• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of helical ball micro milling with variable radial immersion*

    2014-09-17 12:11:12ZiyangCAOXiaohongXUEHuaLILihuaGUO
    機(jī)床與液壓 2014年6期

    Zi-yang CAO,Xiao-hong XUE,Hua LI,Li-hua GUO

    College of Mechanical Engineering,Suzhou University of Science and Technology,Suzhou 215009,China

    1.Introduction

    There is a strong demand from various industries for miniature devices and components with complex micro scale features fabricated on a variety of materials.Micro end milling can overcome the limitations of semi-conductor based processing techniques by utilizing miniature ball mills to make complex 3D parts with no need for expensive masks[1-3].In addition,due to high dynamic instability,it is very important to study the dynamics of cutting forces and stability for proper planning and control of machining process and for the optimization of the cutting conditions to minimize production costs and times[4-5].

    Undesirable vibrations have been observed in partial immersion cuts[6-7].Using a once-per-revolution sampling technique combined with capacitive measurements of the tool shank displacements in the feed and normal directions during cutting,they found that some unstable low radial immersion cuts gave discrete clusters ofonce-per-revolution sampled points when plotted in the x-y plane,while others presented elliptical distributions.They subsequently showed that this behavior was the manifestation of two different types of instability[7-8].Traditional Hopf bifurcation leads to the elliptical distribution of periodically sampled points.The second instability type named flip bifurcation encountered during low(less than 25%)radial immersions.It reveals itself as two tightly grouped clusters of sampled points as opposed to a single group of points for the synchronous vibrations that occur during stable cutting with forced vibrations only.

    Subsequent modeling efforts are described in[6,9-10]and include temporal finite element analysis,time domain simulation,and a multi-frequency analytical solution.These techniques give improved accuracy for the predicted stability limit over the average tooth angle and frequency-domain approaches in very low radial immersion.Usually,it is difficult to include this complexity in the analytical formulations,but relatively straightforward to include it in the time domain simulation.As with all of engineering,it is that increased accuracy is computationally more intensive.A method combining time domain and frequency domain analyses is chosen in this article to investigate the ball micro milling with variable radial immersion.

    2.Modeling of ball micro milling process

    The helical teeth milling simulation for square end mills is extended from previous research of our group[5] to incorporate the spherical geometry of ball end mills.The schematic diagram of ball micro end milling is shown in Figure 1.

    Figure 1.Schematic diagram of ball micro milling

    Strictly speaking,due to the helical geometry,the axial(z direction)forces and potential deflections should also be considered.However,for most end milling applications,the z direction dynamic stiffness is much higher than the x or y direction stiffness values,so it is common to consider the z direction to be rigid.Additionally,the tool is sectioned into slices along its axis,as before,and the tool axis is perpendicular to the feed direction.

    As the cutting force expression is complicated by the chip thickness variation with cutter angle,the number of teeth simultaneously engages in the cut at any instant.The cutting force on any cutting edge can be expressed as a function of the chip area and specific cutting force:

    Where Fcis the cutting force,ksis the specific cutting force,b is the chip width and h is the chip thickness.The normal,tangential and axial force components can be written as follows:

    Where Fn,F(xiàn)tand Faare the normal,tangential and axial cutting force,ktis the cutting coefficient in the tangential direction,knis the cutting coefficient in the normal direction,and kais the cutting coefficient in the axial direction.Once the chip thickness and width are determined,the cutting force components in the tangential,normal,and axial directions are determined for each axial slice.

    To describe these forces analytically,the normal,tangential and axial components must be projected into x,y and z coordinate directions.When the ball surface normal direction angle is set as 90 deg,the x and y force projections are now identical to the helical square end mill simulation,and the z component is equal to the axial force.The formula is expressed as follow:

    Where φ is the instantaneous cutter angle,and Fx,F(xiàn)yand Fzare the cutting forces in x,y and z direction respectively.The resultant force F is calculated using Eq.(6).

