A:Statistical Mechanics and its Applications,2012,391(1/2):87-92.

    [13]GOVORCIN J,KNOR M,SKREKOVSKI R.Line graph operation and small worlds[J].Information Processing Letters,2013,113(5/6):196-200.

    [14]XIAO Wenjun,PARHAMI B.Cayley graphs as models of deterministic small-world networks[J].Information Processing Letters,2006,97(3):115-117.

    [15]BIGGS N.Algebraic graph theory[M].Cambridge,UK:Cambridge University Press,1993.

    [16]JWO J S,LAKSHMIVARAHAN S,DHALL S K.A new class of interconnection networks based on the alternating group[J].Networks,1993,23(4):315-326.

    [17]CONTR, TANIMURA E.Small-worldgraphs:characterization and alternative constructions [J].Advances in Applied Probability,2008,40(4):939-965.

    猜你喜歡
    生成元確定性常數
    兩個奇質數乘積長度的二元二次剩余碼的冪等生成元
    論中國訓詁學與經典闡釋的確定性
    論法律解釋的確定性
    法律方法(2022年1期)2022-07-21 09:18:56
    含混還是明證:梅洛-龐蒂論確定性
    關于Landau常數和Euler-Mascheroni常數的漸近展開式以及Stirling級數的系數
    構造多維阿基米德Copula生成元的方法
    兩類構造阿基米德Copula 生成元的方法
    幾個常數項級數的和
    法律確定性的統(tǒng)合理性根據與法治實施
    社會科學(2016年6期)2016-06-15 20:29:09
    萬有引力常數的測量
    久久久久国内视频| 亚洲人成网站高清观看| 日日干狠狠操夜夜爽| 国产一区二区三区在线臀色熟女| 俄罗斯特黄特色一大片| 性色av乱码一区二区三区2| 超碰av人人做人人爽久久| 国产黄色小视频在线观看| а√天堂www在线а√下载| 超碰av人人做人人爽久久| 51午夜福利影视在线观看| 一区二区三区四区激情视频 | 国产成人av教育| 最新在线观看一区二区三区| 淫妇啪啪啪对白视频| 99久久九九国产精品国产免费| 久久人人精品亚洲av| 波多野结衣高清作品| 一边摸一边抽搐一进一小说| 中文字幕人妻熟人妻熟丝袜美| 少妇高潮的动态图| 婷婷六月久久综合丁香| 国产淫片久久久久久久久 | 久久热精品热| 精品久久久久久久久av| 久99久视频精品免费| 99热这里只有是精品50| av在线蜜桃| 久久久成人免费电影| 国产高清有码在线观看视频| 色综合欧美亚洲国产小说| 看黄色毛片网站| 国产精品综合久久久久久久免费| 久久精品影院6| 午夜精品在线福利| 国产激情偷乱视频一区二区| 精品人妻1区二区| 我的女老师完整版在线观看| 久久久色成人| 麻豆一二三区av精品| 成人毛片a级毛片在线播放| 88av欧美| 久99久视频精品免费| 窝窝影院91人妻| 一区二区三区高清视频在线| or卡值多少钱| 国产精品久久久久久久久免 | 色综合站精品国产| 久久99热6这里只有精品| 色综合婷婷激情| 好男人电影高清在线观看| 亚洲熟妇熟女久久| 51国产日韩欧美| 亚洲中文日韩欧美视频| 免费看a级黄色片| 听说在线观看完整版免费高清| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| av在线老鸭窝| 精品一区二区三区视频在线观看免费| 国产一区二区在线av高清观看| 久9热在线精品视频| 精品一区二区三区av网在线观看| 麻豆久久精品国产亚洲av| 十八禁网站免费在线| 成年人黄色毛片网站| 亚洲在线观看片| 国产极品精品免费视频能看的| 亚洲,欧美精品.