• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flow field CFD analysis of axial flow blood pump*

    2014-09-06 10:53:32XiongXIEJianpingTAN
    機(jī)床與液壓 2014年1期

    Xiong XIE, Jian-ping TAN?

    1State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha 410083,China;2School of Mechanical and Electrical Engineering, Central South University, Changsha 410083,China

    ?

    Flow field CFD analysis of axial flow blood pump*

    Xiong XIE1,2, Jian-ping TAN? 1,2

    1State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha 410083,China;2School of Mechanical and Electrical Engineering, Central South University, Changsha 410083,China

    Abstract:In the development of axial flow blood pump, the arterial partial flow field may produce an area with very low flow shear rate, so it is necessary to consider the non-Newtonian characteristics of blood fluid. In this paper, a model of axial flow blood pump was established, and flow and rotate-speed’s impacts on the inlet and outlet of the flow field in the blood pump were analyzed through Computational Fluid Dynamics (CFD) simulation, as well as the influence of the guide vane on the flow field. By the pump water experiment of the designed blood pump, its output flow and pressure were measured; the results show that the designed blood pump is consistent on the law with the simulation.

    Key words:Axial flow blood pump, Non-Newtonian fluid, Flow field distribution, CFD simulation

    Due to the complexity of the rheological properties of non-Newtonian fluid, the blood was always regarded as the Newtonian fluid in the development and design of the rotary blood pump at home and abroad so far[1-3]. Generally, the Newtonian fluid was used for the hypothesis of blood in the current study of the blood fluid dynamics. However, few reports focused on the fluid characteristics of the non-Newtonian fluid in the rotary blood pump[4-5].

    The CFD software was used to analyze the fluid dynamic characteristics of five different axial-flow pumps by Kim et al.[6], the velocity field distribution, pressure, interstitial area etc. in the blood pump were numerical simulated by Chua[7]. The CFD technology was used to simulate the blood flowing in the C1E3 type centrifugal blood pump to ensure the main way to avoid the blood damage by Eistrup[8] who worked in the Baylor College of Medicine. Based on the CFD technology, the SIMPLE-Pressure coupling algorithm was used to achieve the visualization of the pressure field, velocity field and shear stress distribution in the straight blade blood pump by Qunfang Wang[9-10]. The fluid field in the blade passage of a certain type of blood pump was numerical simulated by computer-aided solving the three dimensional Navier-Stokes equations by Baoning Zhang[11].

    However, when the geometry mutations, such as local artery stenosis, are taken into account, the area with low flow shear rate may exist in the local fluid field of the artery. Therefore, the non-Newtonian characteristics of the blood must be considered. In the paper, the effects of the rotary speed, flow rate on the outlet and inlet fluid field and the effects of the guide blades on the fluid field were studied though the CFD simulation analysis of the axial-flow blood pump. Moreover, the water pump test of the designed blood pump was conducted.

    1.Modeling of the axial-flow blood pump

    1.1.Introduction of the model

    The axial-flow blood pump designed by our group was mainly composed of bearing, impeller and permanent. Figure 1 shows the structure diagram and the picture of the blood pump.

    Figure 1.Structure of axial flow blood pump

    The mesh diagram of the axial-flow blood pump model is shown in Figure 2, the number of mesh nodes is 282 951 and the number of mesh elements is 1 602 855. The role of the main blades is to boost the pressure and the role of the added pre-guide blades and post-guide blades is mainly used to guide the flow. The fluid separation is decreased in the main blades after the fluid is guided by the pre-guide blades, then the relative stabilize fluid is formed after the fluid is guided by the post-guide blades.

    Figure 2.Grid of the blood pump

    1.2.The settings of the calculation

    Generally, the heartbeat of an adult is about 60~80 per minute, and the average value is 75. The blood output of the heart is 4~6 quart per minute and increases to 15~20 quart per minute during the strenuous exercise. The total output of elder is equal to the younger (1 quart=1.136 liters). ① The blood output of the heart (the outlet blood flow of the blood pump) is normally 4.544~6.816 L/min, and averagely 5 L/min; during the strenuous exercise, it increases to 17.04~28.4 L/min, and averagely 22.7 L/min. ② The pressure difference between the pump inlet and outlet is 100 mmHg, namely 13.3 kPa.