    3.Comparison of cutting forces between ball and square end mills

    The cutting forces produced by helical square and ball end mills are compared in order to investigate the influence of variable cutter geometry on cutting forces.In this simulation experiment,a 35%radial immersion(a radial immersion ordinarily used)down milling cut is considered.There are two identical modes in both x and y directions obtained through modal testing method[5].These are expressed in modal coordinates as:fn1=1 000 Hz,k1=2.6 ×106N/m,and ζ1=0.03;fn2=1 200 Hz,k2=1.8 ×106N/m,and ζ2=0.02.An aluminum alloy is machined with both four tooth end mill whose diameter is 1mm using a feed of 0.5 μm/tooth.For a specific force value of Ks=950 N/mm2and force angle of 60 deg,the corresponding cutting force coefficients are kt=1 510 N/mm2and kn=1 264 N/mm2.The axial coefficient ka,is taken to be equal to kn.Where fnis the natural frequency,k is the stiffness,and ζ is the damping ratio.

    The axial cutting depth is 0.4 mm,the helix angle is 45 deg and the spindle speed used is 15 000 r/min in these simulations.For the simulations,2 000 steps per revolution is used and the results for the cutting forces in x,y,and z directions under these machining conditions are displayed in Figure 2~5,respectively.

    Figure 2.Comparison of x direction cutting force for ball(solid line)and square(dotted line)helical end mills

    Figure 3.Comparison of y direction cutting force for ball(solid line)and square(dotted line)helical end mills

    Figure 4.Comparison of z direction cutting force for ball(solid line)and square(dotted line)helical end mills

    As shown in Figure 2~4,differences are observed in all three directions.This is due to the variation in the ball surface normal angle and the corresponding projections of the normal and axial components.Naturally,the resultant force is the same for both end mills according to Figure 5.Actually,the question which end mill to choose is depended on the specific machining conditions.

    Figure 5.Comparison of resultant cutting force for ball(solid line)and square(dotted line)helical end mills

    4.Low radial immersion ball micro milling

    The time-domain simulation is used to explore the Hopf and flip bifurcations.By modifying the tool path code to include once-per-revolution sampling,the two instabilities in x(feed direction)versus y displacement plots can be observed.

    4.1.Comparison of stability simulation result between time domain and frequency domain

    Symmetric dynamics with 5%radial immersion(small radial immersion)up milling cut is considered in this simulation experiment,f=1 500 Hz,k=2.2 ×106N/m,and ζ=0.012.The workpiece is aluminum alloy machined with two tooth end mill,1 mm diameter with 45 deg helix angle and using a feed of ~0.4 μm/tooth.The cutting force coefficients are kt=1 250 N/mm2and kn=1 384 N/mm2.The simulation result obtained is displayed in Figure 6.

    Figure 6.Time domain simulation result is compared to frequency domain solution stability

    The stability limit obtained using the frequency domain solution is shown in Figure 6 as a solid line.The results of time domain simulations are identified by dot(stable),box(Hopf bifurcation),and triangle(flip bifurcation).It can be seen from Figure 6 that a narrow band of increased stability is between 45 000 r/min and 46 000 r/min.This is accompanied by the spindle speed range from 47 000 r/min to 50 000 r/min which exhibits flip bifurcation behavior.

    4.2.Time-domain stability analysis at low radial immersion

    Three case points are selected for further study of stability behavior.The once-per-revolution sampled data is expressed as“+”symbol in all three simulations.

    The simulation results of case point(n=46000 rpm and alim=0.8 mm)from Figure 6 are shown in Figure 7 and Figure 8,which demonstrates the time displacements and the x versus y plot respectively.

    Figure 7.Simulation results for x and y direction displacements(n=46 000 r/min and alim=0.8 mm)

    Figure 8.Plot of x versus y direction displacements(n=46 000 r/min and alim=0.8 mm)

    The traditional Hopf instability can be seen in this simulation because the once-per-revolution sampled data appears as an elliptical distribution for Hopf instability.

