• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    4-(1H-1,2,4-三唑-1-亞甲基)苯甲酸過(guò)渡金屬配合物的合成、結(jié)構(gòu)、抑菌活性及DNA 裂解活性

    2014-09-21 08:59:46熊萍萍步懷宇陳三平
    物理化學(xué)學(xué)報(bào) 2014年7期
    關(guān)鍵詞:西北大學(xué)三唑教育部

    李 婕 熊萍萍 步懷宇 陳三平

    (1西北大學(xué)西部資源生物與現(xiàn)代生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,陜西省生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,西安710069;2西北大學(xué)化學(xué)與材料科學(xué)學(xué)院,合成與天然功能分子化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,西安710069)

    1 Introduction

    Over the past decades,many studies on the rational design of polymeric metal-organic frameworks(MOFs)and their potential applications in catalysis,separation,gas storage,and even biological activity caused much interest in the field of inorganic chemistry.1-4DNAcleavage studies would count for much for the evolution of the new therapeutic reagents and DNAprobes,5-8and drug researches suggest that many anticancer agents,antiviral agents,and antiseptic agents take action through binding to DNA.9-14In addition,transition metal compounds can interact covalently or non-covalently with DNA in the mode of intercalation,groove binding,or external electrostatic binding.15-18This inspires growing interest in the study of the biochemical behavior of these compounds including their interactions with DNA and antifungal activity.19-25

    As well-known,triazole derivatives,specifically their corresponding transition metal coordination compounds,have been concerned as a highly effective antifungal fungicide.26In our earlier research on the antifungal activity of copper(II)compounds,novel copper(II)compounds with the ligand(4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid)showed a higher antifungal effect than those of ligand and CuCl2especially compound 1(the antifungal percentage is 72.5%on Fusarium graminearum).Based on our earlier research,27we are interested in exploring the relationships between DNAcleavage and antifungal activity of the transition metal compounds derived from a triazole ligand.

    Hence,we synthesized the ligand(4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid(HL))and the three transition metal compounds(Cu-L,Ni-L,Co-L).The thermal analyses and luminescent properties of the compounds were investigated.Furthermore,comparative study of the interactions of the compounds with plasmid DNA(pUC 18)as well as the related antifungal activities against five agriculture related fungi was experimentally explored.The remarkable DNA cleavage and antifungal activity suggested that the compounds above would have potential utilization for developing new drugs for agricultures.

    2 Experimental

    2.1 Materials and methods

    All of the reagents were purchased and used without further purification.CuCl2·2H2O(99.9%),NiCl2·6H2O(99.9%),CoCl2·6H2O(99.9%),NaN3(>99.5%),KOH(>86%),methanol anhydrous(>99.5%),N,N-dimethylformamide(>99.5%),4-methylbenzoic acid(>99.5%),succinbromimide(>99.5%),benzoyl peroxide(>99.5%),tetrachloromethane(>99.5%),dichloromethane(>99.5%),and 1H-1,2,4-triazole(>99.5%)were purchased fromXi′anChemblossom Pharmaceutical Technology Co.,Ltd.NaOH(97%)was purchased from Sigma-Aldrich.Elemental analyses(C,H,N)were performed on an Elementar Vario EL III analyzer(USA).Infrared(IR)spectra were recorded on a Tensor 27 spectrometer(Bruker Optics,Ettlingen,Germany)as KBr pellets in the range of 400-4000 cm-1.Powder X-ray diffraction(XRD)patterns were measured on a Bruker D8 Advance X-ray powder diffractometer with Cu Kαradiation(λ=0.15405 nm).Ultraviolet(UV)absorption studies were carried out with a Shimadzu UV-2450 spectrophotometer.Fluorescent spectra were measured at room temperature with an Edinburgh FLSP920 fluorescence spectrometer.Thermogravimetric(TG)measurements were performed with a Netrzsch STA 449C apparatus(Germany)under asimulatednitrogenatmospherewithaheatingrateof 10°C·min-1from room temperature to 1000°C.

    2.2 Syntheses

    2.2.1 Preparation of 4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid

    The ligand was synthesized according to the literature procedure.28,29A mixture of 4-methylbenzoic acid(5.44 g,40.0 mmol),succinbromimide(7.12 g,40.0 mmol),benzoyl peroxide(0.10 g,412.0 mmol),and tetrachloromethane(60 mL)were refluxed for 5 h.Cooling to room temperature and washing with tetrachloromethane and distilled water.White solid was obtained by recrystallization from dichloromethane.Subsequently,a mixture of KOH(0.30 g,0.50 mmol),the above products(0.22 g,0.10 mmol),and 1H-1,2,4-triazole(0.07 g,0.10 mmol)was dissolved in distilled water(6 mL)and sealed in a 10 mL Teflon-lined stainless steel autoclave after stirring them for 30 min.The mixture was heated at 90 °C for 72 h and cooled to room temperature at a rate of 5 °C·h-1.Colorless crystals(HL)were formed and washed with distilled water.Yield:91.4%.IR(KBr pellet,cm-1)for HL:3453(b),3119(b),2952(w),2363(w),1914(w),1694(b),1515(s),1433(m),1275(s),1141(s),1011(m),919(m),731(s),677(m)(Fig.S1a(see Supporting Information)).m.p.215.1-215.5°C.

    2.2.2 Preparation of[Cu0.5L]n(1)

    Amixture of HL(20.3 mg,0.10 mmol)and CuCl2·2H2O(17.1 mg,0.10 mmol)was dissolved in distilled H2O(3 mL),Teflonlined stainless reactor at 140 °C for 72 h,cooled to 100 °C at a rate of 5 °C·h-1,and held at this temperature for 10 h.Then,it was cooled to room temperature at the same rate.Purple lump crystals were isolated and washed with distilled water.Yield:45%(based on HL).IR(KBr pellet,cm-1):3455(b),1608(s),1562(m),1371(s),1288(m),1119(m),736(m),674(m)(Fig.S1b).Elemental analyses(%)calculated for C20H16CuN6O4:C 51.29,H 3.41,N 17.95;found:C 51.11,H 3.74,N 17.80.

    2.2.3 Preparation of{[Ni(L)2·(H2O)2]·(H2O)2}n(2)

    A mixture containing HL(20.3 mg,0.10 mmol),NiCl2·6H2O(23.8 mg,0.10 mmol),NaOH(4.0 mg,0.10 mmol),NaN3(12.6 mg,0.20 mmol),were dissolved in the solution of CH3OH/H2O(6 mL)(1:2,V/V),Teflon-lined stainless reactor at 160°C for 10 h,cooled to 100 °C at a rate of 5 °C·h-1,and held at this temperature for 72 h.Then,it was cooled to room temperature at the same rate.The resulting solution was filtered and transfered in a vial for two weeks.Light blue fusiform crystals were formed and washed with EtOH and dried in air.Yield:90%(based on HL).IR(KBr pellet,cm-1):3455(w),1600(s),1555(s),1398(s),1292(m),1138(m),730(m),678(m)(Fig.S1c).Elemental analysis(%)calculated for C20H24NiN6O8:C 44.85,H 4.48,N 15.70;found:C 44.93,H 4.16,N 15.94.

