• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    4-(1H-1,2,4-三唑-1-亞甲基)苯甲酸過(guò)渡金屬配合物的合成、結(jié)構(gòu)、抑菌活性及DNA 裂解活性

    2014-09-21 08:59:46熊萍萍步懷宇陳三平
    物理化學(xué)學(xué)報(bào) 2014年7期
    關(guān)鍵詞:西北大學(xué)三唑教育部

    李 婕 熊萍萍 步懷宇 陳三平

    (1西北大學(xué)西部資源生物與現(xiàn)代生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,陜西省生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,西安710069;2西北大學(xué)化學(xué)與材料科學(xué)學(xué)院,合成與天然功能分子化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,西安710069)

    1 Introduction

    Over the past decades,many studies on the rational design of polymeric metal-organic frameworks(MOFs)and their potential applications in catalysis,separation,gas storage,and even biological activity caused much interest in the field of inorganic chemistry.1-4DNAcleavage studies would count for much for the evolution of the new therapeutic reagents and DNAprobes,5-8and drug researches suggest that many anticancer agents,antiviral agents,and antiseptic agents take action through binding to DNA.9-14In addition,transition metal compounds can interact covalently or non-covalently with DNA in the mode of intercalation,groove binding,or external electrostatic binding.15-18This inspires growing interest in the study of the biochemical behavior of these compounds including their interactions with DNA and antifungal activity.19-25

    As well-known,triazole derivatives,specifically their corresponding transition metal coordination compounds,have been concerned as a highly effective antifungal fungicide.26In our earlier research on the antifungal activity of copper(II)compounds,novel copper(II)compounds with the ligand(4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid)showed a higher antifungal effect than those of ligand and CuCl2especially compound 1(the antifungal percentage is 72.5%on Fusarium graminearum).Based on our earlier research,27we are interested in exploring the relationships between DNAcleavage and antifungal activity of the transition metal compounds derived from a triazole ligand.

    Hence,we synthesized the ligand(4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid(HL))and the three transition metal compounds(Cu-L,Ni-L,Co-L).The thermal analyses and luminescent properties of the compounds were investigated.Furthermore,comparative study of the interactions of the compounds with plasmid DNA(pUC 18)as well as the related antifungal activities against five agriculture related fungi was experimentally explored.The remarkable DNA cleavage and antifungal activity suggested that the compounds above would have potential utilization for developing new drugs for agricultures.

    2 Experimental

    2.1 Materials and methods

    All of the reagents were purchased and used without further purification.CuCl2·2H2O(99.9%),NiCl2·6H2O(99.9%),CoCl2·6H2O(99.9%),NaN3(>99.5%),KOH(>86%),methanol anhydrous(>99.5%),N,N-dimethylformamide(>99.5%),4-methylbenzoic acid(>99.5%),succinbromimide(>99.5%),benzoyl peroxide(>99.5%),tetrachloromethane(>99.5%),dichloromethane(>99.5%),and 1H-1,2,4-triazole(>99.5%)were purchased fromXi′anChemblossom Pharmaceutical Technology Co.,Ltd.NaOH(97%)was purchased from Sigma-Aldrich.Elemental analyses(C,H,N)were performed on an Elementar Vario EL III analyzer(USA).Infrared(IR)spectra were recorded on a Tensor 27 spectrometer(Bruker Optics,Ettlingen,Germany)as KBr pellets in the range of 400-4000 cm-1.Powder X-ray diffraction(XRD)patterns were measured on a Bruker D8 Advance X-ray powder diffractometer with Cu Kαradiation(λ=0.15405 nm).Ultraviolet(UV)absorption studies were carried out with a Shimadzu UV-2450 spectrophotometer.Fluorescent spectra were measured at room temperature with an Edinburgh FLSP920 fluorescence spectrometer.Thermogravimetric(TG)measurements were performed with a Netrzsch STA 449C apparatus(Germany)under asimulatednitrogenatmospherewithaheatingrateof 10°C·min-1from room temperature to 1000°C.

    2.2 Syntheses

    2.2.1 Preparation of 4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid

    The ligand was synthesized according to the literature procedure.28,29A mixture of 4-methylbenzoic acid(5.44 g,40.0 mmol),succinbromimide(7.12 g,40.0 mmol),benzoyl peroxide(0.10 g,412.0 mmol),and tetrachloromethane(60 mL)were refluxed for 5 h.Cooling to room temperature and washing with tetrachloromethane and distilled water.White solid was obtained by recrystallization from dichloromethane.Subsequently,a mixture of KOH(0.30 g,0.50 mmol),the above products(0.22 g,0.10 mmol),and 1H-1,2,4-triazole(0.07 g,0.10 mmol)was dissolved in distilled water(6 mL)and sealed in a 10 mL Teflon-lined stainless steel autoclave after stirring them for 30 min.The mixture was heated at 90 °C for 72 h and cooled to room temperature at a rate of 5 °C·h-1.Colorless crystals(HL)were formed and washed with distilled water.Yield:91.4%.IR(KBr pellet,cm-1)for HL:3453(b),3119(b),2952(w),2363(w),1914(w),1694(b),1515(s),1433(m),1275(s),1141(s),1011(m),919(m),731(s),677(m)(Fig.S1a(see Supporting Information)).m.p.215.1-215.5°C.

    2.2.2 Preparation of[Cu0.5L]n(1)

    Amixture of HL(20.3 mg,0.10 mmol)and CuCl2·2H2O(17.1 mg,0.10 mmol)was dissolved in distilled H2O(3 mL),Teflonlined stainless reactor at 140 °C for 72 h,cooled to 100 °C at a rate of 5 °C·h-1,and held at this temperature for 10 h.Then,it was cooled to room temperature at the same rate.Purple lump crystals were isolated and washed with distilled water.Yield:45%(based on HL).IR(KBr pellet,cm-1):3455(b),1608(s),1562(m),1371(s),1288(m),1119(m),736(m),674(m)(Fig.S1b).Elemental analyses(%)calculated for C20H16CuN6O4:C 51.29,H 3.41,N 17.95;found:C 51.11,H 3.74,N 17.80.

    2.2.3 Preparation of{[Ni(L)2·(H2O)2]·(H2O)2}n(2)

    A mixture containing HL(20.3 mg,0.10 mmol),NiCl2·6H2O(23.8 mg,0.10 mmol),NaOH(4.0 mg,0.10 mmol),NaN3(12.6 mg,0.20 mmol),were dissolved in the solution of CH3OH/H2O(6 mL)(1:2,V/V),Teflon-lined stainless reactor at 160°C for 10 h,cooled to 100 °C at a rate of 5 °C·h-1,and held at this temperature for 72 h.Then,it was cooled to room temperature at the same rate.The resulting solution was filtered and transfered in a vial for two weeks.Light blue fusiform crystals were formed and washed with EtOH and dried in air.Yield:90%(based on HL).IR(KBr pellet,cm-1):3455(w),1600(s),1555(s),1398(s),1292(m),1138(m),730(m),678(m)(Fig.S1c).Elemental analysis(%)calculated for C20H24NiN6O8:C 44.85,H 4.48,N 15.70;found:C 44.93,H 4.16,N 15.94.