    According to the above working conditions of the heart, the working conditions of the blood pump can be divided into three different types. The numerical calculations for the working conditions are shown in Table 1. The results show that the inlet condition is the mass flow and the fluid is the incompressible non-Newtonian fluid, thus the outlet condition is also considered as the mass flow. Hence, in the following analysis, the mass flow inlet and outlet conditions are taken as the boundary conditions.

    Table 1.Operation parameters of the blood pump

    2.Analysis of the CFD simulation

    2.1.The effect of rotary speed on the fluid field

    Since the performance of the axial-flow blood pump is mainly affected by the rotary speed, for studying the pressure distribution and the velocity distribution under different rotary speeds, the flow rate is set as 5 L/min, the pressure and velocity distribution and the streamlines are investigated under the rotary speed of 10 000 r/min, 8 000 r/min and 5 000 r/min as indicated in Figures 3~5, respectively.

    Figure 3.Pressure and velocity distribution of the fluid under 10 000 r/min and 5 L/min

    It can be seen from Figures 3~5 that the maximum pressure and velocity changes increase with the increase of the rotary speed, which indicates that the pressure of the blood pump and the micro-friction gradually increase with the increase of the rotary speed, thus, the blood is damaged and results in the blood dissolve and thrombus. The pressure changes are not obvious with the increase of the rotary speed and the maximum and minimum pressures are almost the same, which is mainly resulted from the inlet and outlet conditions of the fluid field.

    Figure 4.Pressure and velocity distribution of the fluid under 8 000 r/min and 5 L/min

    Figure 5.Pressure and velocity distribution of the fluid under 5 000 r/min and 5 L/min

    2.2.The effect of flow rate on the fluid field

    The flow rate is also an important performance for the axial-flow blood pump. Therefore, it is necessary to analyze the pressure distribution of the blood pump under the different flow rate. The rotary speed of the blood pump is set to 10 000 r/min, and the fluid pressure and velocity distribution diagrams under 5 L/min, 15 L/min and 22.7 L/min are obtained, as shown in Figures 6~8.

    It can be seen from Figures 6~8 that the maximum total pressure of the blood pump model increases obviously with the increase of the flow rate, indicating that the pressure of the blood pump increases gradually with the increase of the flow rate, and the blood is gradually damaged by the micro-friction, resulting in the blood dissolve and thrombus. Meanwhile, when the flow rate reaches to 22.7 L/min, the pressure increases dramatically. Therefore, the performance of the designed axial-flow blood pump under 22.7 L/min will be further studied.

    Figure 6.Pressure and velocity distribution of the fluid under 10 000 r/min and 5 L/min

    Figure 7.Pressure and velocity distribution of the fluid under 10 000 r/min and 15 L/min

    Figure 8.Pressure and velocity distribution of the fluid under 10 000 r/min and 22.7 L/min

    3.Experiment

    In order to verify the simulation of the fluid field and the actual performance of the designed blood pump, the experiment system of the blood pump was established and the schematic diagram is shown in Figure 9. The control pulse was output to the windings of the electromagnet by the SCM-controlled circuit, and the alternating magnetic field was obtained. Thus, the permanent magnet rotor which had a certain coupling distance to the electromagnet can be forced to rotate by the alternating magnetic field.

    Figure 9.Schematic diagram of experimental system

    3.1.Experimental condition

    The photo of the experimental system is shown in Figure 10, which is mainly composed of 10 parts:

    Figure 10.Monitoring experimental system of blood pump

    (a) Electromagnet and mobile platform; (b) Iron core structure and size; (c) Electromagnet; (d) Blood pump

    1.Orifice valve;2.Water tank;3.Flowmeter;4.12 V switching power supply;5.Monitoring interface;6.Pressure meter;7.Electromagnet;8.Blood pump;9.PC;10.DC power supply;11.SCM control system

    ① The PC (contains Sign 5 and 9 as shown in Figure 10);

    ② The SCM control and acquisition system (Sign 11);

    ③ The experiment circuit of the blood pump (contains Sign 1 and the whole plastic circuit);

    ④ The water tank (Sign 2);

    ⑤ The flowmeter (Sign 3, the type is LWGY-15C1 and the accuracy is 0.01 L/min );

    ⑥ The pressure meter (Sign 6, the type is OT-V80 and the accuracy is 0.01 kPa);

    ⑦ The electromagnet (Sign 7 and the Figure 10(a~c));

    ⑧ The blood pump (Sign 8 and the Figure 10(d));

    ⑨ The DC power supply (Sign 10, whose range is 0~120 V/5A);

    ⑩ The 12 V switching power supply (Sign 4, the function is to supply the power for the flowmeter and the pressure meter).