    2.2.4 Preparation of{[Co(L)2·(H2O)2]·(H2O)2}n(3)

    Compound 3 was synthesized by the identical pathway with compound 2 except that NiCl2·6H2O was replaced by CoCl2·6H2O(23.8 mg,0.10 mmol)and pink fusiform crystals were obtained in the mother liquor after it standing for seven days.Yield:90%(based on HL).IR(KBr pellet,cm-1):3455(w),1600(s),1555(s),1398(s),1292(m),1138(m),730(m),678(m)(Fig.S1d).Elemental analysis(%)calculated for C20H24CoN6O8:C 44.83,H 4.48,N 15.69;found:C 44.97,H 4.08,N 15.95.

    2.3 Single-crystal structure determination

    All single crystal X-ray experiments were collected on a Bruker Smart Apex II CCD diffractometer(Germany)equipped with graphite monochromated Mo Kαradiation(λ=0.071073 nm)using ω and φ scan mode at 296(2)K.The single-crystal structures of compounds were both solved by direct methods and refined with full-matrixleast-squares refinements based on F2using SHELXS-97 and SHELXL-97.30,31All non-hydrogen atoms were refined anisotropically.Crystallographic data,data collection parameters,and refinement for 1-3 are listed in Table 1,selected bond distances(nm)and angles(°)are given in Table S1(see Supporting Information).CCDC numbers:970263 for 1,969965,969966 for 2 and 3,respectively.

    2.4 Antifungal activity tests

    The tested microorganisms in the present study are Fusarium graminearum,Vasa mali,Macrophoma kawatsukai,Colletotrichum,gloeosporioides,and Alternaria alternate.Due to their close relationship to crop,such as wheat,apple,and tobacco,we selected these fungi to carry out the research and valued the compounds in agriculture.The method of determining antifungal activity was according to the radial growth method.32Sterilized hot PDA(potato dextrose agar)nutrient medium(composition:potato(200.0 g),dextrose(15.0 g),agar(18.0 g),and distilled water(1000 mL))and 4 mm diameter hole punch were used in the method.4.64 mg Cu-L(1),5.35 mg Ni-L(2),and 5.35 mg Co-L(3)were used to prepare the 2.5 mmol·L-1mother liquid with distilled water(the compound solutions were prepared by formerly dis-solving in a small quantity of DMSO and then diluting using distilled water).Five final concentration solutions in PDA,0,40,80,120,and 160 μmol·L-1were prepared for compounds 1-3 to against five kinds of fungi respectively.The 0 μmol·L-1treatment was regarded as control.

    The titled compounds were mixed with 40 mL PDA in 50 mL centrifuge tubes at each concentration,divided into three Petri dishes,and allowed to solidify.Then dishes were incubated with 4 mm diameter of the fungi culture which was obtained by the hole punch.Then these Petri dishes were cultured at 28°C for four days.The diameter of fungi growth was for measuring the antifungal activities.All procedures of the above were repeated three times.

    2.5 DNA cleavage tests

    Plasmid DNA(pUC 18)was acquired from Takara Biotechnology(Da Lian)Co.Ltd.Aliquots of plasmid DNA(0.06 μg·μL-1)was mixed with a series of concentrations of the three compounds from 0 to 0.8 μmol·L-1.The mixtures were mixed in the same sequence,with plasmids being added first,followed by the titled three compounds and H2O which was used to replenish the volume in the control.Then,those mixtures were incubated in a DK-8D Thermostatic water bath for 150 min at 37°C.

    Table 1 Crystallographic data for compounds 1-3

    The cleavage reaction could be monitored by agarose gel electrophoresis(AGE).Agarose was purchased from Promega Co.(Germany).Gel electrophoresis experiments were worked out with plasmid DNA,in 0.8%agarose solution,at 100 V 40 min using TAE(tris-acetate-EDTA)buffer(45 mmol·L-1Tris(tris(hydroxymethyl)aminomethane),1 mmol·L-1EDTA(ethylene diamine tetraacetic acid),pH 7.44).The cleavage reactions were terminated by the addition of EDTA and bromphenol blue.The plasmid DNA was stained with 1 μL·mL-1gold view.The cleavage products were analyzed by Gel Doc XR gel documentation and analysis system(Bio-rad).

    2.6 Absorption peak of DNA displacement tests

    This part was performed by absorption spectral titration,33keeping the concentration of DNA(Salmon sperm)constant while varying the title compound concentration.The displacement was measured at 260 nm HALO DB-30 UV-Vis spectrophotometer(Dynamica).The solution of the compound was dropwise added into 3 mL salmon sperm DNA(50 μg·mL-1),and the mixture solution was monitored by UV-Vis spectrum.

    3 Results and discussion

    3.1 Crystal structure analysis

    Over the past few decades,the metal-triazole-based materials have attracted tremendous attention.Undoubtedly,hydrothermal synthesis provides a convenient method for preparation of such composite materials,allowing more routine structural characterization by single crystal X-ray diffraction.34,35The structures of 1-3 were determined using single crystal X-ray diffraction.1-3 crystallize in space groups P2(1)/c,P2(1)/n,P2(1)/n,respectively.

    In compound 1,the crystallographically unique copper(II)atom adopts a distorted octahedral coordination sphere,with four carboxylate O atoms from the different carboxylate groups,bidentate coordination in the equatorial plane,and two N atoms from triazoles in the axial positions(Fig.1(a)).As shown in Fig.1(b),each copper(II)atom coordinates with four ligands,and each ligand coordinates to two Cu ions.As a bridging ligand,triazole N atoms and carboxylate O atoms are involved in coordination with copper(II)to form an infinite one-dimensional(1D)Z-shaped double-chain.

    Compounds 2 and 3 have the same structure(Fig.2(a,b)).Hence,only the structure of 2 is described in detail.Single-crystal structure analysis shows a three-dimensional(3D)extended high density framework based on ligand and metal salts building blocks.Each nickel(II)center adopts a distorted octahedral coordination sphere,which is occupied by two O atoms from the coordinated water molecules and two carboxylate O atoms from the different carboxylate groups in the equatorial plane.The coordination sphere is completed by two N atoms from triazoles occupying the axial positions(Fig.2(a)).Anotable feature for the difference between compounds 1 and 2 is that carboxylate group of 2 is monodentate coordination.As shown in Fig.2(c),each nickel(II)atom coordinates with four ligands,and each ligand coordinates to two nickel(II)ions.Like compound 1,as a bridging ligand,the ligand takes end to end coordination modes with the metal ions and forming an infinite 1D Z-shaped double-chain.