    2.2.4 Preparation of{[Co(L)2·(H2O)2]·(H2O)2}n(3)

    Compound 3 was synthesized by the identical pathway with compound 2 except that NiCl2·6H2O was replaced by CoCl2·6H2O(23.8 mg,0.10 mmol)and pink fusiform crystals were obtained in the mother liquor after it standing for seven days.Yield:90%(based on HL).IR(KBr pellet,cm-1):3455(w),1600(s),1555(s),1398(s),1292(m),1138(m),730(m),678(m)(Fig.S1d).Elemental analysis(%)calculated for C20H24CoN6O8:C 44.83,H 4.48,N 15.69;found:C 44.97,H 4.08,N 15.95.

    2.3 Single-crystal structure determination

    All single crystal X-ray experiments were collected on a Bruker Smart Apex II CCD diffractometer(Germany)equipped with graphite monochromated Mo Kαradiation(λ=0.071073 nm)using ω and φ scan mode at 296(2)K.The single-crystal structures of compounds were both solved by direct methods and refined with full-matrixleast-squares refinements based on F2using SHELXS-97 and SHELXL-97.30,31All non-hydrogen atoms were refined anisotropically.Crystallographic data,data collection parameters,and refinement for 1-3 are listed in Table 1,selected bond distances(nm)and angles(°)are given in Table S1(see Supporting Information).CCDC numbers:970263 for 1,969965,969966 for 2 and 3,respectively.

    2.4 Antifungal activity tests

    The tested microorganisms in the present study are Fusarium graminearum,Vasa mali,Macrophoma kawatsukai,Colletotrichum,gloeosporioides,and Alternaria alternate.Due to their close relationship to crop,such as wheat,apple,and tobacco,we selected these fungi to carry out the research and valued the compounds in agriculture.The method of determining antifungal activity was according to the radial growth method.32Sterilized hot PDA(potato dextrose agar)nutrient medium(composition:potato(200.0 g),dextrose(15.0 g),agar(18.0 g),and distilled water(1000 mL))and 4 mm diameter hole punch were used in the method.4.64 mg Cu-L(1),5.35 mg Ni-L(2),and 5.35 mg Co-L(3)were used to prepare the 2.5 mmol·L-1mother liquid with distilled water(the compound solutions were prepared by formerly dis-solving in a small quantity of DMSO and then diluting using distilled water).Five final concentration solutions in PDA,0,40,80,120,and 160 μmol·L-1were prepared for compounds 1-3 to against five kinds of fungi respectively.The 0 μmol·L-1treatment was regarded as control.

    The titled compounds were mixed with 40 mL PDA in 50 mL centrifuge tubes at each concentration,divided into three Petri dishes,and allowed to solidify.Then dishes were incubated with 4 mm diameter of the fungi culture which was obtained by the hole punch.Then these Petri dishes were cultured at 28°C for four days.The diameter of fungi growth was for measuring the antifungal activities.All procedures of the above were repeated three times.

    2.5 DNA cleavage tests

    Plasmid DNA(pUC 18)was acquired from Takara Biotechnology(Da Lian)Co.Ltd.Aliquots of plasmid DNA(0.06 μg·μL-1)was mixed with a series of concentrations of the three compounds from 0 to 0.8 μmol·L-1.The mixtures were mixed in the same sequence,with plasmids being added first,followed by the titled three compounds and H2O which was used to replenish the volume in the control.Then,those mixtures were incubated in a DK-8D Thermostatic water bath for 150 min at 37°C.

    Table 1 Crystallographic data for compounds 1-3

    The cleavage reaction could be monitored by agarose gel electrophoresis(AGE).Agarose was purchased from Promega Co.(Germany).Gel electrophoresis experiments were worked out with plasmid DNA,in 0.8%agarose solution,at 100 V 40 min using TAE(tris-acetate-EDTA)buffer(45 mmol·L-1Tris(tris(hydroxymethyl)aminomethane),1 mmol·L-1EDTA(ethylene diamine tetraacetic acid),pH 7.44).The cleavage reactions were terminated by the addition of EDTA and bromphenol blue.The plasmid DNA was stained with 1 μL·mL-1gold view.The cleavage products were analyzed by Gel Doc XR gel documentation and analysis system(Bio-rad).

    2.6 Absorption peak of DNA displacement tests

    This part was performed by absorption spectral titration,33keeping the concentration of DNA(Salmon sperm)constant while varying the title compound concentration.The displacement was measured at 260 nm HALO DB-30 UV-Vis spectrophotometer(Dynamica).The solution of the compound was dropwise added into 3 mL salmon sperm DNA(50 μg·mL-1),and the mixture solution was monitored by UV-Vis spectrum.

    3 Results and discussion

    3.1 Crystal structure analysis

    Over the past few decades,the metal-triazole-based materials have attracted tremendous attention.Undoubtedly,hydrothermal synthesis provides a convenient method for preparation of such composite materials,allowing more routine structural characterization by single crystal X-ray diffraction.34,35The structures of 1-3 were determined using single crystal X-ray diffraction.1-3 crystallize in space groups P2(1)/c,P2(1)/n,P2(1)/n,respectively.

    In compound 1,the crystallographically unique copper(II)atom adopts a distorted octahedral coordination sphere,with four carboxylate O atoms from the different carboxylate groups,bidentate coordination in the equatorial plane,and two N atoms from triazoles in the axial positions(Fig.1(a)).As shown in Fig.1(b),each copper(II)atom coordinates with four ligands,and each ligand coordinates to two Cu ions.As a bridging ligand,triazole N atoms and carboxylate O atoms are involved in coordination with copper(II)to form an infinite one-dimensional(1D)Z-shaped double-chain.

    Compounds 2 and 3 have the same structure(Fig.2(a,b)).Hence,only the structure of 2 is described in detail.Single-crystal structure analysis shows a three-dimensional(3D)extended high density framework based on ligand and metal salts building blocks.Each nickel(II)center adopts a distorted octahedral coordination sphere,which is occupied by two O atoms from the coordinated water molecules and two carboxylate O atoms from the different carboxylate groups in the equatorial plane.The coordination sphere is completed by two N atoms from triazoles occupying the axial positions(Fig.2(a)).Anotable feature for the difference between compounds 1 and 2 is that carboxylate group of 2 is monodentate coordination.As shown in Fig.2(c),each nickel(II)atom coordinates with four ligands,and each ligand coordinates to two nickel(II)ions.Like compound 1,as a bridging ligand,the ligand takes end to end coordination modes with the metal ions and forming an infinite 1D Z-shaped double-chain.