    Accordingly,the simulation results of case point(n=49 000 r/min and alim=0.6 mm)are shown in Figure 9 and Figure 10.

    Obviously,F(xiàn)igure 9 and Figure 10 show the flip bifurcation.The synchronously sampled data now occur in two clusters after the initial transients attenuate in Figure 10.

    Finally,the simulation results of case point(n=50 000 r/min and alim=0.7 mm)are shown in Figure 11 and Figure 12.

    Figure 9.Simulation results for x and y direction displacements(n=49 000 r/min and alim=0.6 mm)

    Figure 10.Plot of x versus y direction displacements(n=49 000 r/min and alim=0.6 mm)

    Figure 11.Simulation results for x and y direction displacements(n=50 000 r/min and alim=0.7 mm)

    Figure 12.Plot of x versus y direction displacements(n=50 000 r/min and alim=0.7 mm)

    As expected,F(xiàn)igure 11 and Figure 12 display repetitive behavior from one revolution to the next.A stable cut is observed in this simulation.

    For those concerned with detailed process mod-eling,the exact nature of the milling instability(Hopf or flip bifurcation)is extremely clear.For practical machining applications,the radial depth of cut is needed to consider.When the radial depth of cut is low,additional stable zones appear that“split”the higher radial depth stability lobes.

    5.Conclusion

    This study presented a numerical analysis method to investigate the helical ball micro end milling process with variable radial immersion.The schematic diagram of ball micro milling is constructed and the cutting force calculation formula is derived taking account the dynamic cutting thickness based on helical square milling;then the cutting forces between the ball and square end mills are compared by time-domain simulation.In addition,the stability lobe of ball micro milling at low radial immersion is researched in detail through time domain and frequency domain methods.Finally,the time displacements and the x versus y plots are obtained,the Hopf and flip bifurcations are explored,and the simulation result between variable stability cases is deeply compared.

    [1] Huang C Y.Mechanistic modeling of process damping in peripheral milling[J].Journal of Manufacturing Science and Engineering,2007,129:12-20.

    [2] Quintana G,Ciurana J.Chatter in machining processes:A review[J].International Journal of Machine Tools and Manufacture,2011,51:363-376.

    [3] Altintas Y,Eynian M,Onozuka H.Identification of dynamic cutting force coefficients and chatter stability with process damping[J].Annals of the CIRP,2008,57:371-374.

    [4] Dornfeld D,Min S,Takeuchi Y.Recent advances in mechanical micromachining[J].Annals of the CIRP,2006,55:745-768.

    [5] Cao Ziyang,Li H.Research on regenerative chatter in micro milling Process[J].Hydromechatronics Engineering,2012,40:17-20.

    [6] Park S S,Malekian M.Mechanistic modeling and accurate measurement of micro end milling forces[J].Annals of the CIRP,2009,58:49-52.

    [7] Campomanes M,Altintas Y.An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions[J].Journal of Manufacturing Science and Engineering,2003,125/3:416-422.

    [8] Merdol S,Altintas Y.Multi Frequency Solution of Chatter Stability for Low Immersion Milling[J].Journal of Manufacturing Science and Engineering,2004,126/3:459-466.

    [9] Davies M,Pratt J.Stability Prediction for Low Radial Immersion Milling[J].Journal of Manufacturing Science and Engineering,2002,124/2:217-225.

    [10] Davies M,Pratt J.The Stability of Low Radial Immersion Milling[J].Annals of the CIRP,2000,49(1):37-40.