    There are two guest water molecules in each coordination unit(Fig.2(a)),and each guest water molecule connects to three adjacent chains through hydrogen bonds.As shown in Fig.2(d),the hydrogen bond systems make the whole framework into a network structure.The O…H―O distance is 0.1904 nm and 0.1928 nm,N…H―O distance is 0.2052 nm.In this case,these 1D chains are linked together by such interchain hydrogen bond systems into a 3D framework(Fig.2(e)).

    3.2 X-ray powder diffraction and thermal analyses

    As shown in the Fig.3,X-ray powder diffraction patterns of the samples of 1-3 are quite similar to the simulated data of the crystal structure.

    Compounds 1-3 are air stable,the typical TG curves for the crystal samples of 1-3 were performed between room temperature up to 1000 °C at a heating rate of 10 °C·min-1under nitrogen atmosphere.The polymers are thermally stable up to 285.2,57.8,57.6°C for 1-3,respectively.In the TG curve of 1 shown in Fig.4,with increasing temperature,the whole framework of the compound collapses with a huge mass loss of 42.21%.Thermogravimetric analyses reveal that compounds 2 and 3 have a similar thermal decomposition behavior due to that they possess the same polymeric motif.2 remains stable up to 57.8°C and then undergoes one-step mass loss of 14.2%from 57.8 to 103.4°C,attributing to the loss of the crystal water molecules and the coordinated water molecules.The dehydration substance shows great stability before 339.3°C and then experiences a mass loss.Following that,the intermediates of 1-3 are slowly decomposed,and do not form stable compounds until 1000°C.

    3.3 Photoluminescent property

    The solid-state photoluminescent properties of ligand and their polymeric compounds 1-3 were investigated at room temperature.The excitation bands(λex)of the three compounds and the ligand are at about 362nm for 1,336nm for 2,373nm for 3,359 nm for the ligand,respectively(Fig.S2(see Supporting Information)and Table 2).As indicated in Fig.5,in the solid state,all compounds and the ligand in this study exhibit strong emission in high energy region.There are two intense fluorescent emission bands(λem)at 421,463 nm for 1,419,457 nm for 2,421,481 nm for 3,respectively(Table 2).The emissions bands of 1-3 and the ligand at about 421 nm show that the nature of ligand plays an important role in the photoluminescence of coordination compounds.The maximum emission of compounds 1-3 excited at discrepancy wavelengths would be attributed to dual effects of the terminal coordination water molecules and the coordination environment around Cu(II).The luminescence of compounds 1-3 may be ascribed to an intraligand phosphorescent emission and ligand-to-metal charge transfer(LMCT).36

    3.4 UV-Vis spectra of the ligand and the compounds

    Fig.1 (a)Coordination unit of compound 1 and(b)1D Z-shaped double-chain

    Fig.2 (a,b)Central atom coordination configurations of 2 and 3,(c)Z-shaped double-chains in 2,and(d,e)hydrogen bond systems in 2 and the 3D framework

    Fig.3 X-ray powder diffraction patterns of 1-3

    UV-Vis spectra of the ligand and the compounds could be reliably recorded over the full range.Compared to UV-Vis spectrum of the ligand,little changes in the wavelengths of absorption maxima were observed in those of the corresponding compounds(Fig.S3(see Supporting Information)and Table 3),indicating that the compounds in solvated molecule state occur in dimethyl sulfoxide(DMSO).

    3.5 Solubility and molar conductivity of the compounds

    All of the three compounds are insoluble in water and methanol,carbon tetrachloride,chloroform,and acetonitrile,while moderately soluble(50 mg/100 mL solvent)in dimethylformamide(DMF)and DMSO.The solid state compounds are fairly stable in air so as to allow physical measurements.Molar conductivities on those compounds fall in the expected range for nonelectrolytes,37,38as shown in Table 3.

    3.6 Antifungal activities of compounds

    Fig.4 TG curves of compounds 1-3

    Table 2 Photoluminescent properties of the ligand and compounds 1-3 in the solid state

    According to the results and analyses,the three compounds show a degree of antifungal efficacy(Fig.6 and Table S2(see Supporting Information)).Compound 1 presents the best antifungal capacity among the three compounds.It is worth mentioning that at 120 μmol·L-1antifungal percentage of compound 1 is 73.5%against Fusarium graminearum,whereas compounds 2 and 3 are only 52.2%and 50.0%,repectively(Table S3(see Supporting Information)).Through our calculation,compound 1 always shows a higher antifungal percentage than the other two compounds on all the five fungi.It means that compound 1 has a decent antifungal activity.

    Fig.5 Emission spectra of the ligand and compounds in the solid state at ambient temperature

    Table 3 Molar conductivities and UV-Vis data for the ligand and compounds in dimethyl sulfoxide(DMSO)solvent at room temperature

    The five closely agriculture related fungi show the different sensitivity to the three titled compounds treatment.Vasa mali and Alternaria alternate are much more sensitive than the other three fungi.Data reveal that at the concentration of 160 μmol·L-1the antifungal percentages are almost high to 96.9%on Vasa mali and 94.6%on Alternaria alternate(Table S3(see Supporting Information)).

    3.7 DNA cleavage of compounds

    Fig.6 Virulence regression curves of three compounds against on five fungi

    Different DNAshapes lead to different moving rates in AGE.39For instance,the intact supercoil form(Form I)will exhibit relatively fast migration when circular plasmid DNA is subjected to AGE.40If cleavage occurs on one strand,supercoil form DNAwill relax to produce a slower-migrating open circular form(Form II).If both strands are cleaved,a linear form DNA(Form III)will be generated and its migration is between the intact supercoil form and open circular form.41Since the plasmid DNA migration pattern under AGE condition is:supercoil>linear>open circular,42that is,F(xiàn)orm I>Form III>Form II.Hence,the cleavages obtained by the titled compounds could be carried out and analyzed byAGE.43

    As the images after AGE of solutions in different combinations show,the compounds could degrade plasmid DNA(pUC 18).With increasing concentration of compounds,the amount of supercoil(Form I)DNA diminishes gradually.In Fig.7(a),F(xiàn)orm I vanishes gradually with the increasing concentration of compound 1,whereas the amount of Form II and Form III begins to increase.At 0.06 μmol·L-1(Lane 4),F(xiàn)orm I is cut into Form II and Form III thoroughly and Form III has a significant increase compared to Lanes 2 and 3.Compound 1 promotes complete degradation of plasmid DNAat the concentration of 0.08 μmol·L-1(Lane 5).