    There are two guest water molecules in each coordination unit(Fig.2(a)),and each guest water molecule connects to three adjacent chains through hydrogen bonds.As shown in Fig.2(d),the hydrogen bond systems make the whole framework into a network structure.The O…H―O distance is 0.1904 nm and 0.1928 nm,N…H―O distance is 0.2052 nm.In this case,these 1D chains are linked together by such interchain hydrogen bond systems into a 3D framework(Fig.2(e)).

    3.2 X-ray powder diffraction and thermal analyses

    As shown in the Fig.3,X-ray powder diffraction patterns of the samples of 1-3 are quite similar to the simulated data of the crystal structure.

    Compounds 1-3 are air stable,the typical TG curves for the crystal samples of 1-3 were performed between room temperature up to 1000 °C at a heating rate of 10 °C·min-1under nitrogen atmosphere.The polymers are thermally stable up to 285.2,57.8,57.6°C for 1-3,respectively.In the TG curve of 1 shown in Fig.4,with increasing temperature,the whole framework of the compound collapses with a huge mass loss of 42.21%.Thermogravimetric analyses reveal that compounds 2 and 3 have a similar thermal decomposition behavior due to that they possess the same polymeric motif.2 remains stable up to 57.8°C and then undergoes one-step mass loss of 14.2%from 57.8 to 103.4°C,attributing to the loss of the crystal water molecules and the coordinated water molecules.The dehydration substance shows great stability before 339.3°C and then experiences a mass loss.Following that,the intermediates of 1-3 are slowly decomposed,and do not form stable compounds until 1000°C.

    3.3 Photoluminescent property

    The solid-state photoluminescent properties of ligand and their polymeric compounds 1-3 were investigated at room temperature.The excitation bands(λex)of the three compounds and the ligand are at about 362nm for 1,336nm for 2,373nm for 3,359 nm for the ligand,respectively(Fig.S2(see Supporting Information)and Table 2).As indicated in Fig.5,in the solid state,all compounds and the ligand in this study exhibit strong emission in high energy region.There are two intense fluorescent emission bands(λem)at 421,463 nm for 1,419,457 nm for 2,421,481 nm for 3,respectively(Table 2).The emissions bands of 1-3 and the ligand at about 421 nm show that the nature of ligand plays an important role in the photoluminescence of coordination compounds.The maximum emission of compounds 1-3 excited at discrepancy wavelengths would be attributed to dual effects of the terminal coordination water molecules and the coordination environment around Cu(II).The luminescence of compounds 1-3 may be ascribed to an intraligand phosphorescent emission and ligand-to-metal charge transfer(LMCT).36

    3.4 UV-Vis spectra of the ligand and the compounds

    Fig.1 (a)Coordination unit of compound 1 and(b)1D Z-shaped double-chain

    Fig.2 (a,b)Central atom coordination configurations of 2 and 3,(c)Z-shaped double-chains in 2,and(d,e)hydrogen bond systems in 2 and the 3D framework

    Fig.3 X-ray powder diffraction patterns of 1-3

    UV-Vis spectra of the ligand and the compounds could be reliably recorded over the full range.Compared to UV-Vis spectrum of the ligand,little changes in the wavelengths of absorption maxima were observed in those of the corresponding compounds(Fig.S3(see Supporting Information)and Table 3),indicating that the compounds in solvated molecule state occur in dimethyl sulfoxide(DMSO).

    3.5 Solubility and molar conductivity of the compounds

    All of the three compounds are insoluble in water and methanol,carbon tetrachloride,chloroform,and acetonitrile,while moderately soluble(50 mg/100 mL solvent)in dimethylformamide(DMF)and DMSO.The solid state compounds are fairly stable in air so as to allow physical measurements.Molar conductivities on those compounds fall in the expected range for nonelectrolytes,37,38as shown in Table 3.

    3.6 Antifungal activities of compounds

    Fig.4 TG curves of compounds 1-3

    Table 2 Photoluminescent properties of the ligand and compounds 1-3 in the solid state

    According to the results and analyses,the three compounds show a degree of antifungal efficacy(Fig.6 and Table S2(see Supporting Information)).Compound 1 presents the best antifungal capacity among the three compounds.It is worth mentioning that at 120 μmol·L-1antifungal percentage of compound 1 is 73.5%against Fusarium graminearum,whereas compounds 2 and 3 are only 52.2%and 50.0%,repectively(Table S3(see Supporting Information)).Through our calculation,compound 1 always shows a higher antifungal percentage than the other two compounds on all the five fungi.It means that compound 1 has a decent antifungal activity.

    Fig.5 Emission spectra of the ligand and compounds in the solid state at ambient temperature

    Table 3 Molar conductivities and UV-Vis data for the ligand and compounds in dimethyl sulfoxide(DMSO)solvent at room temperature

    The five closely agriculture related fungi show the different sensitivity to the three titled compounds treatment.Vasa mali and Alternaria alternate are much more sensitive than the other three fungi.Data reveal that at the concentration of 160 μmol·L-1the antifungal percentages are almost high to 96.9%on Vasa mali and 94.6%on Alternaria alternate(Table S3(see Supporting Information)).

    3.7 DNA cleavage of compounds

    Fig.6 Virulence regression curves of three compounds against on five fungi

    Different DNAshapes lead to different moving rates in AGE.39For instance,the intact supercoil form(Form I)will exhibit relatively fast migration when circular plasmid DNA is subjected to AGE.40If cleavage occurs on one strand,supercoil form DNAwill relax to produce a slower-migrating open circular form(Form II).If both strands are cleaved,a linear form DNA(Form III)will be generated and its migration is between the intact supercoil form and open circular form.41Since the plasmid DNA migration pattern under AGE condition is:supercoil>linear>open circular,42that is,F(xiàn)orm I>Form III>Form II.Hence,the cleavages obtained by the titled compounds could be carried out and analyzed byAGE.43

    As the images after AGE of solutions in different combinations show,the compounds could degrade plasmid DNA(pUC 18).With increasing concentration of compounds,the amount of supercoil(Form I)DNA diminishes gradually.In Fig.7(a),F(xiàn)orm I vanishes gradually with the increasing concentration of compound 1,whereas the amount of Form II and Form III begins to increase.At 0.06 μmol·L-1(Lane 4),F(xiàn)orm I is cut into Form II and Form III thoroughly and Form III has a significant increase compared to Lanes 2 and 3.Compound 1 promotes complete degradation of plasmid DNAat the concentration of 0.08 μmol·L-1(Lane 5).

