• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of helical ball micro milling with variable radial immersion*

    2014-09-06 10:53:34ZiyangCAOXiaohongXUEHuaLILihuaGUO
    機(jī)床與液壓 2014年1期

    Zi-yang CAO, Xiao-hong XUE, Hua LI, Li-hua GUO

    College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

    ?

    Investigation of helical ball micro milling with variable radial immersion*

    Zi-yang CAO?, Xiao-hong XUE, Hua LI, Li-hua GUO

    College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

    Abstract:Micro milling can fabricate miniaturized components using micro end mill at high rotational speeds. The analysis of cutting force and stability in micro milling plays an important role in characterizing the cutting process. A numerical analysis method is presented to investigate the helical ball micro milling process with variable radial immersion. The schematic model of ball micro milling is constructed and the cutting force calculation formula is derived. And then, a detailed time domain simulation for micro milling forces between helical ball and square end mills is carried out, and the results are compared. In addition, the stability lobe of ball micro milling with low radial immersion is researched in detail through time domain and frequency domain methods. Finally, the Hopf and flip bifurcations are explored and the simulation results between variable stability cases are deeply compared and analyzed.

    Key words:Helical ball end mill, Micro milling, Radial immersion

    1.Introduction

    There is a strong demand from various industries for miniature devices and components with complex micro scale features fabricated on a variety of materials. Micro end milling can overcome the limitations of semi-conductor based processing techniques by utilizing miniature ball mills to make complex 3D parts with no need for expensive masks[1-3]. In addition, due to high dynamic instability, it is very important to study the dynamics of cutting forces and stability for proper planning and control of machining process and for the optimization of the cutting conditions to minimize production costs and times[4-5].

    Undesirable vibrations have been observed in partial immersion cuts[6-7]. Using a once-per-revolution sampling technique combined with capacitive measurements of the tool shank displacements in the feed and normal directions during cutting, they found that some unstable low radial immersion cuts gave discrete clusters of once-per-revolution sampled points when plotted in thex-yplane, while others presented elliptical distributions. They subsequently showed that this behavior was the manifestation of two different types of instability[7-8]. Traditional Hopf bifurcation leads to the elliptical distribution of periodically sampled points. The second instability type named flip bifurcation encountered during low (less than 25%) radial immersions. It reveals itself as two tightly grouped clusters of sampled points as opposed to a single group of points for the synchronous vibrations that occur during stable cutting with forced vibrations only.

    Subsequent modeling efforts are described in[6, 9-10] and include temporal finite element analysis, time domain simulation, and a multi-frequency analytical solution. These techniques give improved accuracy for the predicted stability limit over the average tooth angle and frequency-domain approaches in very low radial immersion. Usually, it is difficult to include this complexity in the analytical formulations, but relatively straightforward to include it in the time domain simulation. As with all of engineering, it is that increased accuracy is computationally more intensive. A method combining time domain and frequency domain analyses is chosen in this article to investigate the ball micro milling with variable radial immersion.

    2.Modeling of ball micro milling process

    The helical teeth milling simulation for square end mills is extended from previous research of our group[5] to incorporate the spherical geometry of ball end mills. The schematic diagram of ball micro end milling is shown in Figure 1.

    Figure 1.Schematic diagram of ball micro milling

    Strictly speaking, due to the helical geometry, the axial (zdirection) forces and potential deflections should also be considered. However, for most end milling applications, thezdirection dynamic stiffness is much higher than thexorydirection stiffness values, so it is common to consider thezdirection to be rigid. Additionally, the tool is sectioned into slices along its axis, as before, and the tool axis is perpendicular to the feed direction.

    As the cutting force expression is complicated by the chip thickness variation with cutter angle, the number of teeth simultaneously engages in the cut at any instant. The cutting force on any cutting edge can be expressed as a function of the chip area and specific cutting force:

    Fc=ksbh

    (1)

    WhereFcis the cutting force,ksis the specific cutting force,bis the chip width andhis the chip thickness. The normal, tangential and axial force components can be written as follows:

    Fn=knbh

    (2)

    Ft=ktbh

    (3)

    Fa=kabh

    (4)

    WhereFn,FtandFaare the normal, tangential and axial cutting force,ktis the cutting coefficient in the tangential direction,knis the cutting coefficient in the normal direction, andkais the cutting coefficient in the axial direction. Once the chip thickness and width are determined, the cutting force components in the tangential, normal, and axial directions are determined for each axial slice.