    Fig.7 Agarose gel electrophoresis patterns for the cleavage of plasmid DNAby compounds

    As for compound 2 at 0.08 μmol·L-1,there still are open circular and linear forms but the supercoil isabsent(Fig.7(b)).All the forms are present at 0.06 μmol·L-1,whereas compound 1 is not.There is no significant difference between compounds 2 and 3 on proportions of plasmid DNA forms.Compounds 2 and 3 almost present an identical pattern on DNA cleavage.With increasing concentration of compounds 2 and 3(Fig.7(b)and Fig.7(c)),the amount of Form I of plasmid DNA diminishes gradually.At 0.08μmol·L-1,both compounds can change Form I into Form II and III completely.

    3.8 Absorption peak of DNA displacement

    Fig.8 Absorption spectra of the compounds upon the plasmid DNA

    To explore the interaction pattern between the titled compounds and plasmid DNA,the absorption peak of DNAdisplacement tests are also performed.The intrinsic absorption peak of DNAis at 260 nm.If the compounds intercalate into DNA,the unique structure of DNA will be changed,and the absorption peak will move.In our tests,as shown in Fig.8,the absorbance of DNA at 260 nm shows a remarkable decreasing tendency with increasing the concentration of the compounds.In test concentration,the endpoint of compound 1 is 0.33 at 260 nm while those of the other compounds are around 0.47.The decreased absorbance indicates that the compounds change DNA double-helix structure,which may be elucidated as the intercalation of the compounds between the base pairs of DNA.44,45Among the three compounds,compound 1 presents the lowest absorbance at 260 nm,showing that the more base pairs are intercalated by 1 compared to the others.46

    The antifungal activities of compounds exhibit strong antifungal efficacy,following the order of 1>3≥2.Significantly,further investigations on DNA cleavage experiments reveal that such compounds show different intercalation activities.Notably,1 had an obviously higher inhibitory rate than other compounds,which is related with its DNAcleavage activities.Compared with compounds 2 and 3,compound 1 demonstrates an infinite 1D double-chain without interchain interaction.The better cleavage properties of the compound 1 may be attributed to the simple structure,which means that supramolecular interaction decreases the ability of the compounds to intercalate into DNA,and further influences the DNA cleavage activities.Although 2 and 3 show the isomorphous structure,their DNA cleavage activities are not exactly the same.The difference reveals that metal ion also affects the intercalation ability.As noticed,Cu(II)compounds have been the theme aimed at establishing the presumed synergy between the Cu(II)ion and the drug.47-50In conclusion,the cooperative effect of the supramolecular interaction and metal ions results in DNA cleavage activities.

    4 Conclusions

    In the present work,three transition metal compounds 1-3 with 4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid have been hydrothermally synthesized.Single-crystal X-ray diffraction analysis revealed that compound 1 features a 1D chain,while 2 and 3 exhibit 3D network structure.The detailed optical property investigations reveal that:1-3 exhibit remarkable luminescence emissions,which may be ascribed to the cooperative effects of intraligand emission and ligand-to-metal charge transfer(LMCT).Antifungal activities analyses show that compound 1 has the greatest antifungal efficacy compared to 2 and 3 on the five fungi.Photographs taken after agarose gel electrophoresis demonstrate the three titled compounds could cause plasmid DNAcleavage.In order to evaluate the effect of compounds concentration increase and research the pattern of cleavage,we studied different combination of the plasmid DNA(pUC 18)and compounds.The addition of increasing amount of compounds causes a significant increase in the DNA breakage.It is understandable that the three compounds can beak the DNAof fungi even cause its degradation.Although the three compounds can break the DNA,their breakage situations are not same.Among our presupposed concentrations compounds 2 and 3 can promote the conversion of DNA from Form I to Forms II and III,whereas compound 1 can fully degrade DNAat 0.08 μmol·L-1.This means that compound 1 has the highefficacy capacity on DNA breakage and that is the reason for compound 1 to present such high antifungal efficacy.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Yaghi,O.M.;Davis,C.E.;Li,G.M.;Li,H.L.J.Am.Chem.Soc.1997,119,2861.doi:10.1021/ja9639473

    (2) Seo,J.S.;Whang,D.;Lee,H.;Jun,S.I.;Oh,J.;Jeon,Y.J.;Kim,K.Nature 2000,404,982.doi:10.1038/35010088

    (3) Datta,A.;Karan,N.K.;Mitra,S.;Gramlich,V.J.J.Chem.Cryst.2003,33,579.doi:10.1023/A:1024299005045

    (4) Gillon,B.;Mathoniere,C.;Ruiz,E.;Alvarez,S.;Cousson,A.;Kahn,T.M.J.Am.Chem.Soc.2002,124,14433.doi:10.1021/ja020188h

    (5) Kozlov,I.A.;Kubareva,E.A.;Ivanovskaya,M.G.Antisense Nucleic A 1997,7,279.doi:10.1089/oli.1.1997.7.279

    (6) Purmal,A.A.;Shabarv,T.V.;Gumport,R.I.Nucleic Acids Res.1998,20,3713.

    (7)Trawick,B.N.;Daniher,A.T.;Bashkin,J.K.Chem.Rev.1998,98,939.doi:10.1021/cr960422k

    (8) Budrìa,J.G.;Raugei,S.;Cavallo,L.J.Inorg.Chem.2006,22,1732.

    (9) Liu,J.;Mei,W.J.;Xu,A.W.;Shi,S.;Tan,C.P.;Ji,L.N.Antivir.Res.2004,62,65.doi:10.1016/j.antiviral.2003.12.004

    (10) Chabner,B.A.;Roberts,T.G.Nat.Rev.Cancer 2005,5,65.

    (11) Chen,L.M.;Liu,J.;Chen,J.C.;Shi,S.J.Mol.Struct.2008,881,156.doi:10.1016/j.molstruc.2007.09.010

    (12)Li,V.S.;Choi,D.;Wang,Z.;Jimenez,L.S.;Tang,M.S.;Kohn,H.J.Am.Chem.Soc.1996,18,2326.