    精品少妇一区二区三区视频日本电影| 老鸭窝网址在线观看| 欧美日韩综合久久久久久| 男人操女人黄网站| 一级毛片女人18水好多 | 在线看a的网站| 99热国产这里只有精品6| 国产高清videossex| 色婷婷久久久亚洲欧美| www.自偷自拍.com| 成在线人永久免费视频| 免费在线观看黄色视频的| 国产精品一区二区免费欧美 | 精品视频人人做人人爽| 久久久久久久久久久久大奶| 多毛熟女@视频| 99国产精品一区二区三区| 嫩草影视91久久| 欧美黄色片欧美黄色片| 成人黄色视频免费在线看| 精品第一国产精品| 国产无遮挡羞羞视频在线观看| 国产精品香港三级国产av潘金莲 | 国产精品国产三级国产专区5o| 精品人妻在线不人妻| 欧美xxⅹ黑人| 爱豆传媒免费全集在线观看| 高清欧美精品videossex| 丝瓜视频免费看黄片| 欧美日本中文国产一区发布| 日韩伦理黄色片| 精品少妇久久久久久888优播| 一边摸一边做爽爽视频免费| 热99久久久久精品小说推荐| 欧美成狂野欧美在线观看| 国产高清videossex| 曰老女人黄片| 日韩欧美一区视频在线观看| 国产成人精品久久久久久| 成人国语在线视频| www日本在线高清视频| 99久久人妻综合| 黄色一级大片看看| 少妇人妻久久综合中文| av国产久精品久网站免费入址| 日韩制服丝袜自拍偷拍| 国产免费现黄频在线看| 亚洲免费av在线视频| 亚洲av片天天在线观看| 欧美av亚洲av综合av国产av| 天天操日日干夜夜撸| 中文精品一卡2卡3卡4更新| 亚洲自偷自拍图片 自拍| 午夜福利视频在线观看免费| 母亲3免费完整高清在线观看| 免费在线观看黄色视频的| 欧美日韩成人在线一区二区| 男男h啪啪无遮挡| 成人18禁高潮啪啪吃奶动态图| 桃花免费在线播放| 1024视频免费在线观看| 18禁黄网站禁片午夜丰满| 国产视频首页在线观看| 亚洲欧洲日产国产| 精品久久蜜臀av无| 国产精品一国产av| 日韩一本色道免费dvd| 午夜福利在线免费观看网站| 日本a在线网址| 精品免费久久久久久久清纯 | 99久久99久久久精品蜜桃| 男女边吃奶边做爰视频| 国产精品人妻久久久影院| 免费av中文字幕在线| 亚洲精品av麻豆狂野| 无限看片的www在线观看| 飞空精品影院首页| 看十八女毛片水多多多| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 午夜免费成人在线视频| 交换朋友夫妻互换小说| 精品一区在线观看国产| 黄网站色视频无遮挡免费观看| 欧美黄色片欧美黄色片| 日韩制服骚丝袜av| 在现免费观看毛片| 18禁国产床啪视频网站| 国产色视频综合| 日本av手机在线免费观看| 免费在线观看影片大全网站 | √禁漫天堂资源中文www| 下体分泌物呈黄色| 1024香蕉在线观看| 美女主播在线视频| 亚洲国产最新在线播放| 一区二区日韩欧美中文字幕| 成年人黄色毛片网站| 看免费av毛片| 国产亚洲av片在线观看秒播厂| 欧美激情高清一区二区三区| 国产男女内射视频| 最近手机中文字幕大全| 日本av手机在线免费观看| 考比视频在线观看| 亚洲av在线观看美女高潮| 日韩视频在线欧美| 亚洲精品一二三| 久久精品国产a三级三级三级| 国产爽快片一区二区三区| 久久亚洲精品不卡| 国产精品二区激情视频| 波野结衣二区三区在线| 亚洲欧美精品自产自拍| 国产成人啪精品午夜网站| 在线 av 中文字幕| 国产av一区二区精品久久| 人成视频在线观看免费观看| 巨乳人妻的诱惑在线观看| 免费av中文字幕在线| 又大又爽又粗| 在线看a的网站| 国产福利在线免费观看视频| 人体艺术视频欧美日本| 亚洲人成电影观看| 中文字幕色久视频| 日本猛色少妇xxxxx猛交久久| 