    To describe these forces analytically, the normal, tangential and axial components must be projected intox,yandzcoordinate directions. When the ball surface normal direction angle is set as 90 deg, thexandyforce projections are now identical to the helical square end mill simulation, and thezcomponent is equal to the axial force. The formula is expressed as follow:

    (5)

    Whereφis the instantaneous cutter angle, andFx,FyandFzare the cutting forces inx,yandzdirection respectively. The resultant forceFis calculated using Eq. (6).

    (6)

    3.Comparison of cutting forces between ball and square end mills

    The cutting forces produced by helical square and ball end mills are compared in order to investigate the influence of variable cutter geometry on cutting forces. In this simulation experiment, a 35% radial immersion (a radial immersion ordinarily used) down milling cut is considered. There are two identical modes in bothxandydirections obtained through modal testing method[5]. These are expressed in modal coordinates as:fn1=1 000 Hz,k1= 2.6×106N/m, andζ1= 0.03;fn2=1 200 Hz,k2= 1.8×106N/m, andζ2= 0.02. An aluminum alloy is machined with both four tooth end mill whose diameter is 1mm using a feed of 0.5 μm/tooth. For a specific force value ofKs= 950 N/mm2and force angle of 60 deg, the corresponding cutting force coefficients arekt=1 510 N/mm2andkn=1 264 N/mm2. The axial coefficientka, is taken to be equal tokn. Wherefnis the natural frequency,kis the stiffness, andζis the damping ratio.

    The axial cutting depth is 0.4 mm, the helix angle is 45 deg and the spindle speed used is 15 000 r/min in these simulations. For the simulations, 2 000 steps per revolution is used and the results for the cutting forces inx,y, andzdirections under these machining conditions are displayed in Figure 2~5, respectively.

    Figure 2.Comparison of x direction cutting force for ball (solid line) and square (dotted line) helical end mills

    Figure 3.Comparison of y direction cutting force for ball (solid line) and square (dotted line) helical end mills

    Figure 4.Comparison of z direction cutting force for ball (solid line) and square (dotted line) helical end mills

    As shown in Figure 2~4, differences are observed in all three directions. This is due to the variation in the ball surface normal angle and the corresponding projections of the normal and axial components. Naturally, the resultant force is the same for both end mills according to Figure 5. Actually, the question which end mill to choose is depended on the specific machining conditions.

    Figure 5.Comparison of resultant cutting force for ball (solid line) and square (dotted line) helical end mills

    4.Low radial immersion ball micro milling

    The time-domain simulation is used to explore the Hopf and flip bifurcations. By modifying the tool path code to include once-per-revolution sampling, the two instabilities inx(feed direction) versusydisplacement plots can be observed.

    4.1.Comparison of stability simulation result between time domain and frequency domain

    Symmetric dynamics with 5% radial immersion (small radial immersion) up milling cut is considered in this simulation experiment,f= 1 500 Hz,k=2.2×106N/m, andζ= 0.012. The workpiece is aluminum alloy machined with two tooth end mill, 1 mm diameter with 45 deg helix angle and using a feed of ~0.4 μm/tooth. The cutting force coefficients arekt= 1 250 N/mm2andkn=1 384 N/mm2. The simulation result obtained is displayed in Figure 6.

    Figure 6.Time domain simulation result is compared to frequency domain solution stability

    The stability limit obtained using the frequency domain solution is shown in Figure 6 as a solid line. The results of time domain simulations are identified by dot (stable), box (Hopf bifurcation), and triangle (flip bifurcation). It can be seen from Figure 6 that a narrow band of increased stability is between 45 000 r/min and 46 000 r/min. This is accompanied by the spindle speed range from 47 000 r/min to 50 000 r/min which exhibits flip bifurcation behavior.

    4.2.Time-domain stability analysis at low radial immersion

    Three case points are selected for further study of stability behavior. The once-per-revolution sampled data is expressed as “+” symbol in all three simulations.

    The simulation results of case point (n= 46000 rpm andalim=0.8 mm) from Figure 6 are shown in Figure 7 and Figure 8, which demonstrates the time displacements and thexversusyplot respectively.