    (13)Zuber,G.;James,C.Q.;Hecht,S.M.J.Am.Chem.Soc.1998,120,9368.doi:10.1021/ja981937r

    (14) Hecht,S.M.J.Nat.Prod.2000,63,158.doi:10.1021/np990549f

    (15) Liu,J.G.;Ye,B.H.;Li,H.;Zhen,Q.X.;Ji,L.N.;Fu,Y.H.J.Inorg.Biochem.1999,76,265.doi:10.1016/S0162-0134(99)00154-3

    (16) Strekowski,L.;Wilson,B.Mutat.Res.2007,623,3.doi:10.1016/j.mrfmmm.2007.03.008

    (17) Zhou,C.Y.;Zhao,J.;Wu,Y.B.;Yin,C.X.;Yang,P.J.Inorg.Biochem.2007,101,10.doi:10.1016/j.jinorgbio.2006.07.011

    (18) Gao,F(xiàn).;Chao,H.;Zhou,F(xiàn).;Yuan,Y.X.;Peng,B.;Ji,L.N.J.Inorg.Biochem.2006,100,1487.doi:10.1016/j.jinorgbio.2006.04.008

    (19) Cater,D.C.;Ho,J.X.Adv.Protein Chem.1994,45,153.doi:10.1016/S0065-3233(08)60640-3

    (20) He,X.M.;Cater,D.C.Nature 1992,358,209.doi:10.1038/358209a0

    (21) Curry,S.;Brick,P.;Frank,N.P.Biochim.Biophys.A 1999,1141,131.

    (22)Shen,X.C.;Yuan,Q.;Liang,H.Sci.Chin.Ser.B-Chem.2003,46,387.doi:10.1360/02yb0062

    (23)Wang,Y.M.;Song,Y.;Kong,D.L.Chin.Sci.Bull.2005,50,1839.doi:10.1360/982004-405

    (24) Mehra,R.K.;Tran,K.;Scott,G.W.;Mulchandani,P.;Saini,S.S.J.Inorg.Biochem.1996,61,125.doi:10.1016/0162-0134(95)00046-1

    (25) Koh,L.L.;Ranford,J.O.;Robinson,W.T.;Swensson,J.O.;Tan,A.L.;Wu,D.Inorg.Chem.1996,35,6466.doi:10.1021/ic9606441

    (26)Zhang,P.Z.;Fu,Q.Y.;Chi,R.X.;Yang,C.X.;Xu,J.G.J.Zhejiang Univ.Sci.Technol.2003,15,143.

    (27) Xiong,P.P.;Li,J.;Bu,H.Y.;Wei,Q.;Zhang,R.L.;Chen,S.P.J.Solid State Chem.2014,215,292.doi:org/10.1016/j.jssc.2014.04.012

    (28)Zhao,X.X.;Ma,J.P.;Dong,Y.B.;Huang,R.Q.Cryst.Growth Des.2007,7,1058.doi:10.1021/cg060583+

    (29)Qin,J.;Ma,J.P.;Liu,L.L.;Huang,R.Q.;Dong,Y.B.Acta Cryst.2009,65,66.

    (30) Sheldrick,G.M.SHELXS-97,Program for Solution of Crystal Structures;University of G?ttingen:G?ttingen,Germany,1990.

    (31) Sheldrick,G.M.SHELXK-97,Program for Refinement of Crystal Structures;University of G?ttingen:G?ttingen,Germany,1997.

    (32) Mann,A.;Banso,A.;Clifford,L.C.;Tan.J.Health.Res.2008,10,34.

    (33)Li,Y.T.;Liu,Z.Q.;Wu,Z.Y.J.Inorg.Biochem.2008,102,1790.doi:org/10.1016/j.jinorgbio.2008.05.011

    (34)Zhang,J.P.;Chen,X.M.Chem.Commun.2006,1689.

    (35) Ouellette,W.;Hudson,B.S.;Zubieta,J.Inorg.Chem.2007,46,4887.doi:10.1021/ic062269a

    (36) Zheng,L.L.;Li,H.X.;Leng,J.D.;Wang,J.;Tong,M.L.Eur.J.Inorg.Chem.2008,213.

    (37)AbouEl,E.S.;El,S.A.;Emam,S.M.;Ell,S.M.A.Spectrochim.Acta Part A 2008,71,421.doi:10.1016/j.saa.2007.12.031

    (38) Valent,A.;Melnik,M.;Hudecova,D.;Dudova,B.;Kivekas,R.;Sundberg,M.R.Inorg.Chim.Acta 2002,340,15.doi:10.1016/S0020-1693(02)01062-9

    (39)Song,Y.M.;Wu,Q.;Yang,P.J.;Luan,N.N.J.Inorg.Biochem.2006,100,1685.doi:10.1016/j.jinorgbio.2006.06.001

    (40) Zavitsanos,K.;Nunes,A.M.;Malandrinos,G.;Hadjiliadis,N.J.Inorg.Biochem.2011,105,1329.doi:10.1016/j.jinorgbio.2011.07.014

    (41) Barton,J.K.;Raphael,A.L.J.Am.Chem.Soc.1984,106,2466.doi:10.1021/ja00320a058

    (42) Scheppler,J.A.;Cassin,P.E.;Gambier,R.M.Biotechnology Explorations:Applying the Fundamentals;ASM Press:Washington DC,2000.

    (43) Xi,P.X.;Xu,Z.H.;Chen,F(xiàn).J.;Zeng,Z.Z.J.Inorg.Biochem.2009,103,210.doi:10.1016/j.jinorgbio.2008.10.010

    (44) Li,Y.T.;Liu,Z.Q.;Wu,Z.Y.J.Inorg.Biochem.2008,102,1790.doi:10.1016/j.jinorgbio.2008.05.011

    (45) Rajendiran,V.;Karthik,R.;Palaniandavar,M.;Evans,S.H.;Periasamy,V.S.;Akbarsha,M.A.;Srinag,B.S.;Krishnamurthy,H.Inorg.Chem.2007,46,8208.doi:10.1021/ic700755p

    (46)Khoramdareh,Z.K.;Yazdi,S.A.;Spingler,H.B.;Khandar,A.A.Inorg.Chim.Acta 2014,415.7.

    (47)Jiang,J.;Tang,X.L.;Dou,W.;Zhang,H.H.;Liu,W.S.;Wang,C.X.;Zheng,J.R.J.Inorg.Biochem.2010,104,583.doi:10.1016/j.jinorgbio.2010.01.011

    (48)Melnik,M.Coord.Chem.Rev.1982,42,259.doi:10.1016/S0010-8545(00)80537-8

    (49) Kato,M.;Muto,Y.Coord.Chem.Rev.1988,92,45.doi:10.1016/0010-8545(88)85005-7

    (50)Weder,J.E.;Dillon,C.T.;Hambley,T.W.;Kennedy,B.J.;Lay,P.A.;Biffin,J.R.;Regtop,H.L.;Davies,N.M.Coord.Chem.Rev.2002,232,95.doi:10.1016/S0010-8545(02)00086-3