午夜久久久在线观看| e午夜精品久久久久久久| 99热国产这里只有精品6| 婷婷丁香在线五月| av在线播放精品| 97精品久久久久久久久久精品| 黑人欧美特级aaaaaa片| 国产在视频线精品| 在线观看www视频免费| 久久久精品免费免费高清| 又大又爽又粗| 热re99久久国产66热| 涩涩av久久男人的天堂| 日韩一本色道免费dvd| 国产精品一区二区免费欧美 | 在线观看一区二区三区激情| 久久精品成人免费网站| 精品国产国语对白av| 国产在线观看jvid| 男女之事视频高清在线观看 | 18禁观看日本| 一区二区三区激情视频| 18禁观看日本| 精品亚洲成国产av| 黑人猛操日本美女一级片| 国产成人免费观看mmmm| 一本—道久久a久久精品蜜桃钙片| 可以免费在线观看a视频的电影网站| 国产高清国产精品国产三级| 欧美大码av| 欧美大码av| 黄色a级毛片大全视频| 少妇猛男粗大的猛烈进出视频| 精品高清国产在线一区| 亚洲,一卡二卡三卡| 亚洲中文字幕日韩| 每晚都被弄得嗷嗷叫到高潮| 老司机亚洲免费影院| 国产成人精品久久二区二区免费| 99国产精品一区二区三区| 校园人妻丝袜中文字幕| 久久精品亚洲熟妇少妇任你| 狂野欧美激情性bbbbbb| 一区二区三区激情视频| 亚洲国产精品国产精品| 国产91精品成人一区二区三区 | 一边摸一边抽搐一进一出视频| 久久久久久久国产电影| 91麻豆精品激情在线观看国产 | 可以免费在线观看a视频的电影网站| 国产一区二区在线观看av| 操美女的视频在线观看| 在线av久久热| 午夜久久久在线观看| 美女福利国产在线| av电影中文网址| 午夜视频精品福利| 91麻豆精品激情在线观看国产 | 大陆偷拍与自拍| 可以免费在线观看a视频的电影网站| 一级a爱视频在线免费观看| 日本黄色日本黄色录像| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 亚洲国产日韩一区二区| 亚洲国产欧美在线一区| 日韩制服丝袜自拍偷拍| 1024视频免费在线观看| av一本久久久久| 免费日韩欧美在线观看| 亚洲欧美一区二区三区国产| 丝袜脚勾引网站| 波多野结衣av一区二区av| 老汉色av国产亚洲站长工具| 美女大奶头黄色视频| 在线看a的网站| 欧美精品一区二区大全| 首页视频小说图片口味搜索 | 美女高潮到喷水免费观看| 久久九九热精品免费| 色视频在线一区二区三区| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o | 高清黄色对白视频在线免费看| 亚洲情色 制服丝袜| 久久精品国产a三级三级三级| 男的添女的下面高潮视频| 亚洲 欧美一区二区三区| 男女无遮挡免费网站观看| 成人黄色视频免费在线看| 亚洲欧美一区二区三区黑人| 激情五月婷婷亚洲| 91成人精品电影| 超色免费av| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 性少妇av在线| 国产无遮挡羞羞视频在线观看| 国产在线免费精品| 国产国语露脸激情在线看| 青春草亚洲视频在线观看| 一本久久精品| 精品少妇一区二区三区视频日本电影| 天堂俺去俺来也www色官网| 丝瓜视频免费看黄片| 中文字幕人妻丝袜一区二区| 免费女性裸体啪啪无遮挡网站| 亚洲国产av影院在线观看| 欧美少妇被猛烈插入视频| 黄色a级毛片大全视频| 国产精品久久久久久精品电影小说| 在线观看www视频免费| 欧美黑人精品巨大| 免费女性裸体啪啪无遮挡网站| 一级毛片 在线播放| 99九九在线精品视频| 新久久久久国产一级毛片| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| av天堂在线播放| 