    Fig.7 Agarose gel electrophoresis patterns for the cleavage of plasmid DNAby compounds

    As for compound 2 at 0.08 μmol·L-1,there still are open circular and linear forms but the supercoil isabsent(Fig.7(b)).All the forms are present at 0.06 μmol·L-1,whereas compound 1 is not.There is no significant difference between compounds 2 and 3 on proportions of plasmid DNA forms.Compounds 2 and 3 almost present an identical pattern on DNA cleavage.With increasing concentration of compounds 2 and 3(Fig.7(b)and Fig.7(c)),the amount of Form I of plasmid DNA diminishes gradually.At 0.08μmol·L-1,both compounds can change Form I into Form II and III completely.

    3.8 Absorption peak of DNA displacement

    Fig.8 Absorption spectra of the compounds upon the plasmid DNA

    To explore the interaction pattern between the titled compounds and plasmid DNA,the absorption peak of DNAdisplacement tests are also performed.The intrinsic absorption peak of DNAis at 260 nm.If the compounds intercalate into DNA,the unique structure of DNA will be changed,and the absorption peak will move.In our tests,as shown in Fig.8,the absorbance of DNA at 260 nm shows a remarkable decreasing tendency with increasing the concentration of the compounds.In test concentration,the endpoint of compound 1 is 0.33 at 260 nm while those of the other compounds are around 0.47.The decreased absorbance indicates that the compounds change DNA double-helix structure,which may be elucidated as the intercalation of the compounds between the base pairs of DNA.44,45Among the three compounds,compound 1 presents the lowest absorbance at 260 nm,showing that the more base pairs are intercalated by 1 compared to the others.46

    The antifungal activities of compounds exhibit strong antifungal efficacy,following the order of 1>3≥2.Significantly,further investigations on DNA cleavage experiments reveal that such compounds show different intercalation activities.Notably,1 had an obviously higher inhibitory rate than other compounds,which is related with its DNAcleavage activities.Compared with compounds 2 and 3,compound 1 demonstrates an infinite 1D double-chain without interchain interaction.The better cleavage properties of the compound 1 may be attributed to the simple structure,which means that supramolecular interaction decreases the ability of the compounds to intercalate into DNA,and further influences the DNA cleavage activities.Although 2 and 3 show the isomorphous structure,their DNA cleavage activities are not exactly the same.The difference reveals that metal ion also affects the intercalation ability.As noticed,Cu(II)compounds have been the theme aimed at establishing the presumed synergy between the Cu(II)ion and the drug.47-50In conclusion,the cooperative effect of the supramolecular interaction and metal ions results in DNA cleavage activities.

    4 Conclusions

    In the present work,three transition metal compounds 1-3 with 4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid have been hydrothermally synthesized.Single-crystal X-ray diffraction analysis revealed that compound 1 features a 1D chain,while 2 and 3 exhibit 3D network structure.The detailed optical property investigations reveal that:1-3 exhibit remarkable luminescence emissions,which may be ascribed to the cooperative effects of intraligand emission and ligand-to-metal charge transfer(LMCT).Antifungal activities analyses show that compound 1 has the greatest antifungal efficacy compared to 2 and 3 on the five fungi.Photographs taken after agarose gel electrophoresis demonstrate the three titled compounds could cause plasmid DNAcleavage.In order to evaluate the effect of compounds concentration increase and research the pattern of cleavage,we studied different combination of the plasmid DNA(pUC 18)and compounds.The addition of increasing amount of compounds causes a significant increase in the DNA breakage.It is understandable that the three compounds can beak the DNAof fungi even cause its degradation.Although the three compounds can break the DNA,their breakage situations are not same.Among our presupposed concentrations compounds 2 and 3 can promote the conversion of DNA from Form I to Forms II and III,whereas compound 1 can fully degrade DNAat 0.08 μmol·L-1.This means that compound 1 has the highefficacy capacity on DNA breakage and that is the reason for compound 1 to present such high antifungal efficacy.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Yaghi,O.M.;Davis,C.E.;Li,G.M.;Li,H.L.J.Am.Chem.Soc.1997,119,2861.doi:10.1021/ja9639473

    (2) Seo,J.S.;Whang,D.;Lee,H.;Jun,S.I.;Oh,J.;Jeon,Y.J.;Kim,K.Nature 2000,404,982.doi:10.1038/35010088

    (3) Datta,A.;Karan,N.K.;Mitra,S.;Gramlich,V.J.J.Chem.Cryst.2003,33,579.doi:10.1023/A:1024299005045

    (4) Gillon,B.;Mathoniere,C.;Ruiz,E.;Alvarez,S.;Cousson,A.;Kahn,T.M.J.Am.Chem.Soc.2002,124,14433.doi:10.1021/ja020188h

    (5) Kozlov,I.A.;Kubareva,E.A.;Ivanovskaya,M.G.Antisense Nucleic A 1997,7,279.doi:10.1089/oli.1.1997.7.279

    (6) Purmal,A.A.;Shabarv,T.V.;Gumport,R.I.Nucleic Acids Res.1998,20,3713.

    (7)Trawick,B.N.;Daniher,A.T.;Bashkin,J.K.Chem.Rev.1998,98,939.doi:10.1021/cr960422k

    (8) Budrìa,J.G.;Raugei,S.;Cavallo,L.J.Inorg.Chem.2006,22,1732.

    (9) Liu,J.;Mei,W.J.;Xu,A.W.;Shi,S.;Tan,C.P.;Ji,L.N.Antivir.Res.2004,62,65.doi:10.1016/j.antiviral.2003.12.004

    (10) Chabner,B.A.;Roberts,T.G.Nat.Rev.Cancer 2005,5,65.

    (11) Chen,L.M.;Liu,J.;Chen,J.C.;Shi,S.J.Mol.Struct.2008,881,156.doi:10.1016/j.molstruc.2007.09.010

    (12)Li,V.S.;Choi,D.;Wang,Z.;Jimenez,L.S.;Tang,M.S.;Kohn,H.J.Am.Chem.Soc.1996,18,2326.