    猜你喜歡
    西北大學(xué)三唑教育部
    西北大學(xué)木香文學(xué)社
    《西北大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    《我們》、《疑惑》
    西北大學(xué)博物館
    教育部召開(kāi)座談會(huì)推進(jìn)一流大學(xué)和一流學(xué)科建設(shè)
    新課程研究(2016年1期)2016-12-01 05:52:14
    不同濃度三唑錫懸浮劑防治效果研究
    教育部:高考地方性加分項(xiàng)目2018年減至35個(gè)
    三組分反應(yīng)高效合成1,2,4-三唑烷類(lèi)化合物
    我校兩教育部重大課題攻關(guān)項(xiàng)目開(kāi)題
    1,1′-二(硝氧甲基)-3,3′-二硝基-5,5′-聯(lián)-1,2,4-三唑的合成及性能
    一进一出好大好爽视频| 国产精品永久免费网站| 丰满的人妻完整版| 欧美av亚洲av综合av国产av| 村上凉子中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 免费日韩欧美在线观看| 国产精品亚洲av一区麻豆| 亚洲一区二区三区欧美精品| 高清黄色对白视频在线免费看| 成人亚洲精品一区在线观看| 黄色女人牲交| 成年动漫av网址| 久久精品国产a三级三级三级| 国产亚洲一区二区精品| 成年人午夜在线观看视频| 黄片播放在线免费| 熟女少妇亚洲综合色aaa.| 女警被强在线播放| 啪啪无遮挡十八禁网站| 五月开心婷婷网| 99国产精品免费福利视频| 日本精品一区二区三区蜜桃| 欧美激情 高清一区二区三区| 美女午夜性视频免费| 欧美av亚洲av综合av国产av| 欧美日韩亚洲高清精品| 12—13女人毛片做爰片一| 国产视频一区二区在线看| 成人永久免费在线观看视频| 男男h啪啪无遮挡| 我的亚洲天堂| 日日爽夜夜爽网站| 成人影院久久| 91大片在线观看| 成人18禁高潮啪啪吃奶动态图| www.熟女人妻精品国产| 成人影院久久| 欧美中文综合在线视频| 欧美成人免费av一区二区三区 | 国产精品自产拍在线观看55亚洲 | 18禁裸乳无遮挡动漫免费视频| 后天国语完整版免费观看| 99riav亚洲国产免费| 国产精品久久视频播放| 亚洲国产欧美一区二区综合| 叶爱在线成人免费视频播放| 成人免费观看视频高清| 啦啦啦 在线观看视频| 亚洲中文av在线| 19禁男女啪啪无遮挡网站| 欧美老熟妇乱子伦牲交| 国产精品久久久人人做人人爽| 国产真人三级小视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 啦啦啦免费观看视频1| 午夜影院日韩av| 久久久国产欧美日韩av| 午夜免费成人在线视频| 亚洲中文字幕日韩| netflix在线观看网站| 黄色毛片三级朝国网站| 两个人看的免费小视频| 国产精品免费大片| 久久影院123| 黄色怎么调成土黄色| 高潮久久久久久久久久久不卡| 久久热在线av| 成人18禁高潮啪啪吃奶动态图| 黄色怎么调成土黄色| 欧美最黄视频在线播放免费 | 亚洲黑人精品在线| 99国产精品一区二区蜜桃av | 又黄又粗又硬又大视频| 色综合婷婷激情| 色老头精品视频在线观看| 一级a爱视频在线免费观看| 国产在视频线精品| av不卡在线播放| 中文字幕精品免费在线观看视频| 欧美乱码精品一区二区三区| 亚洲av片天天在线观看| 一级毛片高清免费大全| 久久精品亚洲精品国产色婷小说| 在线观看免费高清a一片| 亚洲 欧美一区二区三区| 欧美乱码精品一区二区三区| 亚洲国产精品合色在线| 亚洲午夜精品一区,二区,三区| 亚洲欧美精品综合一区二区三区| 一二三四在线观看免费中文在| 国产一区二区三区视频了| 久久久久久免费高清国产稀缺| 国产高清视频在线播放一区| 每晚都被弄得嗷嗷叫到高潮| 国产aⅴ精品一区二区三区波| 午夜久久久在线观看| 最近最新中文字幕大全电影3 | 亚洲五月天丁香| 18禁美女被吸乳视频| 电影成人av| cao死你这个sao货| 一级片免费观看大全| 色精品久久人妻99蜜桃| 桃红色精品国产亚洲av| 男人操女人黄网站| 后天国语完整版免费观看| 日本vs欧美在线观看视频| 在线av久久热| 欧美中文综合在线视频| 亚洲在线自拍视频| 日韩免费高清中文字幕av| 国产精品98久久久久久宅男小说| 一级a爱视频在线免费观看| 女人被躁到高潮嗷嗷叫费观| 久久人人97超碰香蕉20202| 欧美av亚洲av综合av国产av| 久久中文看片网| 91成年电影在线观看| 精品免费久久久久久久清纯 | 啦啦啦在线免费观看视频4| 中文字幕av电影在线播放| 一本综合久久免费| 少妇 在线观看| 大型黄色视频在线免费观看| 日本欧美视频一区| 国产精品久久久人人做人人爽| 深夜精品福利| 国产一区二区三区在线臀色熟女 | 叶爱在线成人免费视频播放| 亚洲av熟女| 电影成人av| 久久九九热精品免费| 三级毛片av免费| 精品久久蜜臀av无| 伦理电影免费视频| 美女福利国产在线| 老司机深夜福利视频在线观看| 欧美日韩精品网址| 久久久精品区二区三区| av中文乱码字幕在线| 宅男免费午夜| av有码第一页| 欧美精品人与动牲交sv欧美| 午夜精品久久久久久毛片777| 久久久久视频综合| 亚洲情色 制服丝袜| 久久精品国产综合久久久| 黄色成人免费大全| 日韩免费av在线播放| 涩涩av久久男人的天堂| 18禁国产床啪视频网站| 精品国产一区二区三区久久久樱花| 久久精品成人免费网站| 美女 人体艺术 gogo| 少妇的丰满在线观看| 久久影院123| 国产激情欧美一区二区| 黄色毛片三级朝国网站| 老司机亚洲免费影院| 国产精品亚洲一级av第二区| av天堂在线播放| 久久精品国产亚洲av香蕉五月 | 国产日韩一区二区三区精品不卡| 又黄又粗又硬又大视频| 亚洲欧美激情在线| 人人妻,人人澡人人爽秒播| 免费在线观看完整版高清| 亚洲人成77777在线视频| 嫁个100分男人电影在线观看| 狂野欧美激情性xxxx| www.熟女人妻精品国产| 91精品国产国语对白视频| 国产免费男女视频| 激情视频va一区二区三区| 村上凉子中文字幕在线| 99国产精品免费福利视频| 91av网站免费观看| 成年人黄色毛片网站| 熟女少妇亚洲综合色aaa.