| 国产亚洲精品久久久com| 久久国产精品人妻蜜桃| 在线观看av片永久免费下载| 欧美一区二区亚洲| 成人鲁丝片一二三区免费| 免费观看精品视频网站| 精品不卡国产一区二区三区| 免费无遮挡裸体视频| 精品99又大又爽又粗少妇毛片 | 国产高清三级在线| 国产精品1区2区在线观看.| 亚洲精品一区av在线观看| 欧美性猛交黑人性爽| 亚洲五月天丁香| 狂野欧美白嫩少妇大欣赏| 91麻豆av在线| 怎么达到女性高潮| 国产视频一区二区在线看| 国产精品av视频在线免费观看| 狠狠狠狠99中文字幕| 国产人妻一区二区三区在| 亚洲人成伊人成综合网2020| 国产精品电影一区二区三区| 国产午夜福利久久久久久| 无遮挡黄片免费观看| 丰满人妻一区二区三区视频av| 免费看美女性在线毛片视频| 亚洲av熟女| 久久久国产成人免费| 蜜桃亚洲精品一区二区三区| 少妇的逼水好多| 天天一区二区日本电影三级| 免费在线观看成人毛片| 又黄又爽又刺激的免费视频.| netflix在线观看网站| 在线观看舔阴道视频| 国产久久久一区二区三区| 国产精品不卡视频一区二区 | 制服丝袜大香蕉在线| 中文字幕精品亚洲无线码一区| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久 | 国产三级在线视频| 成年女人永久免费观看视频| 亚洲成人久久爱视频| 又爽又黄无遮挡网站| 少妇的逼水好多| 成人特级黄色片久久久久久久| 高清日韩中文字幕在线| 丝袜美腿在线中文| 欧美另类亚洲清纯唯美| 白带黄色成豆腐渣| avwww免费| 一个人免费在线观看的高清视频| 国产欧美日韩一区二区精品| 又爽又黄a免费视频| 一级黄色大片毛片| 最新中文字幕久久久久| 欧美性猛交╳xxx乱大交人| 亚洲最大成人手机在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美bdsm另类| av视频在线观看入口| 免费在线观看成人毛片| 亚洲三级黄色毛片| 免费看光身美女| 国产野战对白在线观看| 天堂动漫精品| 夜夜夜夜夜久久久久| 国产av一区在线观看免费| 国产精品乱码一区二三区的特点| 国产乱人视频| 国产精品,欧美在线| 欧美成人性av电影在线观看| 免费在线观看亚洲国产| 免费人成在线观看视频色| .国产精品久久| 91av网一区二区| 女生性感内裤真人,穿戴方法视频| 精品免费久久久久久久清纯| 国产美女午夜福利| 国产伦精品一区二区三区四那| 午夜福利高清视频| 亚洲av美国av| 搡老妇女老女人老熟妇| 久久久国产成人免费| 国产色婷婷99| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 亚洲国产精品成人综合色| 蜜桃亚洲精品一区二区三区| 99久久99久久久精品蜜桃| 日韩欧美精品v在线| 一级毛片久久久久久久久女| 午夜激情福利司机影院| 免费av观看视频| 免费在线观看影片大全网站| 深夜精品福利| 日韩欧美精品免费久久 | 少妇高潮的动态图| 精品人妻1区二区| 精品午夜福利在线看| 男人的好看免费观看在线视频| 免费在线观看日本一区| 亚洲真实伦在线观看| 久久久国产成人精品二区| 少妇被粗大猛烈的视频| 久久国产乱子免费精品| 亚洲精品一卡2卡三卡4卡5卡| 国产探花在线观看一区二区| 少妇高潮的动态图| 麻豆成人av在线观看| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 午夜福利视频1000在线观看| 欧美日韩福利视频一区二区| 美女 人体艺术 gogo| 在线免费观看不下载黄p国产 | 国产伦一二天堂av在线观看| 99热这里只有是精品在线观看 | 国产探花极品一区二区| av专区在线播放| 99热精品在线国产| 欧美日本亚洲视频在线播放| 婷婷色综合大香蕉| 丰满的人妻完整版| 亚州av有码| 少妇人妻一区二区三区视频| 女同久久另类99精品国产91| 