    (13)Zuber,G.;James,C.Q.;Hecht,S.M.J.Am.Chem.Soc.1998,120,9368.doi:10.1021/ja981937r

    (14) Hecht,S.M.J.Nat.Prod.2000,63,158.doi:10.1021/np990549f

    (15) Liu,J.G.;Ye,B.H.;Li,H.;Zhen,Q.X.;Ji,L.N.;Fu,Y.H.J.Inorg.Biochem.1999,76,265.doi:10.1016/S0162-0134(99)00154-3

    (16) Strekowski,L.;Wilson,B.Mutat.Res.2007,623,3.doi:10.1016/j.mrfmmm.2007.03.008

    (17) Zhou,C.Y.;Zhao,J.;Wu,Y.B.;Yin,C.X.;Yang,P.J.Inorg.Biochem.2007,101,10.doi:10.1016/j.jinorgbio.2006.07.011

    (18) Gao,F(xiàn).;Chao,H.;Zhou,F(xiàn).;Yuan,Y.X.;Peng,B.;Ji,L.N.J.Inorg.Biochem.2006,100,1487.doi:10.1016/j.jinorgbio.2006.04.008

    (19) Cater,D.C.;Ho,J.X.Adv.Protein Chem.1994,45,153.doi:10.1016/S0065-3233(08)60640-3

    (20) He,X.M.;Cater,D.C.Nature 1992,358,209.doi:10.1038/358209a0

    (21) Curry,S.;Brick,P.;Frank,N.P.Biochim.Biophys.A 1999,1141,131.

    (22)Shen,X.C.;Yuan,Q.;Liang,H.Sci.Chin.Ser.B-Chem.2003,46,387.doi:10.1360/02yb0062

    (23)Wang,Y.M.;Song,Y.;Kong,D.L.Chin.Sci.Bull.2005,50,1839.doi:10.1360/982004-405

    (24) Mehra,R.K.;Tran,K.;Scott,G.W.;Mulchandani,P.;Saini,S.S.J.Inorg.Biochem.1996,61,125.doi:10.1016/0162-0134(95)00046-1

    (25) Koh,L.L.;Ranford,J.O.;Robinson,W.T.;Swensson,J.O.;Tan,A.L.;Wu,D.Inorg.Chem.1996,35,6466.doi:10.1021/ic9606441

    (26)Zhang,P.Z.;Fu,Q.Y.;Chi,R.X.;Yang,C.X.;Xu,J.G.J.Zhejiang Univ.Sci.Technol.2003,15,143.

    (27) Xiong,P.P.;Li,J.;Bu,H.Y.;Wei,Q.;Zhang,R.L.;Chen,S.P.J.Solid State Chem.2014,215,292.doi:org/10.1016/j.jssc.2014.04.012

    (28)Zhao,X.X.;Ma,J.P.;Dong,Y.B.;Huang,R.Q.Cryst.Growth Des.2007,7,1058.doi:10.1021/cg060583+

    (29)Qin,J.;Ma,J.P.;Liu,L.L.;Huang,R.Q.;Dong,Y.B.Acta Cryst.2009,65,66.

    (30) Sheldrick,G.M.SHELXS-97,Program for Solution of Crystal Structures;University of G?ttingen:G?ttingen,Germany,1990.

    (31) Sheldrick,G.M.SHELXK-97,Program for Refinement of Crystal Structures;University of G?ttingen:G?ttingen,Germany,1997.

    (32) Mann,A.;Banso,A.;Clifford,L.C.;Tan.J.Health.Res.2008,10,34.

    (33)Li,Y.T.;Liu,Z.Q.;Wu,Z.Y.J.Inorg.Biochem.2008,102,1790.doi:org/10.1016/j.jinorgbio.2008.05.011

    (34)Zhang,J.P.;Chen,X.M.Chem.Commun.2006,1689.

    (35) Ouellette,W.;Hudson,B.S.;Zubieta,J.Inorg.Chem.2007,46,4887.doi:10.1021/ic062269a

    (36) Zheng,L.L.;Li,H.X.;Leng,J.D.;Wang,J.;Tong,M.L.Eur.J.Inorg.Chem.2008,213.

    (37)AbouEl,E.S.;El,S.A.;Emam,S.M.;Ell,S.M.A.Spectrochim.Acta Part A 2008,71,421.doi:10.1016/j.saa.2007.12.031

    (38) Valent,A.;Melnik,M.;Hudecova,D.;Dudova,B.;Kivekas,R.;Sundberg,M.R.Inorg.Chim.Acta 2002,340,15.doi:10.1016/S0020-1693(02)01062-9

    (39)Song,Y.M.;Wu,Q.;Yang,P.J.;Luan,N.N.J.Inorg.Biochem.2006,100,1685.doi:10.1016/j.jinorgbio.2006.06.001

    (40) Zavitsanos,K.;Nunes,A.M.;Malandrinos,G.;Hadjiliadis,N.J.Inorg.Biochem.2011,105,1329.doi:10.1016/j.jinorgbio.2011.07.014

    (41) Barton,J.K.;Raphael,A.L.J.Am.Chem.Soc.1984,106,2466.doi:10.1021/ja00320a058

    (42) Scheppler,J.A.;Cassin,P.E.;Gambier,R.M.Biotechnology Explorations:Applying the Fundamentals;ASM Press:Washington DC,2000.

    (43) Xi,P.X.;Xu,Z.H.;Chen,F(xiàn).J.;Zeng,Z.Z.J.Inorg.Biochem.2009,103,210.doi:10.1016/j.jinorgbio.2008.10.010

    (44) Li,Y.T.;Liu,Z.Q.;Wu,Z.Y.J.Inorg.Biochem.2008,102,1790.doi:10.1016/j.jinorgbio.2008.05.011

    (45) Rajendiran,V.;Karthik,R.;Palaniandavar,M.;Evans,S.H.;Periasamy,V.S.;Akbarsha,M.A.;Srinag,B.S.;Krishnamurthy,H.Inorg.Chem.2007,46,8208.doi:10.1021/ic700755p

    (46)Khoramdareh,Z.K.;Yazdi,S.A.;Spingler,H.B.;Khandar,A.A.Inorg.Chim.Acta 2014,415.7.

    (47)Jiang,J.;Tang,X.L.;Dou,W.;Zhang,H.H.;Liu,W.S.;Wang,C.X.;Zheng,J.R.J.Inorg.Biochem.2010,104,583.doi:10.1016/j.jinorgbio.2010.01.011

    (48)Melnik,M.Coord.Chem.Rev.1982,42,259.doi:10.1016/S0010-8545(00)80537-8

    (49) Kato,M.;Muto,Y.Coord.Chem.Rev.1988,92,45.doi:10.1016/0010-8545(88)85005-7

    (50)Weder,J.E.;Dillon,C.T.;Hambley,T.W.;Kennedy,B.J.;Lay,P.A.;Biffin,J.R.;Regtop,H.L.;Davies,N.M.Coord.Chem.Rev.2002,232,95.doi:10.1016/S0010-8545(02)00086-3