| 9191精品国产免费久久| 一边摸一边做爽爽视频免费| 国产亚洲精品第一综合不卡| 宅男免费午夜| 日韩视频一区二区在线观看| 亚洲精华国产精华精| 亚洲成a人片在线一区二区| 精品久久久久久久久久免费视频 | 国产熟女午夜一区二区三区| 国产精品免费大片| 午夜日韩欧美国产| 国产精品久久久久久精品古装| 人人妻,人人澡人人爽秒播| 国产主播在线观看一区二区| 成人免费观看视频高清| 亚洲精品自拍成人| 国产成人免费观看mmmm| 黄色怎么调成土黄色| av免费在线观看网站| 十分钟在线观看高清视频www| 超色免费av| 欧美黄色淫秽网站| 脱女人内裤的视频| 在线观看66精品国产| 波多野结衣av一区二区av| 午夜免费观看网址| 狠狠狠狠99中文字幕| 日韩有码中文字幕| 国产精品一区二区在线不卡| 亚洲一区中文字幕在线| 中文字幕制服av| 国产免费av片在线观看野外av| 人人妻人人澡人人爽人人夜夜| 欧美乱妇无乱码| 国产精品免费大片| 一本大道久久a久久精品| 黑人巨大精品欧美一区二区蜜桃| 国产精品国产av在线观看| 日韩视频一区二区在线观看| 亚洲熟女精品中文字幕| 人人澡人人妻人| 美女国产高潮福利片在线看| 999久久久精品免费观看国产| 久久精品国产亚洲av香蕉五月 | 丝袜美足系列| 久久久精品区二区三区| 亚洲第一av免费看| 亚洲精品美女久久av网站| 天天操日日干夜夜撸| 操美女的视频在线观看| 国产精品一区二区免费欧美| 曰老女人黄片| 亚洲伊人色综图| 亚洲男人天堂网一区| 狠狠狠狠99中文字幕| 极品人妻少妇av视频| 精品第一国产精品| 欧美性长视频在线观看| 十八禁高潮呻吟视频| 国产三级黄色录像| 桃红色精品国产亚洲av| 亚洲国产中文字幕在线视频| 91九色精品人成在线观看| 精品一区二区三区视频在线观看免费 | 免费看a级黄色片| 国产不卡av网站在线观看| 中文字幕人妻丝袜制服| 一进一出抽搐动态| 亚洲午夜理论影院| 91字幕亚洲| 99精品欧美一区二区三区四区| 这个男人来自地球电影免费观看| 久久久国产一区二区| 日韩免费高清中文字幕av| 一进一出抽搐gif免费好疼 | 亚洲国产看品久久| а√天堂www在线а√下载 | 亚洲 国产 在线| 亚洲精品美女久久久久99蜜臀| 国产黄色免费在线视频| 国产精品免费大片| 久久久久国产精品人妻aⅴ院 | 三级毛片av免费| 亚洲色图综合在线观看| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利欧美成人| 国内毛片毛片毛片毛片毛片| 午夜老司机福利片| 中文字幕高清在线视频| 亚洲成人免费电影在线观看| 日韩精品免费视频一区二区三区| 国产男女超爽视频在线观看| 麻豆国产av国片精品| 亚洲情色 制服丝袜| 亚洲欧美激情在线| 精品乱码久久久久久99久播| 高清毛片免费观看视频网站 | 欧美日韩乱码在线| 久久久精品国产亚洲av高清涩受| 99精品在免费线老司机午夜| 欧美日韩黄片免| 啦啦啦 在线观看视频| 波多野结衣一区麻豆| 91大片在线观看| 久久国产精品影院| 在线永久观看黄色视频| 免费看十八禁软件| 亚洲avbb在线观看| 一级a爱视频在线免费观看| 国产91精品成人一区二区三区| 免费看十八禁软件| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲欧美色中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 日本vs欧美在线观看视频| 久久 成人 亚洲| 国产成人欧美| 欧美激情极品国产一区二区三区| 欧美日韩福利视频一区二区| 久久青草综合色| 飞空精品影院首页| 欧美午夜高清在线| 国产精华一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 757午夜福利合集在线观看| 亚洲国产毛片av蜜桃av| 久久精品国产亚洲av高清一级| 夫妻午夜视频| 水蜜桃什么品种好| avwww免费| cao死你这个sao货| 亚洲精品国产色婷婷电影| 午夜两性在线视频| 久久精品国产清高在天天线| 成人手机av| 制服人妻中文乱码| 麻豆乱淫一区二区| 男女午夜视频在线观看| 成人免费观看视频高清| 女人精品久久久久毛片| 曰老女人黄片| 国产免费av片在线观看野外av| 大香蕉久久成人网| 国产成人av激情在线播放| 国产99白浆流出| 十八禁网站免费在线| 免费观看a级毛片全部| 久久 成人 亚洲| 男女午夜视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲第一欧美日韩一区二区三区| 免费观看a级毛片全部| 亚洲,欧美精品.| 男女免费视频国产| 亚洲综合色网址| 亚洲三区欧美一区| 国产欧美日韩精品亚洲av| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 午夜精品国产一区二区电影| 精品久久久久久久毛片微露脸| 99热网站在线观看| 欧美精品啪啪一区二区三区| 亚洲精品久久成人aⅴ小说| a在线观看视频网站| 99精品在免费线老司机午夜| 极品少妇高潮喷水抽搐| 啪啪无遮挡十八禁网站| 丰满迷人的少妇在线观看| 成人av一区二区三区在线看| 国产精品九九99| 免费在线观看亚洲国产| 午夜91福利影院| 黑人巨大精品欧美一区二区蜜桃| 欧美激情高清一区二区三区| 午夜成年电影在线免费观看| 亚洲精品国产区一区二| 国产精品一区二区在线观看99| 成年女人毛片免费观看观看9 | 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 青草久久国产| 看黄色毛片网站| 午夜福利视频在线观看免费| 一夜夜www| 法律面前人人平等表现在哪些方面| 麻豆乱淫一区二区| 国产欧美亚洲国产| 无人区码免费观看不卡| 老司机深夜福利视频在线观看| 国产高清激情床上av| 麻豆国产av国片精品| 欧美乱色亚洲激情| av视频免费观看在线观看| 制服诱惑二区| 韩国av一区二区三区四区| 美女午夜性视频免费| 又大又爽又粗| 丁香六月欧美| 村上凉子中文字幕在线| 丝袜人妻中文字幕| 亚洲精品av麻豆狂野| 自线自在国产av| 国产成人精品无人区| 丰满迷人的少妇在线观看| 自线自在国产av| 狠狠狠狠99中文字幕| 黑人欧美特级aaaaaa片| www.