国产 一区 欧美 日韩| 色综合欧美亚洲国产小说| 老司机午夜十八禁免费视频| 午夜激情欧美在线| 非洲黑人性xxxx精品又粗又长| 黄色视频,在线免费观看| 免费av观看视频| 国产亚洲精品综合一区在线观看| 美女大奶头视频| 自拍偷自拍亚洲精品老妇| 亚洲中文字幕一区二区三区有码在线看| 亚洲一区二区三区色噜噜| 亚洲成人精品中文字幕电影| 日韩欧美三级三区| 国产精品日韩av在线免费观看| 欧美黄色片欧美黄色片| 美女黄网站色视频| 欧美日本亚洲视频在线播放| 国产人妻一区二区三区在| 欧美性猛交╳xxx乱大交人| 一区二区三区免费毛片| 一本一本综合久久| 久久久国产成人免费| 男人的好看免费观看在线视频| 欧美成人一区二区免费高清观看| 日本免费a在线| 亚洲精华国产精华精| 性欧美人与动物交配| 国产精品伦人一区二区| 老司机午夜福利在线观看视频| 国产色爽女视频免费观看| 免费av观看视频| 成人特级黄色片久久久久久久| 3wmmmm亚洲av在线观看| 国产精品av视频在线免费观看| 白带黄色成豆腐渣| 淫妇啪啪啪对白视频| 又黄又爽又刺激的免费视频.| 亚洲av二区三区四区| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品成人综合色| 久久午夜福利片| 亚洲成人中文字幕在线播放| 夜夜躁狠狠躁天天躁| 国产白丝娇喘喷水9色精品| 精品人妻视频免费看| 天美传媒精品一区二区| 老鸭窝网址在线观看| 久久精品国产99精品国产亚洲性色| 精品一区二区三区av网在线观看| 亚洲av二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 超碰av人人做人人爽久久| 欧美色欧美亚洲另类二区| 91麻豆av在线| 久久久精品欧美日韩精品| 国产精品嫩草影院av在线观看 | 国产一区二区激情短视频| 亚洲av免费高清在线观看| 国产精品久久电影中文字幕| 国产高清三级在线| 国产精品三级大全| 国产一区二区在线av高清观看| 亚洲人成伊人成综合网2020| 亚洲午夜理论影院| 91午夜精品亚洲一区二区三区 | 久久热精品热| 一二三四社区在线视频社区8| 日韩有码中文字幕| 色综合婷婷激情| 亚洲真实伦在线观看| 一级毛片久久久久久久久女| 男女视频在线观看网站免费| 亚洲精品色激情综合| 十八禁人妻一区二区| 久久精品国产清高在天天线| 一个人看视频在线观看www免费| ponron亚洲| 欧美黄色片欧美黄色片| 亚洲国产精品成人综合色| 国产精品久久久久久久久免 | 丁香六月欧美| 国产乱人伦免费视频| 亚洲精品亚洲一区二区| 国产伦人伦偷精品视频| 免费在线观看亚洲国产| 国产又黄又爽又无遮挡在线| 夜夜爽天天搞| 久久精品国产99精品国产亚洲性色| 亚洲色图av天堂| 深夜精品福利| 简卡轻食公司| 在线播放无遮挡| 精品久久久久久,| 免费观看人在逋| 国产亚洲欧美98| 两性午夜刺激爽爽歪歪视频在线观看| av在线观看视频网站免费| 我要看日韩黄色一级片| 99热6这里只有精品| 美女被艹到高潮喷水动态| 国产日本99.免费观看| 国产欧美日韩精品亚洲av| 欧美黑人巨大hd| 亚洲第一电影网av| 内射极品少妇av片p| 国产亚洲精品久久久久久毛片| 香蕉av资源在线| 色播亚洲综合网| 国产日本99.免费观看| 观看免费一级毛片| av福利片在线观看| 国产三级在线视频| 亚洲熟妇熟女久久| 成人鲁丝片一二三区免费| 国产精品亚洲美女久久久| 国产不卡一卡二| 少妇丰满av| 亚洲中文字幕一区二区三区有码在线看| 深夜精品福利| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| eeuss影院久久| 午夜老司机福利剧场| 直男gayav资源| 禁无遮挡网站| 夜夜躁狠狠躁天天躁| 中文亚洲av片在线观看爽| 亚洲18禁久久av| 一进一出抽搐动态| 麻豆一二三区av精品| 97人妻精品一区二区三区麻豆| 国产高清激情床上av| 精品一区二区免费观看| 精品一区二区三区视频在线| 欧美乱色亚洲激情| 国产精品av视频在线免费观看| 亚洲五月婷婷丁香| 在线观看舔阴道视频| 国产私拍福利视频在线观看| 夜夜夜夜夜久久久久| 