    猜你喜歡
    西北大學(xué)三唑教育部
    西北大學(xué)木香文學(xué)社
    《西北大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    《我們》、《疑惑》
    西北大學(xué)博物館
    教育部召開(kāi)座談會(huì)推進(jìn)一流大學(xué)和一流學(xué)科建設(shè)
    新課程研究(2016年1期)2016-12-01 05:52:14
    不同濃度三唑錫懸浮劑防治效果研究
    教育部:高考地方性加分項(xiàng)目2018年減至35個(gè)
    三組分反應(yīng)高效合成1,2,4-三唑烷類(lèi)化合物
    我校兩教育部重大課題攻關(guān)項(xiàng)目開(kāi)題
    1,1′-二(硝氧甲基)-3,3′-二硝基-5,5′-聯(lián)-1,2,4-三唑的合成及性能
    久久人人爽av亚洲精品天堂| 正在播放国产对白刺激| av国产精品久久久久影院| 午夜福利影视在线免费观看| 国产深夜福利视频在线观看| 免费高清视频大片| 在线观看午夜福利视频| 中文字幕最新亚洲高清| 在线观看66精品国产| 久久国产精品男人的天堂亚洲| 色综合站精品国产| 中文欧美无线码| 丰满人妻熟妇乱又伦精品不卡| 高清欧美精品videossex| 成人国产一区最新在线观看| 久久久久久久午夜电影 | 久久精品91蜜桃| 国产高清激情床上av| 性色av乱码一区二区三区2| 热99re8久久精品国产| 中文字幕av电影在线播放| 色哟哟哟哟哟哟| 99热只有精品国产| 91国产中文字幕| 正在播放国产对白刺激| 久久婷婷成人综合色麻豆| 精品乱码久久久久久99久播| 一区在线观看完整版| 久久热在线av| 精品一区二区三区视频在线观看免费 | 91成人精品电影| 90打野战视频偷拍视频| 精品无人区乱码1区二区| 国产精品野战在线观看 | 久久久久国产一级毛片高清牌| 黑人操中国人逼视频| 韩国精品一区二区三区| 久久中文字幕一级| 婷婷丁香在线五月| 久久久久国产精品人妻aⅴ院| 亚洲国产精品999在线| 亚洲九九香蕉| 亚洲av日韩精品久久久久久密| 一级毛片女人18水好多| 久久人人爽av亚洲精品天堂| 国产精品久久久久成人av| 曰老女人黄片| 欧美性长视频在线观看| 欧美国产精品va在线观看不卡| 亚洲五月色婷婷综合| 国产精品免费视频内射| 动漫黄色视频在线观看| 一二三四在线观看免费中文在| 久久香蕉精品热| 妹子高潮喷水视频| 欧美日本亚洲视频在线播放| 国产一卡二卡三卡精品| 国产免费现黄频在线看| 老鸭窝网址在线观看| 极品人妻少妇av视频| 丝袜美足系列| 国产又爽黄色视频| www.www免费av| 成人影院久久| 国产99白浆流出| 欧美黑人欧美精品刺激| 三级毛片av免费| 国产成人精品久久二区二区免费| 国产成人系列免费观看| 中国美女看黄片| 级片在线观看| 国产欧美日韩一区二区三区在线| 亚洲av电影在线进入| 操美女的视频在线观看| 9热在线视频观看99| 精品人妻在线不人妻| а√天堂www在线а√下载| 久久精品人人爽人人爽视色| 精品免费久久久久久久清纯| 欧美成狂野欧美在线观看| 桃色一区二区三区在线观看| 最新美女视频免费是黄的| 亚洲人成网站在线播放欧美日韩| 国产91精品成人一区二区三区| 黄片大片在线免费观看| 色播在线永久视频| 精品一品国产午夜福利视频| 久久天躁狠狠躁夜夜2o2o| 校园春色视频在线观看| 亚洲精品在线美女| 极品教师在线免费播放| 自拍欧美九色日韩亚洲蝌蚪91| 欧美不卡视频在线免费观看 | 国产精品亚洲av一区麻豆| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 一级a爱片免费观看的视频| 亚洲av熟女| 黑人猛操日本美女一级片| 黄网站色视频无遮挡免费观看| 亚洲久久久国产精品| 精品熟女少妇八av免费久了| 欧美精品啪啪一区二区三区| 国产蜜桃级精品一区二区三区| 国产亚洲精品久久久久5区| 国产熟女午夜一区二区三区| 国产在线观看jvid| 国产主播在线观看一区二区| 国产又色又爽无遮挡免费看| 久久精品亚洲精品国产色婷小说| 国产亚洲av高清不卡| ponron亚洲| 日本欧美视频一区| 长腿黑丝高跟| 亚洲国产欧美一区二区综合| 十分钟在线观看高清视频www| 50天的宝宝边吃奶边哭怎么回事| 久久国产乱子伦精品免费另类| 大型av网站在线播放| 国产成人啪精品午夜网站| 亚洲三区欧美一区| 国产av精品麻豆| 欧美一级毛片孕妇| 色哟哟哟哟哟哟| 精品久久久久久久毛片微露脸| 老司机午夜福利在线观看视频| 一二三四在线观看免费中文在| 国产精品二区激情视频| 亚洲成国产人片在线观看| 欧美日韩精品网址| 长腿黑丝高跟| 成人三级做爰电影| 超碰97精品在线观看| 女生性感内裤真人,穿戴方法视频| 99久久精品国产亚洲精品| 色婷婷久久久亚洲欧美| 亚洲熟妇中文字幕五十中出 | 国产无遮挡羞羞视频在线观看| 亚洲精品美女久久久久99蜜臀| 视频区图区小说| 中文字幕精品免费在线观看视频| 宅男免费午夜| 国产亚洲欧美98| 午夜激情av网站| 亚洲久久久国产精品| 免费不卡黄色视频| 亚洲欧美激情在线| 精品久久久久久久毛片微露脸| 人妻久久中文字幕网| 国产视频一区二区在线看| 国产黄a三级三级三级人| 亚洲一区高清亚洲精品| 欧美成人午夜精品| 久久中文字幕一级| 黄色a级毛片大全视频| 国产av在哪里看| av网站免费在线观看视频| 久久久久久久久免费视频了| 日本欧美视频一区| 成年人黄色毛片网站| netflix在线观看网站| 男女下面进入的视频免费午夜 | www.999成人在线观看| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 亚洲中文av在线| 婷婷丁香在线五月| 精品电影一区二区在线| 一级,二级,三级黄色视频| 欧美最黄视频在线播放免费 | 美女 人体艺术 gogo| 欧美精品啪啪一区二区三区| 国产三级黄色录像| 大码成人一级视频| 男人舔女人的私密视频| 欧美日韩乱码在线| 成人手机av| 午夜福利,免费看| 亚洲国产精品一区二区三区在线| 亚洲一区二区三区欧美精品| bbb黄色大片| 婷婷丁香在线五月| 色婷婷久久久亚洲欧美| 999久久久国产精品视频| 男女床上黄色一级片免费看| 日韩av在线大香蕉| 亚洲欧美激情综合另类| 久久国产精品人妻蜜桃| 国产精品乱码一区二三区的特点 | 一区二区三区激情视频| 国产蜜桃级精品一区二区三区| 日韩人妻精品一区2区三区| 精品久久久久久成人av| 免费日韩欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品av久久久久免费| 热99re8久久精品国产| 男男h啪啪无遮挡| 久久欧美精品欧美久久欧美| 成人免费观看视频高清| 色婷婷av一区二区三区视频| 免费搜索国产男女视频| 欧美人与性动交α欧美精品济南到| 在线免费观看的www视频| 久久精品成人免费网站| 精品日产1卡2卡| 欧美精品啪啪一区二区三区| 在线视频色国产色| 欧美激情高清一区二区三区| 两个人看的免费小视频| 亚洲国产看品久久| 日本vs欧美在线观看视频| 又紧又爽又黄一区二区| 日韩视频一区二区在线观看| xxxhd国产人妻xxx| 欧美午夜高清在线| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 欧美成狂野欧美在线观看| 国产精品久久久久成人av| 亚洲熟妇中文字幕五十中出 | 久久国产乱子伦精品免费另类| 国产色视频综合| 日韩国内少妇激情av| 天堂动漫精品| 久久影院123| 久久久国产欧美日韩av| bbb黄色大片| 麻豆成人av在线观看| 国产精品av久久久久免费| xxx96com| 国产又色又爽无遮挡免费看| 成人国语在线视频| 韩国精品一区二区三区| 一区二区三区精品91| 亚洲自偷自拍图片 自拍| 长腿黑丝高跟| 两个人看的免费小视频| 亚洲第一av免费看| 男人操女人黄网站| 欧美最黄视频在线播放免费 | 日本三级黄在线观看| 日日爽夜夜爽网站| 妹子高潮喷水视频| 老汉色av国产亚洲站长工具| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美最黄视频在线播放免费 | 国产一区二区三区在线臀色熟女 | 国产野战对白在线观看| 国产伦人伦偷精品视频| 精品久久久久久成人av| 一级a爱视频在线免费观看| 精品国产美女av久久久久小说| 91国产中文字幕| 一级毛片高清免费大全| 亚洲国产精品999在线| 久久亚洲真实| 欧美大码av| 天天影视国产精品| 操出白浆在线播放| 亚洲一区二区三区色噜噜 | 亚洲一区二区三区不卡视频| 国产免费现黄频在线看| 精品国内亚洲2022精品成人| 日韩欧美一区视频在线观看| 可以免费在线观看a视频的电影网站| 午夜视频精品福利| 制服诱惑二区| 亚洲精品在线美女| 久久久久久久久久久久大奶| 色老头精品视频在线观看| 精品久久久久久久毛片微露脸| 黄色a级毛片大全视频| 一区二区日韩欧美中文字幕| 国产亚洲欧美98| 欧美一区二区精品小视频在线| 18禁裸乳无遮挡免费网站照片 | 精品久久久久久成人av| 欧美在线黄色| 国产单亲对白刺激| 亚洲成人精品中文字幕电影 | 在线观看www视频免费| 国产成人精品久久二区二区91| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 91大片在线观看| 一区福利在线观看| 国产精品久久电影中文字幕| 国产又色又爽无遮挡免费看| 一级片'在线观看视频| 久久久久亚洲av毛片大全| 国产av又大| 国产亚洲av高清不卡| 大型av网站在线播放| 国产亚洲精品综合一区在线观看 | 欧美国产精品va在线观看不卡| 久久久久久大精品| 中文字幕高清在线视频| videosex国产| 成人精品一区二区免费| 国产一区二区激情短视频| 成人18禁高潮啪啪吃奶动态图| 国产又色又爽无遮挡免费看| 成人国语在线视频| 欧美av亚洲av综合av国产av| 日韩一卡2卡3卡4卡2021年| 日本黄色视频三级网站网址| 一边摸一边抽搐一进一小说| 亚洲专区国产一区二区| 18美女黄网站色大片免费观看| 女性被躁到高潮视频| 俄罗斯特黄特色一大片| 亚洲av成人一区二区三| 亚洲性夜色夜夜综合| 一级毛片精品| videosex国产| 精品卡一卡二卡四卡免费| 国产黄a三级三级三级人| 亚洲在线自拍视频| 天堂动漫精品| 亚洲 欧美一区二区三区| 99热只有精品国产| 50天的宝宝边吃奶边哭怎么回事| 日本精品一区二区三区蜜桃| 国产aⅴ精品一区二区三区波| 国产主播在线观看一区二区| 成人18禁在线播放| 久久天堂一区二区三区四区| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 成人三级黄色视频| 欧美成人免费av一区二区三区| 免费看a级黄色片| 视频区图区小说| ponron亚洲| 一级作爱视频免费观看| 男人舔女人的私密视频| 日本wwww免费看| 三上悠亚av全集在线观看| 69精品国产乱码久久久| 午夜精品国产一区二区电影| 精品国产一区二区久久| 午夜免费成人在线视频| 十分钟在线观看高清视频www| 自线自在国产av| 日韩有码中文字幕| 黑人巨大精品欧美一区二区蜜桃| 国产精品美女特级片免费视频播放器 | 波多野结衣高清无吗| 免费在线观看黄色视频的| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 每晚都被弄得嗷嗷叫到高潮| 国产极品粉嫩免费观看在线| 神马国产精品三级电影在线观看 | 国产精品自产拍在线观看55亚洲| 香蕉久久夜色| а√天堂www在线а√下载| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 又黄又粗又硬又大视频| 一夜夜www| 不卡av一区二区三区| 黄频高清免费视频| 亚洲av五月六月丁香网| 在线观看午夜福利视频| 亚洲精品国产区一区二| 久99久视频精品免费| 久久久久久人人人人人| 极品人妻少妇av视频| 亚洲少妇的诱惑av| 91麻豆av在线| avwww免费| 欧美中文综合在线视频| 亚洲成人国产一区在线观看| xxxhd国产人妻xxx| 久久久久久大精品| 美国免费a级毛片| 精品国产乱码久久久久久男人| 中文字幕精品免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看亚洲国产| 美女大奶头视频| 精品日产1卡2卡| 日韩精品免费视频一区二区三区| 高清在线国产一区| 亚洲精品美女久久久久99蜜臀| 亚洲 欧美一区二区三区| 女生性感内裤真人,穿戴方法视频| 久久国产亚洲av麻豆专区| 视频区欧美日本亚洲| 亚洲av片天天在线观看| 免费女性裸体啪啪无遮挡网站| 日韩国内少妇激情av| 99国产精品一区二区蜜桃av| 