    Figure 7.Simulation results for x and y direction displacements (n =46 000 r/min and alim=0.8 mm)

    Figure 8.Plot of x versus y direction displacements (n = 46 000 r/min and alim = 0.8 mm)

    The traditional Hopf instability can be seen in this simulation because the once-per-revolution sampled data appears as an elliptical distribution for Hopf instability.

    Accordingly, the simulation results of case point (n=49 000 r/min andalim=0.6 mm) are shown in Figure 9 and Figure 10.

    Obviously, Figure 9 and Figure 10 show the flip bifurcation. The synchronously sampled data now occur in two clusters after the initial transients attenuate in Figure 10.

    Finally, the simulation results of case point (n=50 000 r/min andalim=0.7 mm) are shown in Figure 11 and Figure 12.

    Figure 9.Simulation results for x and y direction displacements (n =49 000 r/min and alim=0.6 mm)

    Figure 10.Plot of x versus y direction displacements(n=49 000 r/min and alim=0.6 mm)

    Figure 11.Simulation results for x and y direction displacements (n=50 000 r/min and alim=0.7 mm)

    Figure 12.Plot of x versus y direction displacements(n=50 000 r/min and alim=0.7 mm)

    As expected, Figure 11 and Figure 12 display repetitive behavior from one revolution to the next. A stable cut is observed in this simulation.

    For those concerned with detailed process modeling, the exact nature of the milling instability (Hopf or flip bifurcation) is extremely clear. For practical machining applications, the radial depth of cut is needed to consider. When the radial depth of cut is low, additional stable zones appear that “split” the higher radial depth stability lobes.

    5.Conclusion

    This study presented a numerical analysis method to investigate the helical ball micro end milling process with variable radial immersion. The schematic diagram of ball micro milling is constructed and the cutting force calculation formula is derived taking account the dynamic cutting thickness based on helical square milling; then the cutting forces between the ball and square end mills are compared by time-domain simulation. In addition, the stability lobe of ball micro milling at low radial immersion is researched in detail through time domain and frequency domain methods. Finally, the time displacements and thexversusyplots are obtained, the Hopf and flip bifurcations are explored, and the simulation result between variable stability cases is deeply compared.

    References

    [1]Huang C Y. Mechanistic modeling of process damping in peripheral milling[J]. Journal of Manufacturing Science and Engineering, 2007, 129:12-20.

    [2]Quintana G, Ciurana J. Chatter in machining processes: A review[J]. International Journal of Machine Tools and Manufacture, 2011, 51:363-376.

    [3]Altintas Y, Eynian M, Onozuka H. Identification of dynamic cutting force coefficients and chatter stability with process damping[J]. Annals of the CIRP, 2008, 57:371-374.

    [4]Dornfeld D, Min S, Takeuchi Y. Recent advances in mechanical micromachining[J]. Annals of the CIRP, 2006, 55:745-768.

    [5]Cao Ziyang, Li H. Research on regenerative chatter in micro milling Process[J]. Hydromechatronics Engineering, 2012, 40:17-20.

    [6]Park S S, Malekian M. Mechanistic modeling and accurate measurement of micro end milling forces[J]. Annals of the CIRP, 2009, 58:49-52.

    [7]Campomanes M, Altintas Y. An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions[J]. Journal of Manufacturing Science and Engineering, 2003, 125/3: 416-422.

    [8]Merdol S, Altintas Y. Multi Frequency Solution of Chatter Stability for Low Immersion Milling[J]. Journal of Manufacturing Science and Engineering, 2004, 126/3: 459-466.

    [9]Davies M, Pratt J. Stability Prediction for Low Radial Immersion Milling[J]. Journal of Manufacturing Science and Engineering, 2002, 124/2: 217-225.

    [10]Davies M, Pratt J. The Stability of Low Radial Immersion Milling[J]. Annals of the CIRP, 2000, 49(1): 37-40.