    Besides, a mixture fluid of water and glycerin in the ratio 2∶1 was used as the experimental fluid, whose viscosity and characteristics are similar to blood[12].

    3.2.Experimental procedure and results

    It is found from the test of the designed blood pump that the maximum output flow rate is only about 7 L/min, when the rotary speed of the blood pump is 10 000 r/min and the output pressure is 13.3 kPa. For the existing driving system, the rotary speed cannot be higher.

    If the mechanical loss of blood pump is ignored, the maximum output power under 10 000 r/min can be expressed as follows:

    P10k= 13.3 kPa*7 L/min = 1.55 W

    (1)

    Then the maximum output power of 8 000 r/min and 5 000 r/min can be obtained as well as follows:

    P8k= 13.3 kPa*4 L/min = 0.89 W

    (2)

    P5k= 13.3 kPa*1.1 L/min = 0.24 W

    (3)

    Therefore, the outlet pressure of the pump was adjusted by the damping valve of the test loop under different rotary speed in order to test the stability of the output flow rate under the corresponding rotary speed. Then the corresponding constant pressure value under 5 000 r/min, 8 000 r/min and 10 000 r/min of 5 L/min and 15 L/min can be obtained according to the formula (1~3), as shown in Table 2.

    Table 2.The maximum pressure under 5 000 r/min, 8 000 r/min and 10 000 r/min of 5 L/min and 15 L/min

    According to the pressure value as shown in Table 2, the experimental procedure can be prepared as follows:

    1) The rotary speed was set to 5 000 r/min, and the outlet pressure was adjusted as 3 kPa. The digital flowmeter was used to test the outlet of the blood pump for 10 times. After averaging theses values, the test flow rate were compared with the theoretical values (5 L/min) as shown in Table 3.

    2) The rotary speed was set to 8 000 r/min and 10 000 r/min, and the pressure was 11 kPa and 19.2 kPa, respectively. The outlet flow rate of the blood pump was tested for 10 times using the same method. After averaging theses values, the test flow rate were compared with the simulation values of the fluid field as shown in Table 3.

    3) The experiments were conducted under the different rotary speed of 5 000 r/min, 8 000 r/min and 10 000 r/min in the working condition 2 (Flow rate: 15 L/min) as shown in Table 4.

    Table 3.Experiment data of the blood pump under condition 1(5 L/min)

    Table 4.Experiment data of the blood pump under condition 2(15 L/min)

    3.3.Discussion

    The experimental values are compared with the theoretical values and the deviations of the results are calculated under different pressures as shown in Figure 11.

    Figure 11.The experimental deviation analysis

    It can be seen from Figure 11 that:

    1) The deviations of the experimental and theoretical values gradually decrease with the increase in the rotary speed. When the rotary speed reaches to 10 000 r/min, the errors of the 2 conditions are all less than 5%, thus the precision of the test is considered in the allowed range.

    2) The deviations of the experimental and theoretical values gradually increase with the increase in the flow rate. When the flow rate is set to 5 L/min and the rotary speed is above 6000 r/min, the deviations under different rotary speed are all less than 5%. However, when the flow rate is set to 15 L/min and the rotary speed is below 10 000 r/min, the deviations are all more than 5%, thus, the deviations are considered beyond the allowed range.

    3) The above results show that the designed blood pump can basically meet the requirements in high rotary speed. However, the actual performance had a large deviation to the simulation design, and the deviation may become larger with the increase in the flow rate. Therefore, the designed blood pump needs to be further optimized.