成人国产综合亚洲| 精品久久国产蜜桃| 精品久久久久久久久久久久久| 神马国产精品三级电影在线观看| 亚洲精华国产精华精| 在线国产一区二区在线| 国产真实伦视频高清在线观看 | 丰满乱子伦码专区| 亚洲av不卡在线观看| 亚洲一区二区三区色噜噜| 成人午夜高清在线视频| 丰满人妻熟妇乱又伦精品不卡| 变态另类成人亚洲欧美熟女| 露出奶头的视频| 天堂影院成人在线观看| 国产午夜精品久久久久久一区二区三区 | 看免费av毛片| www日本黄色视频网| 久99久视频精品免费| 女同久久另类99精品国产91| 国产精品自产拍在线观看55亚洲| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 欧美绝顶高潮抽搐喷水| 草草在线视频免费看| 国产亚洲精品久久久com| 日韩欧美在线乱码| 男女下面进入的视频免费午夜| 国产真实乱freesex| 成年版毛片免费区| 黄片小视频在线播放| 欧美成狂野欧美在线观看| 国产熟女xx| 久久亚洲精品不卡| 欧美黑人巨大hd| 精品人妻一区二区三区麻豆 | 黄色女人牲交| www.www免费av| 真实男女啪啪啪动态图| 午夜福利高清视频| 一二三四社区在线视频社区8| 好男人在线观看高清免费视频| 国产在视频线在精品| av福利片在线观看| 久久人人爽人人爽人人片va | 日本三级黄在线观看| 日韩精品中文字幕看吧| 久久婷婷人人爽人人干人人爱| 最近最新免费中文字幕在线| 日韩大尺度精品在线看网址| 日韩免费av在线播放| 成人特级av手机在线观看| 亚洲第一欧美日韩一区二区三区| 成年版毛片免费区| 欧美一区二区国产精品久久精品| 99热这里只有是精品在线观看 | 免费人成视频x8x8入口观看| 国产在线精品亚洲第一网站| 午夜影院日韩av| 午夜福利视频1000在线观看| 啦啦啦韩国在线观看视频| 一a级毛片在线观看| 少妇人妻精品综合一区二区 | 在线播放国产精品三级| 三级国产精品欧美在线观看| 少妇裸体淫交视频免费看高清| 夜夜躁狠狠躁天天躁| 搡女人真爽免费视频火全软件 | 免费av不卡在线播放| 久久婷婷人人爽人人干人人爱| 免费在线观看亚洲国产| 久久国产精品影院| 国内毛片毛片毛片毛片毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成年人黄色毛片网站| 国产成人av教育| 国产毛片a区久久久久| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区| 在线天堂最新版资源| 一个人免费在线观看电影| 欧美潮喷喷水| 亚洲18禁久久av| 日本三级黄在线观看| 精品人妻视频免费看| 麻豆国产av国片精品| 亚洲无线观看免费| 18禁黄网站禁片免费观看直播| 日韩欧美免费精品| 久久久久久九九精品二区国产| 两个人视频免费观看高清| 看免费av毛片| 成人国产一区最新在线观看| 嫩草影院新地址| 韩国av一区二区三区四区| 欧美一区二区国产精品久久精品| 欧美潮喷喷水| 麻豆国产97在线/欧美| 免费人成在线观看视频色| 亚洲精品色激情综合| 国产色爽女视频免费观看| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 欧美日韩综合久久久久久 | 好男人电影高清在线观看| 欧美色视频一区免费| 中文亚洲av片在线观看爽| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 三级国产精品欧美在线观看| 性插视频无遮挡在线免费观看| 韩国av一区二区三区四区| 国产精品一区二区三区四区久久| 国产精品久久久久久久久免 | 亚洲,欧美精品.