    可變徑向切深下螺旋齒球頭銑刀微細(xì)銑削*

    曹自洋?, 薛曉紅, 李華, 郭麗華

    蘇州科技學(xué)院 機(jī)械工程學(xué)院,江蘇 蘇州215009

    摘要:微細(xì)銑削加工是使用微型立銑刀在高主軸轉(zhuǎn)速下制造微型元件的加工方式,分析切削力和加工穩(wěn)定性對表征微細(xì)銑削加工過程起著重要的作用。提出一種數(shù)值分析的方法來研究螺旋齒球頭立銑刀在可變徑向切削深度下的微細(xì)銑削加工過程。首先建立了球頭銑刀微細(xì)銑削的模型,并推導(dǎo)了切削力的計(jì)算公式;采用時(shí)域仿真的方法詳細(xì)計(jì)算了螺旋齒球頭立銑刀和平頭立銑刀銑削加工的切削力,并對比了二者切削力仿真的結(jié)果;通過時(shí)域和頻域研究相結(jié)合的方式詳細(xì)分析了小徑向切深下球頭銑刀微細(xì)銑削的穩(wěn)定性。最后,分析得到了Hopf-flip分岔,并深入對比和分析了不同加工條件下銑削加工的穩(wěn)定性狀況。

    關(guān)鍵詞:螺旋齒球頭立銑刀;微細(xì)銑削;徑向切削深度

    中圖分類號:TG501

    DOI:10.3969/j.issn.1001-3881.2014.06.017

    Received: 2013-11-05

    *Project supported by the Jiangsu Natural Science Foundation (BK2011314), Suzhou Science and Technology Projects (SYG201244) and NSFC (51075288)