    4.Conclusion

    The effects of the rotary speed, flow rate on the outlet and inlet fluid field and the effects of the guide blades on the fluid field were investigated though the CFD simulation analysis of the axial-flow blood pump. Moreover, the water pump test of the designed blood pump was conducted and the parameter outputs of the flow rate, pressure and so on in the axial-flow blood pump were tested. The experimental results show that the tendency of the designed blood pump is consistent with the simulation results. However, the outlet pressure is a few smaller when meeting the requirement of the output flow rate, indicating that it needs to be further improved and optimized.

    References

    [1]Zhang J, Johnson P C, Popel A S. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows[J]. Microvascular Research, 2009(77): 265-272.

    [2]Tomioka J, Miyanaga N. Effect of surface roughness of mechanical seals under blood sealing[J].Lubrication Science, 2010(22): 443-452.

    [3]YUN Zhong, TAN Jianping, XU Xiandong. Study and Simulation Analysis on the Hurt Principle of the RBC Impact[J]. Journal of Biomedical Engineering Research,2006,25(1):20-23.

    [4]McCarty W J, Luan A, Siddiqui M, et al. Biomechanical properties of mixtures of blood and synovial fluid[J]. Journal of Orthopaedic Research, 2011(29): 240-246.

    [5]YUN Zhong, TAN Jianping and GONG Zhongliang. Study of CFD Smiulation on Embedded Axial Blood Pump[J]. Machine Design & Research, 2006, 22(4): 111-115.

    [6]Dong-Wook Kim, Mitamura Y. Prediction of hemolysis in intra-cardiac axial flow blood pumps for optimization of the impellers[J].Transactions of the Korean Institute of Electrical Engineers, 2002, 51(9):431-437.

    [7]Chua P, Su B, Lim T M, et al. Numerical Simulation of an Axial Blood Pump[J]. Artificial Organs, 2007(31):560-570.

    [8]Chulte-Eistrup S, Takano T, Maeda T.CFD studies ofClE3 Gyro centrifugal blood pump[J]. ASAIO Journal,2000,46(2):232.

    [9]WANG Fangqun, FENG Zhigang, RU Weimin. The Evaluation of Hemolysis Index of the Permanent M aglev Impeller Pump[J]. Journal of Jiangsu University of Science and Technology, 2002: 63-65.

    [10]WANG Fangqun, LI Lan, FENG gang. PredictioIl ofshear stress-related hemolysis in centrifugal blood pumps by computational fluid dynamics[J].Progress in Natural SciellCe, 2005, 15(10): 951-955.

    [11]ZHANG Bao ning, ZHANG Yang jun, WU Yu lin, et al. Analysis of Flow Field in An Artificial Blood Pump with CFD[J]. Chinese Journal of Biomedical Engineering, 2002, 21(1): 41-45.

    [12]SHI Fen. The Annulus Flow Field Analysis and Structure Optimization of the Embedded Axial Blood Pump[D]. Changsha: Central South University, 2012.

    (Continued from 23 page)

    DOI:10.3969/j.issn.1001-3881.2014.06.002

    Received: 2013-10-15

    *Project sponsored by National Natural Science Foundationof China (51075403, 31271057), Research Fund for the Doctoral Program of Higher Education of China (20100162110004) and National Youth Natural Science Foundation of China (51105385)