亚洲精品日韩在线中文字幕| av不卡在线播放| 男女床上黄色一级片免费看| 欧美国产精品一级二级三级| 国产精品麻豆人妻色哟哟久久| 欧美成狂野欧美在线观看| 免费日韩欧美在线观看| 九草在线视频观看| 国产精品一区二区免费欧美 | 黄色视频不卡| 久久人人爽av亚洲精品天堂| 国产午夜精品一二区理论片| 别揉我奶头~嗯~啊~动态视频 | 国产又色又爽无遮挡免| 男女床上黄色一级片免费看| 中国美女看黄片| 久久久久精品国产欧美久久久 | av在线播放精品| 国产深夜福利视频在线观看| 久久久国产精品麻豆| 国产成人av教育| 久久久久网色| 肉色欧美久久久久久久蜜桃| 丝袜美足系列| www.av在线官网国产| 激情五月婷婷亚洲| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 亚洲国产精品成人久久小说| 精品人妻在线不人妻| 欧美日韩成人在线一区二区| 国产成人欧美在线观看 | 欧美日韩亚洲综合一区二区三区_| 精品国产乱码久久久久久小说| 精品国产国语对白av| 国产亚洲精品第一综合不卡| 国产精品九九99| 丝袜人妻中文字幕| av在线播放精品| 蜜桃国产av成人99| 久久女婷五月综合色啪小说| 美女主播在线视频| 午夜福利视频精品| 黑人巨大精品欧美一区二区蜜桃| 国产在线免费精品| 两人在一起打扑克的视频| 精品国产国语对白av| 在线观看免费视频网站a站| av福利片在线| 99久久综合免费| 国产午夜精品一二区理论片| 国产麻豆69| 国产精品久久久久成人av| 日本欧美视频一区| 久久天躁狠狠躁夜夜2o2o | 国产91精品成人一区二区三区 | 色94色欧美一区二区| e午夜精品久久久久久久| 黄色视频在线播放观看不卡| 亚洲精品美女久久av网站| 桃花免费在线播放| 国产在视频线精品| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 国产亚洲午夜精品一区二区久久| 18禁观看日本| 欧美在线一区亚洲| 黄色a级毛片大全视频| 亚洲精品一区蜜桃| 色精品久久人妻99蜜桃| 欧美日韩视频高清一区二区三区二| tube8黄色片| 一区二区三区精品91| 国产成人a∨麻豆精品| 亚洲欧美色中文字幕在线| 日韩一本色道免费dvd| 91精品国产国语对白视频| 国产精品久久久av美女十八| 久久精品国产亚洲av高清一级| 精品一区在线观看国产| 丁香六月天网| 午夜av观看不卡| 日日爽夜夜爽网站| 久久精品国产a三级三级三级| 日韩av不卡免费在线播放| 亚洲欧美一区二区三区久久| a级片在线免费高清观看视频| 波多野结衣一区麻豆| 国产精品久久久久成人av| 91麻豆精品激情在线观看国产 | 亚洲av国产av综合av卡| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 9191精品国产免费久久| 成人亚洲精品一区在线观看| 色播在线永久视频| 午夜福利免费观看在线| 亚洲av片天天在线观看| 色网站视频免费| 黄色怎么调成土黄色| 亚洲,欧美精品.| 国产成人精品久久二区二区91| 国产99久久九九免费精品| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 考比视频在线观看| 国产人伦9x9x在线观看| 熟女av电影| 精品一区在线观看国产| 国产av一区二区精品久久| 2018国产大陆天天弄谢| 久久精品aⅴ一区二区三区四区| 777米奇影视久久| 男女午夜视频在线观看| 一本色道久久久久久精品综合| 十八禁高潮呻吟视频| 亚洲国产av影院在线观看| 好男人电影高清在线观看| 精品熟女少妇八av免费久了| 伊人久久大香线蕉亚洲五| 亚洲人成电影免费在线| 欧美+亚洲+日韩+国产| 久9热在线精品视频| 亚洲精品国产区一区二| av福利片在线| av线在线观看网站| 女人精品久久久久毛片| 在线观看一区二区三区激情| 高清av免费在线| 在线观看一区二区三区激情| 高清av免费在线| 青春草视频在线免费观看| 国产男人的电影天堂91| 午夜免费观看性视频| www.