    ? Zi-yang CAO, PhD.E-mail: dukeczy@nuaa.edu.cn

    国产探花在线观看一区二区| 欧美日韩精品成人综合77777| 最新中文字幕久久久久| 亚洲内射少妇av| 好男人视频免费观看在线| 美女高潮的动态| 啦啦啦韩国在线观看视频| 欧美日韩综合久久久久久| 日本与韩国留学比较| 久久人人爽人人爽人人片va| 国产亚洲精品久久久com| 蜜桃久久精品国产亚洲av| 欧美+日韩+精品| 身体一侧抽搐| 有码 亚洲区| 免费观看的影片在线观看| 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| av免费观看日本| 亚洲av电影在线观看一区二区三区 | 自拍偷自拍亚洲精品老妇| 午夜福利在线观看免费完整高清在| 天堂中文最新版在线下载 | 综合色丁香网| 99久久无色码亚洲精品果冻| 男人和女人高潮做爰伦理| 精品欧美国产一区二区三| 午夜激情欧美在线| 中文字幕精品亚洲无线码一区| 精品久久久久久成人av| 久久这里有精品视频免费| 亚洲av中文字字幕乱码综合| 级片在线观看| 99热这里只有是精品50| 日韩,欧美,国产一区二区三区 | 国产国拍精品亚洲av在线观看| av在线观看视频网站免费| 小说图片视频综合网站| 久久精品熟女亚洲av麻豆精品 | 色综合亚洲欧美另类图片| 日日啪夜夜撸| 深夜a级毛片| 亚洲精品,欧美精品| 成年女人看的毛片在线观看| 亚洲国产精品合色在线| av福利片在线观看| 女人久久www免费人成看片 | 亚洲18禁久久av| 精品午夜福利在线看| 色综合亚洲欧美另类图片| 亚洲怡红院男人天堂| 日韩制服骚丝袜av| 最近最新中文字幕免费大全7| 在线免费观看的www视频| 观看美女的网站| 成人午夜高清在线视频| 女人十人毛片免费观看3o分钟| 亚洲国产精品成人久久小说| 简卡轻食公司| 高清在线视频一区二区三区 | 啦啦啦韩国在线观看视频| 夜夜爽夜夜爽视频| 尾随美女入室| 成年版毛片免费区| 亚洲国产高清在线一区二区三| 国产亚洲5aaaaa淫片| 中文欧美无线码| 蜜臀久久99精品久久宅男| 亚洲自拍偷在线| 婷婷六月久久综合丁香| 免费不卡的大黄色大毛片视频在线观看 | 最近最新中文字幕大全电影3| 亚洲欧美清纯卡通| 亚洲综合精品二区| 亚洲最大成人手机在线| 99热全是精品| 久久草成人影院| 亚洲av熟女| 国产成人福利小说| www日本黄色视频网| 最新中文字幕久久久久| 婷婷六月久久综合丁香| 久久久久久久久大av| 国产亚洲5aaaaa淫片| 黄片无遮挡物在线观看| 日韩精品青青久久久久久| 中文字幕av成人在线电影| 男女下面进入的视频免费午夜| 国产成人a∨麻豆精品| 内地一区二区视频在线| 日本黄大片高清| 一边亲一边摸免费视频| 免费看av在线观看网站| 色网站视频免费| 国产精品一及| 三级毛片av免费| 久久久久久久久中文| 亚洲精品久久久久久婷婷小说 | 精品人妻一区二区三区麻豆| 又粗又爽又猛毛片免费看| 我要看日韩黄色一级片| 高清毛片免费看| 欧美最新免费一区二区三区| 久久精品影院6| 国产成人aa在线观看| 91精品一卡2卡3卡4卡| 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| 级片在线观看| 国产精品国产三级专区第一集| 亚洲av一区综合| 晚上一个人看的免费电影| 欧美不卡视频在线免费观看| 亚洲国产精品专区欧美| 国产中年淑女户外野战色| 欧美人与善性xxx| 日韩中字成人| 精品久久久久久久末码| 国产在线男女| 日韩av不卡免费在线播放| 黄片wwwwww| 麻豆久久精品国产亚洲av| 精品熟女少妇av免费看| 国产老妇女一区| 日韩人妻高清精品专区| 久久欧美精品欧美久久欧美| 亚洲欧洲国产日韩| 国产成人一区二区在线| 久久精品久久久久久噜噜老黄 | av.在线天堂| 色哟哟·www| 51国产日韩欧美| 国产免费男女视频| 美女国产视频在线观看| 国产精品久久久久久精品电影小说 | 日韩强制内射视频| 免费大片18禁| 国产在线一区二区三区精 | 六月丁香七月| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 亚洲高清免费不卡视频| 中文字幕久久专区| 日韩中字成人| 2021少妇久久久久久久久久久| 午夜视频国产福利| 国产精品av视频在线免费观看| 亚洲综合精品二区| 麻豆成人av视频| 精品久久久久久久久亚洲| 高清av免费在线| 性色avwww在线观看| 欧美成人午夜免费资源| 九九在线视频观看精品| 最近视频中文字幕2019在线8| 