    ? Jian-ping TAN, Professor. E-mail:jfg_zju@126.com

    黄色视频,在线免费观看| 1000部很黄的大片| 黑人欧美特级aaaaaa片| 精品国产乱子伦一区二区三区| 又爽又黄无遮挡网站| 成年人黄色毛片网站| 制服丝袜大香蕉在线| 成在线人永久免费视频| 黄色视频,在线免费观看| 1024香蕉在线观看| 日韩精品青青久久久久久| 亚洲 欧美 日韩 在线 免费| 成人永久免费在线观看视频| 亚洲 欧美一区二区三区| 狂野欧美激情性xxxx| 国产av一区在线观看免费| 日本在线视频免费播放| 老司机福利观看| 丰满的人妻完整版| www.自偷自拍.com| 国产三级在线视频| 久久久国产欧美日韩av| 久久这里只有精品中国| 亚洲国产看品久久| 国产午夜福利久久久久久| 国产伦精品一区二区三区四那| 一进一出抽搐动态| 母亲3免费完整高清在线观看| 国产伦人伦偷精品视频| 亚洲七黄色美女视频| 精品久久久久久久末码| 国产黄色小视频在线观看| 久久中文字幕人妻熟女| 亚洲无线在线观看| 久久久久久久久久黄片| or卡值多少钱| 麻豆国产97在线/欧美| 国产成年人精品一区二区| 中文字幕人妻丝袜一区二区| 免费看a级黄色片| 国产爱豆传媒在线观看| 夜夜看夜夜爽夜夜摸| 岛国在线观看网站| 看免费av毛片| 欧美大码av| 老司机午夜十八禁免费视频| 香蕉国产在线看| 国模一区二区三区四区视频 | 国产精品自产拍在线观看55亚洲| 国产高清激情床上av| 91av网一区二区| 日韩人妻高清精品专区| 国产精品亚洲美女久久久| svipshipincom国产片| 久久午夜亚洲精品久久| 欧美黑人巨大hd| 91久久精品国产一区二区成人 | 日韩国内少妇激情av| 成熟少妇高潮喷水视频| 桃红色精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲精品美女久久久久99蜜臀| 欧美又色又爽又黄视频| 波多野结衣巨乳人妻| 亚洲第一电影网av| 可以在线观看的亚洲视频| 亚洲av日韩精品久久久久久密| 亚洲美女黄片视频| 女人高潮潮喷娇喘18禁视频| 国产精品综合久久久久久久免费| 午夜日韩欧美国产| 91九色精品人成在线观看| 丁香六月欧美| 免费一级毛片在线播放高清视频| 久久精品国产综合久久久| 可以在线观看毛片的网站| 中文字幕最新亚洲高清| 欧美成人免费av一区二区三区| 欧美日韩一级在线毛片| 免费观看的影片在线观看| 久久久国产成人免费| 成人无遮挡网站| 欧美激情在线99| 最近最新中文字幕大全免费视频| 在线观看美女被高潮喷水网站 | 丰满人妻一区二区三区视频av | 精品国产乱子伦一区二区三区| 久久国产精品人妻蜜桃| 欧美最黄视频在线播放免费| 亚洲第一电影网av| 中出人妻视频一区二区| 国产69精品久久久久777片 | 动漫黄色视频在线观看| 久久精品91蜜桃| 手机成人av网站| 国产精品99久久久久久久久| 99久久精品一区二区三区| www.熟女人妻精品国产| 欧美成人免费av一区二区三区| aaaaa片日本免费| 亚洲色图 男人天堂 中文字幕| 免费人成视频x8x8入口观看| 极品教师在线免费播放| 日韩三级视频一区二区三区| or卡值多少钱| 国产黄a三级三级三级人| 亚洲av日韩精品久久久久久密| a级毛片a级免费在线| 精品国产乱码久久久久久男人| 日本a在线网址| 一本久久中文字幕| 久久午夜亚洲精品久久| 99在线视频只有这里精品首页| 欧美色视频一区免费| 欧美色欧美亚洲另类二区| 国产亚洲欧美98| 国产精品久久久久久人妻精品电影| 女生性感内裤真人,穿戴方法视频| 亚洲成人精品中文字幕电影| 色在线成人网| 婷婷精品国产亚洲av在线| 国产成人系列免费观看| 日本五十路高清| 中文字幕人成人乱码亚洲影| 国产精品久久久av美女十八| 黄色女人牲交| 91av网一区二区| 亚洲精品一区av在线观看| 日韩欧美 国产精品| 