精华液| 精品一品国产午夜福利视频| 久久久久精品国产欧美久久久 | 久久精品人人爽人人爽视色| 99九九在线精品视频| 国产高清不卡午夜福利| 国产精品久久久久成人av| 免费女性裸体啪啪无遮挡网站| 一本大道久久a久久精品| 狠狠婷婷综合久久久久久88av| 咕卡用的链子| 国产免费福利视频在线观看| 一边摸一边抽搐一进一出视频| 男女下面插进去视频免费观看| 亚洲一区中文字幕在线| 麻豆av在线久日| 亚洲精品成人av观看孕妇| 国产黄色免费在线视频| 欧美日韩黄片免| 一区在线观看完整版| 悠悠久久av| 亚洲欧洲国产日韩| 欧美精品高潮呻吟av久久| 中文精品一卡2卡3卡4更新| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 国产欧美日韩精品亚洲av| 国产99久久九九免费精品| 一区二区三区激情视频| 交换朋友夫妻互换小说| 在线观看国产h片| 少妇人妻 视频| 国产精品久久久久久精品电影小说| 宅男免费午夜| 嫁个100分男人电影在线观看 | 久久毛片免费看一区二区三区| 国产成人欧美在线观看 | 色婷婷av一区二区三区视频| 一本久久精品| 欧美日韩亚洲高清精品| 免费看十八禁软件| 99国产精品一区二区三区| 五月开心婷婷网| 国产片内射在线| 免费黄频网站在线观看国产| 亚洲美女黄色视频免费看| 欧美精品啪啪一区二区三区 | 精品一区二区三卡| 亚洲国产av影院在线观看| 亚洲成人免费av在线播放| 中文精品一卡2卡3卡4更新| 欧美变态另类bdsm刘玥| xxxhd国产人妻xxx| 久久中文字幕一级| 一二三四在线观看免费中文在| 青草久久国产| av天堂在线播放| 成人三级做爰电影| 人妻一区二区av| 91精品国产国语对白视频| 一级毛片黄色毛片免费观看视频| 狂野欧美激情性bbbbbb| 婷婷色综合大香蕉| tube8黄色片| 国产精品 欧美亚洲| 亚洲成av片中文字幕在线观看| 国产免费视频播放在线视频| 国产成人精品久久久久久| 亚洲五月色婷婷综合| 婷婷色综合大香蕉| 国产精品麻豆人妻色哟哟久久| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 十八禁网站网址无遮挡| 精品高清国产在线一区| 国产成人精品无人区| 久久人人爽人人片av| 观看av在线不卡| 91成人精品电影| √禁漫天堂资源中文www| 亚洲久久久国产精品| netflix在线观看网站| cao死你这个sao货| 久久久久久免费高清国产稀缺| 视频区图区小说| 国产又爽黄色视频| 久久人人爽av亚洲精品天堂| 大陆偷拍与自拍| 97人妻天天添夜夜摸| 亚洲天堂av无毛| 国产亚洲精品第一综合不卡| 国产一区二区在线观看av| 成年av动漫网址| 交换朋友夫妻互换小说| 成年人黄色毛片网站| 成年人午夜在线观看视频| 色94色欧美一区二区| 黄色a级毛片大全视频| 午夜免费观看性视频| 日韩大片免费观看网站| 十八禁高潮呻吟视频| 亚洲av成人精品一二三区| 黄色 视频免费看| 国产欧美亚洲国产| 亚洲国产av新网站| 一级黄色大片毛片| 欧美激情极品国产一区二区三区| 中文字幕色久视频| 丝袜脚勾引网站| 国产精品九九99| 啦啦啦在线免费观看视频4| 男女床上黄色一级片免费看| 