欧美成人免费av一区二区三区| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久 | 在线免费十八禁| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件| 美女cb高潮喷水在线观看| 日韩一区二区视频免费看| 国产午夜精品久久久久久一区二区三区| 久久韩国三级中文字幕| 天堂av国产一区二区熟女人妻| 成人三级黄色视频| 国产成人a∨麻豆精品| 麻豆av噜噜一区二区三区| 蜜桃久久精品国产亚洲av| 免费人成在线观看视频色| 国产伦一二天堂av在线观看| 亚洲电影在线观看av| 久久99热这里只有精品18| 日韩亚洲欧美综合| 欧美激情久久久久久爽电影| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久久久久| 22中文网久久字幕| 亚洲五月天丁香| 成人一区二区视频在线观看| 成人国产麻豆网| 好男人在线观看高清免费视频| 色5月婷婷丁香| 99热网站在线观看| 成人鲁丝片一二三区免费| 一级黄色大片毛片| 偷拍熟女少妇极品色| 又爽又黄a免费视频| 日本-黄色视频高清免费观看| 男女国产视频网站| 老女人水多毛片| 蜜臀久久99精品久久宅男| 亚洲五月天丁香| 国产午夜精品一二区理论片| 日日撸夜夜添| 国产中年淑女户外野战色| 一个人看的www免费观看视频| 天堂√8在线中文| 成人鲁丝片一二三区免费| 你懂的网址亚洲精品在线观看 | 网址你懂的国产日韩在线| 99在线人妻在线中文字幕| 干丝袜人妻中文字幕| 99视频精品全部免费 在线| 91久久精品国产一区二区三区| 亚洲国产精品久久男人天堂| 亚洲自拍偷在线| 春色校园在线视频观看| 欧美人与善性xxx| 日韩三级伦理在线观看| 亚洲精品乱码久久久v下载方式| 久久热精品热| 国产亚洲精品久久久com| 麻豆成人av视频| 国产成年人精品一区二区| 国产一级毛片在线| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 成人一区二区视频在线观看| 最近最新中文字幕免费大全7| 啦啦啦啦在线视频资源| 男女啪啪激烈高潮av片| 大香蕉97超碰在线| 国产白丝娇喘喷水9色精品| 成年女人永久免费观看视频| 午夜福利成人在线免费观看| 波野结衣二区三区在线| 久久久久久伊人网av| 性插视频无遮挡在线免费观看| 国产淫片久久久久久久久| 大又大粗又爽又黄少妇毛片口| 免费看光身美女| 在线观看一区二区三区| av视频在线观看入口| 婷婷色av中文字幕| 国产精品一区www在线观看| 国产 一区 欧美 日韩| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| 国产精品伦人一区二区| 免费一级毛片在线播放高清视频| 亚洲,欧美,日韩| 中文欧美无线码| 日韩亚洲欧美综合| 中文亚洲av片在线观看爽| 超碰av人人做人人爽久久| 日韩视频在线欧美| 美女黄网站色视频| 别揉我奶头 嗯啊视频| 汤姆久久久久久久影院中文字幕 | 麻豆成人午夜福利视频| 亚洲色图av天堂| 国产视频首页在线观看| 久久久a久久爽久久v久久| av国产免费在线观看| 国产成人aa在线观看| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 91精品一卡2卡3卡4卡| 亚州av有码| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 国产精品久久久久久精品电影小说 | 日本熟妇午夜| 久久久精品欧美日韩精品| 免费黄网站久久成人精品| 久久精品人妻少妇| 午夜爱爱视频在线播放| 1000部很黄的大片| 午夜精品在线福利| 人体艺术视频欧美日本| 嫩草影院新地址| 少妇的逼水好多| 亚洲一级一片aⅴ在线观看| 久热久热在线精品观看| 欧美日韩在线观看h| 亚洲精品国产av成人精品| 欧美激情国产日韩精品一区| 欧美性感艳星| 中文字幕av在线有码专区| 色吧在线观看| 亚洲天堂国产精品一区在线| 亚洲av成人精品一二三区| 国产精品一二三区在线看| 纵有疾风起免费观看全集完整版 | 亚洲成人久久爱视频| 美女脱内裤让男人舔精品视频| 日日干狠狠操夜夜爽| 亚洲精华国产精华液的使用体验| 久久精品综合一区二区三区| 99热这里只有是精品50| 久久久久久久久久黄片| 国产大屁股一区二区在线视频| 少妇丰满av| 国产亚洲一区二区精品| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清专用| 午夜福利在线观看免费完整高清在| 性插视频无遮挡在线免费观看| 