自偷自拍.com| 天堂中文最新版在线下载| 搡老乐熟女国产| 丝瓜视频免费看黄片| 日本a在线网址| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区蜜桃| 男女下面插进去视频免费观看| 黄色怎么调成土黄色| 久久国产精品男人的天堂亚洲| 国产精品偷伦视频观看了| 一级毛片高清免费大全| 国产xxxxx性猛交| 亚洲熟女精品中文字幕| 日韩免费高清中文字幕av| 热99久久久久精品小说推荐| 后天国语完整版免费观看| 欧美乱色亚洲激情| 天堂动漫精品| 国产单亲对白刺激| 建设人人有责人人尽责人人享有的| 久久久国产精品麻豆| 国产精品永久免费网站| 大型黄色视频在线免费观看| 免费黄频网站在线观看国产| 久久精品91无色码中文字幕| 男男h啪啪无遮挡| 国产xxxxx性猛交| 成人黄色视频免费在线看| 欧美性长视频在线观看| 美女高潮喷水抽搐中文字幕| 91国产中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美亚洲国产| 中出人妻视频一区二区| 成人特级黄色片久久久久久久| 黄色视频不卡| 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 91字幕亚洲| 1024视频免费在线观看| 亚洲av成人一区二区三| 亚洲精品一二三| x7x7x7水蜜桃| 动漫黄色视频在线观看| 日本a在线网址| 国产高清国产精品国产三级| 波多野结衣av一区二区av| cao死你这个sao货| 国产1区2区3区精品| 精品视频人人做人人爽| 99riav亚洲国产免费| av不卡在线播放| 亚洲精品美女久久av网站| 欧美日韩亚洲国产一区二区在线观看 | 欧美成人午夜精品| 最近最新中文字幕大全免费视频| 欧美日韩国产mv在线观看视频| 在线永久观看黄色视频| 一本综合久久免费| 午夜福利乱码中文字幕| 国产男女内射视频| 亚洲专区中文字幕在线| 在线观看免费日韩欧美大片| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 亚洲精品成人av观看孕妇| 久久久久国内视频| 久久国产精品影院| 一边摸一边抽搐一进一小说 | 国产精品九九99| 国精品久久久久久国模美| 一区二区日韩欧美中文字幕| 国产精品欧美亚洲77777| 日韩欧美一区视频在线观看| 91麻豆av在线| videos熟女内射| 波多野结衣一区麻豆| 亚洲精品成人av观看孕妇| 男女之事视频高清在线观看| 老司机亚洲免费影院| 黄频高清免费视频| 国产精品乱码一区二三区的特点 | 搡老岳熟女国产| 91麻豆av在线| 男女午夜视频在线观看| 很黄的视频免费| 国产深夜福利视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩另类电影网站| 天天操日日干夜夜撸| 老司机深夜福利视频在线观看| 国产精品.久久久| 欧美最黄视频在线播放免费 | 久久婷婷成人综合色麻豆| 免费看十八禁软件| 一边摸一边抽搐一进一出视频| 两个人免费观看高清视频| 色婷婷久久久亚洲欧美| 五月开心婷婷网| 国产高清国产精品国产三级| avwww免费| 一级片'在线观看视频| 免费看a级黄色片| 国产精品美女特级片免费视频播放器 | 日本vs欧美在线观看视频| 丝袜在线中文字幕| 中国美女看黄片| 成年版毛片免费区| 久久人妻熟女aⅴ| 丝袜美足系列| 美女高潮到喷水免费观看| 人妻丰满熟妇av一区二区三区 | a在线观看视频网站| 美女国产高潮福利片在线看| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 亚洲男人天堂网一区| 国产亚洲欧美精品永久| 村上凉子中文字幕在线| 极品人妻少妇av视频| 国产精品影院久久| 视频区图区小说| 国产一区二区三区视频了| 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 日韩大码丰满熟妇| 午夜激情av网站| 交换朋友夫妻互换小说| 亚洲av片天天在线观看| 女性生殖器流出的白浆| 夜夜躁狠狠躁天天躁| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 午夜福利一区二区在线看| 免费久久久久久久精品成人欧美视频| 国产在线观看jvid| 亚洲一区高清亚洲精品| 乱人伦中国视频| 黄色片一级片一级黄色片| 亚洲全国av大片| 极品人妻少妇av视频| av天堂在线播放| 美女 人体艺术 gogo| 18禁观看日本| 国产成人av教育| 成人国产一区最新在线观看| bbb黄色大片| 亚洲专区中文字幕在线| 99久久国产精品久久久| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 动漫黄色视频在线观看| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 高清毛片免费观看视频网站 | 欧美最黄视频在线播放免费 | 天天躁狠狠躁夜夜躁狠狠躁| 老汉色av国产亚洲站长工具| svipshipincom国产片| 精品人妻在线不人妻| 欧美成人免费av一区二区三区 | 色94色欧美一区二区| 免费一级毛片在线播放高清视频 | 欧美激情久久久久久爽电影 | 热re99久久精品国产66热6| 丝袜人妻中文字幕| 中文亚洲av片在线观看爽 | 手机成人av网站| 国产精品av久久久久免费| 欧美乱色亚洲激情| 日本a在线网址| 下体分泌物呈黄色| 在线观看午夜福利视频| 中文亚洲av片在线观看爽 | 国产精品99久久99久久久不卡| 久久久久久久久久久久大奶| 9热在线视频观看99| 中亚洲国语对白在线视频| 国产视频一区二区在线看| 一区二区三区精品91| 欧美日韩黄片免| 免费观看a级毛片全部| 丝瓜视频免费看黄片| tocl精华| 免费在线观看影片大全网站| 中文欧美无线码| 精品电影一区二区在线| 午夜老司机福利片| videos熟女内射| 婷婷丁香在线五月| 日韩欧美一区视频在线观看| 中文字幕最新亚洲高清| 亚洲av成人av| 王馨瑶露胸无遮挡在线观看| 香蕉丝袜av| 手机成人av网站| 1024视频免费在线观看| 妹子高潮喷水视频| 人人妻人人澡人人看| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| 久久狼人影院| www.熟女人妻精品国产| 亚洲精品一二三| 精品国内亚洲2022精品成人 | 免费不卡黄色视频| 巨乳人妻的诱惑在线观看| 日韩欧美在线二视频 | 精品久久久久久久久久免费视频 | 精品亚洲成国产av| 可以免费在线观看a视频的电影网站| 一a级毛片在线观看| 男女高潮啪啪啪动态图| 天堂动漫精品| 成人精品一区二区免费| 黄频高清免费视频| 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 国产精品综合久久久久久久免费 | 亚洲午夜精品一区,二区,三区| 99精品欧美一区二区三区四区| 人妻久久中文字幕网| 亚洲成人国产一区在线观看|