婷婷精品国产亚洲av在线| 亚洲乱码一区二区免费版| 男女下面进入的视频免费午夜| 床上黄色一级片| 美女免费视频网站| 美女大奶头视频| 久久亚洲精品不卡| 亚洲av美国av| 国产一区二区在线av高清观看| 男女床上黄色一级片免费看| 十八禁网站免费在线| 天天添夜夜摸| 久久午夜亚洲精品久久| 亚洲avbb在线观看| 国产成人精品久久二区二区免费| 窝窝影院91人妻| 亚洲成av人片在线播放无| 国产免费男女视频| 精品国产超薄肉色丝袜足j| 国产精品久久久久久亚洲av鲁大| 日韩 欧美 亚洲 中文字幕| 国产高清视频在线观看网站| 久久99热这里只有精品18| 88av欧美| 亚洲黑人精品在线| 99精品久久久久人妻精品| 成人三级做爰电影| 国产伦精品一区二区三区四那| 国产综合懂色| 9191精品国产免费久久| 国产精品1区2区在线观看.| 久久久久久久久中文| 看片在线看免费视频| 国产精品99久久久久久久久| 网址你懂的国产日韩在线| 亚洲成人免费电影在线观看| 色在线成人网| 草草在线视频免费看| 色吧在线观看| 久久香蕉国产精品| 亚洲无线在线观看| 一个人免费在线观看电影 | 精品99又大又爽又粗少妇毛片 | 在线观看免费午夜福利视频| 亚洲色图 男人天堂 中文字幕| 亚洲色图 男人天堂 中文字幕| 成熟少妇高潮喷水视频| 久久久久精品国产欧美久久久| 伦理电影免费视频| 亚洲av成人精品一区久久| 成人欧美大片| 看片在线看免费视频| netflix在线观看网站| 一本综合久久免费| 在线十欧美十亚洲十日本专区| 曰老女人黄片| 久久国产精品影院| 久久精品人妻少妇| 他把我摸到了高潮在线观看| 精品国产乱码久久久久久男人| 欧美乱妇无乱码| www国产在线视频色| 级片在线观看| 成人永久免费在线观看视频| 国内精品美女久久久久久| 久久国产乱子伦精品免费另类| 五月伊人婷婷丁香| 丰满的人妻完整版| 九九热线精品视视频播放| 亚洲九九香蕉| 国产成人精品久久二区二区91| 又大又爽又粗| 在线看三级毛片| 人妻久久中文字幕网| 国内精品久久久久精免费| 国产成+人综合+亚洲专区| 免费av不卡在线播放| 国产av麻豆久久久久久久| 成人高潮视频无遮挡免费网站| 日本黄大片高清| 91av网一区二区| 国产三级黄色录像| 中亚洲国语对白在线视频| 俺也久久电影网| tocl精华| 两人在一起打扑克的视频| 免费观看精品视频网站| 看黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看| 老司机在亚洲福利影院| 亚洲熟女毛片儿| 亚洲美女黄片视频| 国产成人福利小说| 日本 欧美在线| 非洲黑人性xxxx精品又粗又长| 中文在线观看免费www的网站| 亚洲国产精品合色在线| 色哟哟哟哟哟哟| 五月伊人婷婷丁香| 久久精品影院6| 国产伦人伦偷精品视频| 桃红色精品国产亚洲av| 久久久久性生活片| 久久精品国产99精品国产亚洲性色| 欧美国产日韩亚洲一区| 99热这里只有是精品50| 中文资源天堂在线| 国产亚洲精品久久久久久毛片| 大型黄色视频在线免费观看| 成人三级黄色视频| 日韩欧美一区二区三区在线观看| 变态另类丝袜制服| 国产伦人伦偷精品视频| 最近最新免费中文字幕在线| 日本一二三区视频观看| 99热6这里只有精品| 成熟少妇高潮喷水视频| 黑人欧美特级aaaaaa片| 韩国av一区二区三区四区| 亚洲精品一卡2卡三卡4卡5卡| 日韩人妻高清精品专区| 99久久精品热视频| 久久香蕉国产精品| 国产成人精品无人区| 青草久久国产| 级片在线观看| 中文字幕高清在线视频| 在线观看66精品国产| 日韩精品青青久久久久久| 国产精品久久久久久精品电影| 亚洲国产欧美人成| 俺也久久电影网| 婷婷丁香在线五月| 一个人看视频在线观看www免费 | 亚洲在线自拍视频| 成人精品一区二区免费| 老司机在亚洲福利影院| 又粗又爽又猛毛片免费看| 巨乳人妻的诱惑在线观看| 美女黄网站色视频| 99riav亚洲国产免费| 