内射极品少妇av片p| 国产亚洲最大av| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站 | 亚洲欧美精品专区久久| 精品无人区乱码1区二区| 欧美三级亚洲精品| 国产亚洲精品久久久com| 欧美最新免费一区二区三区| 精品久久久久久久末码| 在线a可以看的网站| 欧美zozozo另类| 中国美白少妇内射xxxbb| 国产一区二区亚洲精品在线观看| 国产精品野战在线观看| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 亚洲综合色惰| 男人狂女人下面高潮的视频| 国产亚洲5aaaaa淫片| 国产美女午夜福利| 久久热精品热| 非洲黑人性xxxx精品又粗又长| 永久免费av网站大全| 亚洲综合精品二区| 夫妻性生交免费视频一级片| 亚洲精品影视一区二区三区av| 久久鲁丝午夜福利片| 亚洲av电影在线观看一区二区三区 | 熟女人妻精品中文字幕| 身体一侧抽搐| 在线免费十八禁| 天堂中文最新版在线下载 | 亚洲国产欧美在线一区| 亚洲人成网站高清观看| 日韩欧美三级三区| 国产精品麻豆人妻色哟哟久久 | 一区二区三区乱码不卡18| 伦理电影大哥的女人| 久久久精品欧美日韩精品| 精品久久久久久久人妻蜜臀av| 免费电影在线观看免费观看| 色视频www国产| 少妇高潮的动态图| 久久亚洲精品不卡| 国产成人免费观看mmmm| 97热精品久久久久久| 国产在视频线在精品| 成年女人看的毛片在线观看| 欧美一区二区亚洲| 18禁动态无遮挡网站| 我的老师免费观看完整版| 日本免费a在线| videos熟女内射| 国产亚洲5aaaaa淫片| 成人无遮挡网站| 精品久久久噜噜| 男女下面进入的视频免费午夜| 69av精品久久久久久| 九九爱精品视频在线观看| 天堂中文最新版在线下载 | 日韩精品有码人妻一区| videossex国产| 亚洲国产精品专区欧美| 国产亚洲av嫩草精品影院| 欧美日本视频| 久久欧美精品欧美久久欧美| 国产精品熟女久久久久浪| 黄色配什么色好看| 国产精品人妻久久久影院| 超碰97精品在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产高潮美女av| 亚洲av福利一区| 韩国高清视频一区二区三区| 欧美激情久久久久久爽电影| 国产私拍福利视频在线观看| 日本av手机在线免费观看| 干丝袜人妻中文字幕| 精品不卡国产一区二区三区| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 国产精品日韩av在线免费观看| 亚洲不卡免费看| 婷婷色麻豆天堂久久 | av福利片在线观看| 乱人视频在线观看| 国产高清三级在线| 日本色播在线视频| 能在线免费观看的黄片| 三级男女做爰猛烈吃奶摸视频| 激情 狠狠 欧美| 亚洲三级黄色毛片| 亚洲精品成人久久久久久| 能在线免费观看的黄片| 国产高清不卡午夜福利| 亚洲av一区综合| 免费一级毛片在线播放高清视频| 国产精品人妻久久久影院| 国产色婷婷99| 久久精品综合一区二区三区| 麻豆成人av视频| av在线播放精品| 亚洲色图av天堂| 午夜福利在线观看吧| 亚洲中文字幕日韩| 国产人妻一区二区三区在| 久久精品人妻少妇| 嘟嘟电影网在线观看| 男女下面进入的视频免费午夜| 国产久久久一区二区三区| 国产成人免费观看mmmm| 一级毛片aaaaaa免费看小| 久久久久久大精品| 日本熟妇午夜| 日韩高清综合在线| 纵有疾风起免费观看全集完整版 | 久久精品久久久久久久性| 国产真实伦视频高清在线观看| 亚洲精品456在线播放app| 欧美日本亚洲视频在线播放| 欧美成人精品欧美一级黄| 在线观看一区二区三区| 国产高清三级在线| 久久久久久大精品| 久久久久国产网址| 国产在视频线精品| 中文字幕av成人在线电影| 三级国产精品片| 日本色播在线视频| videos熟女内射| 99在线人妻在线中文字幕| 日韩欧美在线乱码| 搡老妇女老女人老熟妇| 欧美最新免费一区二区三区| 99在线视频只有这里精品首页| 1000部很黄的大片| 国产69精品久久久久777片| 久久国产乱子免费精品| 天堂影院成人在线观看| 变态另类丝袜制服| 日韩成人伦理影院| 亚洲精品影视一区二区三区av| 你懂的网址亚洲精品在线观看 | 婷婷色综合大香蕉| 国产 一区 欧美 日韩| 国产成人福利小说| 搞女人的毛片| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三| 简卡轻食公司| 哪个播放器可以免费观看大片| 亚洲图色成人| 床上黄色一级片| 久久久久免费精品人妻一区二区| av卡一久久| 