亚洲五月色婷婷综合| 大香蕉久久成人网| 国产精品综合久久久久久久免费 | 午夜成年电影在线免费观看| 99热只有精品国产| 在线观看免费高清a一片| 一进一出好大好爽视频| 成年女人毛片免费观看观看9| 纯流量卡能插随身wifi吗| 国产精品久久视频播放| 亚洲专区字幕在线| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美国产一区二区入口| 久久久久九九精品影院| www日本在线高清视频| 色综合站精品国产| 9色porny在线观看| 在线观看一区二区三区| 色婷婷av一区二区三区视频| 成人av一区二区三区在线看| 久久久久国内视频| 国产精品久久久久成人av| 国产精品日韩av在线免费观看 | 色综合婷婷激情| www.999成人在线观看| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| av片东京热男人的天堂| 999久久久国产精品视频| 中文欧美无线码| 久久香蕉精品热| 一边摸一边抽搐一进一小说| 12—13女人毛片做爰片一| 精品国产一区二区久久| 啦啦啦免费观看视频1| 日本三级黄在线观看| 亚洲av美国av| 色播在线永久视频| 69av精品久久久久久| 亚洲人成网站在线播放欧美日韩| 99热国产这里只有精品6| 国产男靠女视频免费网站| 成年女人毛片免费观看观看9| 日本三级黄在线观看| avwww免费| 级片在线观看| 女性生殖器流出的白浆| www日本在线高清视频| 视频在线观看一区二区三区| 久久久久久人人人人人| 国产单亲对白刺激| 亚洲视频免费观看视频| 国产精品野战在线观看 | 中文亚洲av片在线观看爽| 一区在线观看完整版| 午夜免费成人在线视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 国产熟女xx| 交换朋友夫妻互换小说| 欧美日韩黄片免| 精品国产一区二区久久| 日韩精品免费视频一区二区三区| 午夜免费鲁丝| 丝袜美腿诱惑在线| av免费在线观看网站| 久久午夜亚洲精品久久| 国产野战对白在线观看| 久久久久精品国产欧美久久久| 日本黄色日本黄色录像| 国产精品久久久久成人av| 免费看十八禁软件| 伊人久久大香线蕉亚洲五| 久久草成人影院| 亚洲精品一二三| 黄色毛片三级朝国网站| 亚洲一码二码三码区别大吗| 激情视频va一区二区三区| 久久久精品国产亚洲av高清涩受| avwww免费| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩亚洲综合一区二区三区_| 欧美精品亚洲一区二区| 日韩有码中文字幕| 亚洲国产看品久久| 免费在线观看日本一区| 亚洲av第一区精品v没综合| 国产亚洲av高清不卡| 女警被强在线播放| 一区福利在线观看| 窝窝影院91人妻| 日韩欧美免费精品| 亚洲欧美日韩另类电影网站| 午夜老司机福利片| 一区二区日韩欧美中文字幕| 久久 成人 亚洲| 久久精品国产亚洲av高清一级| 日本黄色视频三级网站网址| 女人精品久久久久毛片| 久久中文看片网| 看黄色毛片网站| av网站免费在线观看视频| 99久久久亚洲精品蜜臀av| 首页视频小说图片口味搜索| 午夜免费观看网址| 午夜91福利影院| 免费看十八禁软件| 人人妻,人人澡人人爽秒播| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮到喷水免费观看| 757午夜福利合集在线观看| 青草久久国产| 亚洲国产精品sss在线观看 | 午夜福利一区二区在线看| 久久 成人 亚洲| 日韩av在线大香蕉| 999久久久国产精品视频| 高清av免费在线| 免费高清视频大片| 女性被躁到高潮视频| 国产欧美日韩一区二区精品| 国产xxxxx性猛交| 我的亚洲天堂| 日韩欧美免费精品| 精品一区二区三区视频在线观看免费 | 色综合婷婷激情| 中亚洲国语对白在线视频| 成人国产一区最新在线观看| 丰满人妻熟妇乱又伦精品不卡| 成人免费观看视频高清| 国产精品免费视频内射| 老司机午夜十八禁免费视频| 亚洲精品一二三| 搡老熟女国产l中国老女人| 高清毛片免费观看视频网站 | 日韩有码中文字幕| 久久精品aⅴ一区二区三区四区| 91精品国产国语对白视频| 久久亚洲真实| 神马国产精品三级电影在线观看 | 超碰97精品在线观看| 三上悠亚av全集在线观看| 久久久国产成人免费| 日韩中文字幕欧美一区二区| 欧美成狂野欧美在线观看| 国产精品综合久久久久久久免费 | 黑丝袜美女国产一区| 热99国产精品久久久久久7| 又大又爽又粗| 国产高清视频在线播放一区| 久久草成人影院| 黄片小视频在线播放| 日日爽夜夜爽网站| 天堂中文最新版在线下载| 九色亚洲精品在线播放| 欧美成狂野欧美在线观看| 亚洲精品在线观看二区| 高清av免费在线| 免费在线观看完整版高清| 中文字幕高清在线视频| 久久久久久久精品吃奶| 久久精品91蜜桃| 老司机午夜十八禁免费视频| 在线观看一区二区三区| 91老司机精品| 成在线人永久免费视频| 9热在线视频观看99| 嫁个100分男人电影在线观看| 日韩精品青青久久久久久| 高清av免费在线| 免费在线观看完整版高清| 免费在线观看日本一区| 少妇裸体淫交视频免费看高清 | 自线自在国产av| 黄色片一级片一级黄色片| 欧美av亚洲av综合av国产av| 国产aⅴ精品一区二区三区波| 久久精品人人爽人人爽视色| 日韩精品中文字幕看吧| 丝袜人妻中文字幕| 大型黄色视频在线免费观看| 成人国语在线视频| 在线永久观看黄色视频| 日日爽夜夜爽网站| 99国产精品一区二区蜜桃av| 天堂俺去俺来也www色官网| 69精品国产乱码久久久| 国产野战对白在线观看| 国产av一区在线观看免费| 国产欧美日韩精品亚洲av| 一级毛片高清免费大全| 免费人成视频x8x8入口观看| 色哟哟哟哟哟哟| 久久精品国产99精品国产亚洲性色 | 日日夜夜操网爽| 国产精品av久久久久免费| 成年版毛片免费区| 久99久视频精品免费| 午夜福利欧美成人| 亚洲欧美日韩高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图av天堂| 后天国语完整版免费观看| 亚洲一区二区三区色噜噜 | 亚洲自偷自拍图片 自拍| 又大又爽又粗| 亚洲少妇的诱惑av| 丰满人妻熟妇乱又伦精品不卡| 色综合站精品国产| av免费在线观看网站| 美女 人体艺术 gogo| 国产精品久久久人人做人人爽| 在线观看免费高清a一片| av超薄肉色丝袜交足视频|