久久午夜综合久久蜜桃| netflix在线观看网站| 黑人巨大精品欧美一区二区mp4| 成人国产一区最新在线观看| 热99在线观看视频| 久久久国产精品麻豆| 久久天躁狠狠躁夜夜2o2o| 欧美日韩一级在线毛片| 国产人伦9x9x在线观看| 国产黄片美女视频| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产| 男女之事视频高清在线观看| 99热6这里只有精品| 亚洲av成人一区二区三| 神马国产精品三级电影在线观看| 日韩欧美三级三区| 桃红色精品国产亚洲av| 色av中文字幕| 国产免费男女视频| 午夜福利在线在线| 国产精品一及| 国产高清有码在线观看视频| 18禁黄网站禁片午夜丰满| 精品国内亚洲2022精品成人| 在线观看免费视频日本深夜| 国产一区二区在线观看日韩 | 亚洲欧美精品综合一区二区三区| 婷婷精品国产亚洲av在线| 99精品欧美一区二区三区四区| 制服丝袜大香蕉在线| 可以在线观看的亚洲视频| 国产精品 欧美亚洲| 成人永久免费在线观看视频| 欧美一区二区精品小视频在线| 欧美黑人欧美精品刺激| 亚洲成av人片免费观看| 亚洲第一电影网av| 欧美精品啪啪一区二区三区| 国产一区二区在线观看日韩 | 亚洲一区二区三区色噜噜| 久久精品国产亚洲av香蕉五月| 51午夜福利影视在线观看| 久久这里只有精品19| 一级毛片精品| 欧美日韩黄片免| 波多野结衣高清作品| 国产精华一区二区三区| 蜜桃久久精品国产亚洲av| 一边摸一边抽搐一进一小说| 亚洲人与动物交配视频| 人妻丰满熟妇av一区二区三区| 一个人看的www免费观看视频| 亚洲精品一区av在线观看| 国产亚洲欧美在线一区二区| 99精品久久久久人妻精品| 久久人妻av系列| 精品一区二区三区视频在线观看免费| avwww免费| 国产伦人伦偷精品视频| 欧美中文综合在线视频| 手机成人av网站| 国产精品久久久人人做人人爽| 18禁裸乳无遮挡免费网站照片| 国内久久婷婷六月综合欲色啪| 一个人看的www免费观看视频| 亚洲成人中文字幕在线播放| 香蕉丝袜av| 两人在一起打扑克的视频| 激情在线观看视频在线高清| 国产精品av视频在线免费观看| 国模一区二区三区四区视频 | 男女午夜视频在线观看| 亚洲18禁久久av| 麻豆国产av国片精品| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影| 男人舔奶头视频| 亚洲av电影在线进入| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av五月六月丁香网| 精品国产三级普通话版| 丝袜人妻中文字幕| 日韩大尺度精品在线看网址| 999精品在线视频| 床上黄色一级片| 熟女人妻精品中文字幕| 久久精品国产综合久久久| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全免费视频| 欧美另类亚洲清纯唯美| 婷婷精品国产亚洲av| 美女大奶头视频| 国产高清有码在线观看视频| 中出人妻视频一区二区| 国产毛片a区久久久久| 最好的美女福利视频网| 狠狠狠狠99中文字幕| 熟女少妇亚洲综合色aaa.| 一个人看的www免费观看视频| 1024香蕉在线观看| 很黄的视频免费| 怎么达到女性高潮| 国产视频一区二区在线看| 国产又色又爽无遮挡免费看| 久久久久国内视频| 国产伦精品一区二区三区四那| 人人妻,人人澡人人爽秒播| 99国产综合亚洲精品| 99久久综合精品五月天人人| 又黄又爽又免费观看的视频| 日本 av在线| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 亚洲成人精品中文字幕电影| 男人的好看免费观看在线视频| 人妻丰满熟妇av一区二区三区| 两个人的视频大全免费| 99热只有精品国产| 婷婷精品国产亚洲av在线| 中文字幕熟女人妻在线| 一卡2卡三卡四卡精品乱码亚洲| 久久精品91蜜桃| 免费大片18禁| 亚洲精品乱码久久久v下载方式 | 夜夜躁狠狠躁天天躁| www.