| 欧美成狂野欧美在线观看| 色av中文字幕| 2021天堂中文幕一二区在线观| 国内精品久久久久久久电影| 日本黄色视频三级网站网址| 欧美成人a在线观看| 欧美激情国产日韩精品一区| 十八禁网站免费在线| 亚洲avbb在线观看| 久久精品人妻少妇| 深夜a级毛片| 国产成人aa在线观看| 日本黄色视频三级网站网址| 色播亚洲综合网| 亚洲最大成人中文| 国产黄色小视频在线观看| 看片在线看免费视频| АⅤ资源中文在线天堂| 九色国产91popny在线| 高清日韩中文字幕在线| 51国产日韩欧美| 亚洲av不卡在线观看| 午夜福利18| bbb黄色大片| 成人特级黄色片久久久久久久| 欧美成人性av电影在线观看| 在线播放无遮挡| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 中文字幕免费在线视频6| eeuss影院久久| 欧美高清性xxxxhd video| 香蕉av资源在线| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 亚洲av成人精品一区久久| 国产精品一区二区三区四区久久| 日本在线视频免费播放| 高清日韩中文字幕在线| 真实男女啪啪啪动态图| 欧美黑人欧美精品刺激| 国产成人a区在线观看| 波多野结衣高清作品| 最近最新中文字幕大全电影3| 久久精品国产亚洲av香蕉五月| 精品日产1卡2卡| 18禁黄网站禁片免费观看直播| 首页视频小说图片口味搜索| 精品人妻1区二区| 久久久国产成人免费| 永久网站在线| 午夜福利在线观看吧| 欧美日韩瑟瑟在线播放| 日本a在线网址| 黄色一级大片看看| 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又免费观看的视频| 啪啪无遮挡十八禁网站| .国产精品久久| 最近中文字幕高清免费大全6 | 欧美日本亚洲视频在线播放| 国产高清视频在线观看网站| 又黄又爽又刺激的免费视频.| 亚洲自偷自拍三级| 亚洲av成人精品一区久久| 亚洲美女视频黄频| 国产精品永久免费网站| 97人妻精品一区二区三区麻豆| 国产成人av教育| 亚洲国产精品999在线| 精品午夜福利视频在线观看一区| 久久久成人免费电影| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一及| 免费一级毛片在线播放高清视频| 国产一区二区激情短视频| 色5月婷婷丁香| 超碰av人人做人人爽久久| 亚洲,欧美,日韩| 一夜夜www| 国产精品一区二区三区四区免费观看 | 在线观看午夜福利视频| 国产精品一区二区性色av| 日韩有码中文字幕| 神马国产精品三级电影在线观看| 最新在线观看一区二区三区| 美女大奶头视频| 在线播放国产精品三级| 免费高清视频大片| 日韩欧美在线乱码| 亚洲七黄色美女视频| .国产精品久久| 最近在线观看免费完整版| 中文字幕av成人在线电影| 无人区码免费观看不卡| 村上凉子中文字幕在线| xxxwww97欧美| 深夜a级毛片| 欧美另类亚洲清纯唯美| 少妇被粗大猛烈的视频| 亚洲精品粉嫩美女一区| 美女cb高潮喷水在线观看| 动漫黄色视频在线观看| 亚洲成人久久爱视频| 中文字幕av成人在线电影| 中文字幕精品亚洲无线码一区| av在线观看视频网站免费| 欧美中文日本在线观看视频| 色在线成人网| 级片在线观看| a级毛片免费高清观看在线播放| netflix在线观看网站| 亚洲av第一区精品v没综合| av天堂中文字幕网| 国产精品嫩草影院av在线观看 | 波多野结衣巨乳人妻| 搡老妇女老女人老熟妇| 国内精品一区二区在线观看| 黄色视频,在线免费观看| 国产av麻豆久久久久久久| 噜噜噜噜噜久久久久久91| 久久久久免费精品人妻一区二区| 天堂√8在线中文| 久久国产精品人妻蜜桃| 麻豆国产97在线/欧美| 色综合婷婷激情| 天美传媒精品一区二区| 免费av不卡在线播放| 亚洲国产色片| 亚洲专区中文字幕在线| 国产精品精品国产色婷婷| 久久九九热精品免费| 色哟哟哟哟哟哟| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 老司机福利观看| 宅男免费午夜| av专区在线播放| 亚洲熟妇熟女久久| 日日摸夜夜添夜夜添av毛片 | 麻豆国产97在线/欧美| 欧美高清成人免费视频www| 观看美女的网站| 麻豆成人av在线观看| 国产成人av教育| 亚洲片人在线观看| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 免费无遮挡裸体视频| 亚洲欧美清纯卡通| 成人毛片a级毛片在线播放| 又爽又黄无遮挡网站| 99久久精品热视频| 午夜视频国产福利| 亚洲国产精品成人综合色|