成年女人看的毛片在线观看| 国产成人freesex在线| 亚洲欧美日韩卡通动漫| 日本免费在线观看一区| 一级黄片播放器| 久久国产乱子免费精品| 国产又黄又爽又无遮挡在线| 亚洲精品国产成人久久av| 亚洲最大成人中文| 国产亚洲精品久久久com| 日韩精品青青久久久久久| 18禁动态无遮挡网站| 国产精品,欧美在线| 精品久久久久久久人妻蜜臀av| 嫩草影院新地址| 插逼视频在线观看| 非洲黑人性xxxx精品又粗又长| 精华霜和精华液先用哪个| 欧美高清性xxxxhd video| 国产成人91sexporn| 久久久a久久爽久久v久久| 又粗又硬又长又爽又黄的视频| av专区在线播放| 乱人视频在线观看| 看免费成人av毛片| 一区二区三区乱码不卡18| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 国产一区二区在线观看日韩| 国产大屁股一区二区在线视频| 国产亚洲91精品色在线| 97超碰精品成人国产| 国产黄色小视频在线观看| 久久久久久久久久久免费av| 春色校园在线视频观看| 91午夜精品亚洲一区二区三区| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久 | 亚洲国产欧美在线一区| 免费av观看视频| 久久精品久久精品一区二区三区| 在线观看66精品国产| 老司机影院成人| 久久久午夜欧美精品| 一级av片app| 99久久精品热视频| 亚洲在线观看片| 一级毛片电影观看 | 国产伦精品一区二区三区视频9| 男女那种视频在线观看| 久久久久久国产a免费观看| 国产伦一二天堂av在线观看| 亚洲精品影视一区二区三区av| 久久久久久九九精品二区国产| 久久精品国产99精品国产亚洲性色| 色吧在线观看| 欧美日韩国产亚洲二区| 美女cb高潮喷水在线观看| 人人妻人人澡欧美一区二区| 尤物成人国产欧美一区二区三区| 欧美性猛交黑人性爽| 女人久久www免费人成看片 | 少妇丰满av| 国产淫语在线视频| 亚洲av成人av| 成人美女网站在线观看视频| 亚洲自偷自拍三级| 联通29元200g的流量卡| 国产精品国产三级国产av玫瑰| 又爽又黄a免费视频| 国产成人91sexporn| videos熟女内射| 日韩大片免费观看网站 | 国产高潮美女av| 免费黄色在线免费观看| 久久99精品国语久久久| 欧美3d第一页| 色噜噜av男人的天堂激情| 亚洲国产精品久久男人天堂| 国产成人91sexporn| 男女那种视频在线观看| 一边亲一边摸免费视频| 赤兔流量卡办理| 亚洲最大成人av| 搞女人的毛片| 亚洲国产精品成人综合色| 小说图片视频综合网站| 春色校园在线视频观看| 麻豆久久精品国产亚洲av| 51国产日韩欧美| 国产亚洲5aaaaa淫片| 欧美成人免费av一区二区三区| 日韩精品有码人妻一区| 亚洲av中文字字幕乱码综合| videossex国产| 亚洲精品,欧美精品| 又黄又爽又刺激的免费视频.| 一个人免费在线观看电影| 三级国产精品欧美在线观看| 久久久久久久国产电影| 欧美性猛交黑人性爽| 精品不卡国产一区二区三区| 日本黄色片子视频| 中文精品一卡2卡3卡4更新| 国产精品国产高清国产av| 国产人妻一区二区三区在| 亚洲美女视频黄频| 国产亚洲精品av在线| 久久国内精品自在自线图片| 少妇人妻一区二区三区视频| 久久人妻av系列| 我要看日韩黄色一级片| 国产极品精品免费视频能看的| 亚洲欧美精品综合久久99| 天堂√8在线中文| 国产精品国产高清国产av| 三级毛片av免费| av免费在线看不卡| 国产伦一二天堂av在线观看| 中文乱码字字幕精品一区二区三区 | 色综合亚洲欧美另类图片| 久久久久免费精品人妻一区二区| 99久国产av精品国产电影| 日本午夜av视频| 99久久精品一区二区三区| 能在线免费看毛片的网站| 深夜a级毛片| av专区在线播放| 午夜老司机福利剧场| 亚洲成人精品中文字幕电影| 日韩视频在线欧美| 嫩草影院入口| av在线观看视频网站免费| 夜夜爽夜夜爽视频| 六月丁香七月| 国产午夜精品久久久久久一区二区三区| 啦啦啦观看免费观看视频高清| 天天躁日日操中文字幕| 国产精品福利在线免费观看| 99热精品在线国产| 欧美xxxx黑人xx丫x性爽| 2021天堂中文幕一二区在线观| 黄色欧美视频在线观看| 亚洲五月天丁香| 国产精品无大码| a级一级毛片免费在线观看| 丰满少妇做爰视频| 日本午夜av视频| 18+在线观看网站| 一本一本综合久久| 免费播放大片免费观看视频在线观看 | 婷婷色麻豆天堂久久 | 日本免费a在线| 中文字幕av成人在线电影| 男女那种视频在线观看| 亚洲国产精品成人综合色|