日韩中文字幕视频在线看片| 一个人免费看片子| 99热网站在线观看| 黄网站色视频无遮挡免费观看| 久久免费观看电影| 欧美精品啪啪一区二区三区 | 欧美人与善性xxx| 午夜日韩欧美国产| 亚洲精品自拍成人| 久久久久久久大尺度免费视频| 在线观看免费日韩欧美大片| 国产野战对白在线观看| 成人18禁高潮啪啪吃奶动态图| 人人妻人人澡人人爽人人夜夜| 欧美日韩精品网址| 18禁黄网站禁片午夜丰满| 日本欧美视频一区| 国产精品三级大全| videosex国产| 久热爱精品视频在线9| 黄色片一级片一级黄色片| 后天国语完整版免费观看| 久久国产精品影院| 国产福利在线免费观看视频| 不卡av一区二区三区| 国产免费福利视频在线观看| 国产无遮挡羞羞视频在线观看| 欧美黄色淫秽网站| 深夜精品福利| 婷婷丁香在线五月| 老汉色av国产亚洲站长工具| 色婷婷久久久亚洲欧美| 麻豆av在线久日| 99热全是精品| 一级毛片 在线播放| kizo精华| 欧美少妇被猛烈插入视频| 亚洲av日韩精品久久久久久密 | 男女午夜视频在线观看| 国产高清videossex| 夫妻性生交免费视频一级片| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久久久大奶| 成人国产一区最新在线观看 | 日本欧美视频一区| av在线播放精品| 久久亚洲国产成人精品v| 国语对白做爰xxxⅹ性视频网站| 嫁个100分男人电影在线观看 | 在线观看免费日韩欧美大片| 无遮挡黄片免费观看| 男女边吃奶边做爰视频| 黄色视频在线播放观看不卡| 一区二区av电影网| av视频免费观看在线观看| 午夜福利视频精品| 中文字幕人妻丝袜制服| 999精品在线视频| 久久久国产一区二区| 亚洲伊人色综图| 在线观看国产h片| 免费观看人在逋| 婷婷成人精品国产| 一边亲一边摸免费视频| 久久精品人人爽人人爽视色| 亚洲五月色婷婷综合| 亚洲国产av影院在线观看| 国产91精品成人一区二区三区 | 人人妻人人澡人人看| 男女午夜视频在线观看| 一区二区日韩欧美中文字幕| 国产成人91sexporn| 波多野结衣av一区二区av| av又黄又爽大尺度在线免费看| 午夜免费观看性视频| 中文字幕最新亚洲高清| 人人妻人人爽人人添夜夜欢视频| 亚洲国产av新网站| 在线观看一区二区三区激情| 午夜久久久在线观看| 亚洲精品一二三| 国产精品免费大片| 亚洲精品一二三| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲视频免费观看视频| 亚洲 欧美一区二区三区| 欧美人与善性xxx| 国产1区2区3区精品| 人人妻人人爽人人添夜夜欢视频| 五月天丁香电影| 一区二区av电影网| 国产精品麻豆人妻色哟哟久久| 亚洲情色 制服丝袜| 永久免费av网站大全| 天天躁夜夜躁狠狠躁躁| 亚洲av欧美aⅴ国产| 国产精品免费视频内射| 午夜福利免费观看在线| 99香蕉大伊视频| 人人澡人人妻人| 精品国产一区二区三区四区第35| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 少妇的丰满在线观看| 少妇被粗大的猛进出69影院| 多毛熟女@视频| 亚洲国产精品999| 欧美黄色淫秽网站| 在线观看免费视频网站a站| 黑人猛操日本美女一级片| 青春草视频在线免费观看| 青春草亚洲视频在线观看| 久久国产精品男人的天堂亚洲| 免费久久久久久久精品成人欧美视频| 91字幕亚洲| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三 | 久久人人97超碰香蕉20202| 免费看十八禁软件| 天天躁夜夜躁狠狠躁躁|