自偷自拍.com| 欧美成人性av电影在线观看| 午夜久久久久精精品| 老熟妇仑乱视频hdxx| 观看美女的网站| 国产高清videossex| 国产爱豆传媒在线观看| 偷拍熟女少妇极品色| 欧美中文综合在线视频| 悠悠久久av| 免费大片18禁| 丰满人妻熟妇乱又伦精品不卡| 999久久久国产精品视频| 九九热线精品视视频播放| 欧美极品一区二区三区四区| 国产毛片a区久久久久| 午夜福利欧美成人| 中国美女看黄片| 99精品在免费线老司机午夜| 国产三级在线视频| 国产精品久久视频播放| 国产伦精品一区二区三区四那| 一a级毛片在线观看| www.www免费av| 一级毛片高清免费大全| 99re在线观看精品视频| 禁无遮挡网站| 日韩欧美在线乱码| 他把我摸到了高潮在线观看| 国产精华一区二区三区| 国产高清三级在线| 最好的美女福利视频网| 国产精品久久视频播放| 亚洲 欧美一区二区三区| 女人高潮潮喷娇喘18禁视频| 嫩草影院入口| 少妇的逼水好多| 国产精品香港三级国产av潘金莲| 国模一区二区三区四区视频 | 亚洲国产精品sss在线观看| 男人和女人高潮做爰伦理| 日本熟妇午夜| 亚洲av免费在线观看| 桃色一区二区三区在线观看| 在线十欧美十亚洲十日本专区| 午夜激情欧美在线| 国产 一区 欧美 日韩| 亚洲真实伦在线观看| 欧美乱妇无乱码| 国产午夜精品论理片| 国产高清视频在线观看网站| 在线看三级毛片| 午夜两性在线视频| 欧美一区二区国产精品久久精品| 精品久久蜜臀av无| 久久久久久九九精品二区国产| 一级黄色大片毛片| 午夜福利高清视频| 啪啪无遮挡十八禁网站| 久久久久精品国产欧美久久久| 91麻豆av在线| 女人高潮潮喷娇喘18禁视频| 欧美中文日本在线观看视频| 久久精品人妻少妇| 久9热在线精品视频| 日韩欧美 国产精品| 日韩有码中文字幕| 色在线成人网| 成人亚洲精品av一区二区| 国产欧美日韩一区二区三| 国产久久久一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲第一电影网av| 亚洲精品美女久久av网站| 久久久久久久久中文| 一个人免费在线观看电影 | 好男人在线观看高清免费视频| 国产高潮美女av| 中文字幕精品亚洲无线码一区| 久久久国产欧美日韩av| 日本三级黄在线观看| 亚洲av免费在线观看| 国产1区2区3区精品| 国产精品女同一区二区软件 | 18禁裸乳无遮挡免费网站照片| 色哟哟哟哟哟哟| 精品一区二区三区四区五区乱码| 少妇人妻一区二区三区视频| 伦理电影免费视频| 十八禁网站免费在线| 在线国产一区二区在线| 国产一区二区三区在线臀色熟女| 成人国产综合亚洲| 给我免费播放毛片高清在线观看| 男人舔奶头视频| 亚洲男人的天堂狠狠| 美女高潮喷水抽搐中文字幕| 欧美高清成人免费视频www| 亚洲精品中文字幕一二三四区| 一级黄色大片毛片| 国产成人一区二区三区免费视频网站| 欧美在线黄色| 日本一本二区三区精品| 国产精品av久久久久免费| 国产精品99久久99久久久不卡| av女优亚洲男人天堂 | 丰满人妻熟妇乱又伦精品不卡| 波多野结衣高清作品| 亚洲午夜理论影院| 久久亚洲真实| 悠悠久久av| 欧美黄色淫秽网站| 久久这里只有精品中国| 脱女人内裤的视频| 欧美日韩乱码在线| 国产视频一区二区在线看| 亚洲成人久久爱视频| 97人妻精品一区二区三区麻豆| 国产人伦9x9x在线观看| 久久久国产精品麻豆| 老司机在亚洲福利影院| 精品一区二区三区视频在线 | 午夜亚洲福利在线播放| 国产精品亚洲一级av第二区| 精品熟女少妇八av免费久了| 美女免费视频网站| 亚洲人成网站高清观看| 俄罗斯特黄特色一大片| 成人特级黄色片久久久久久久| 午夜激情福利司机影院| 国内揄拍国产精品人妻在线| 99热精品在线国产| 亚洲七黄色美女视频| 精品国产亚洲在线| 成年免费大片在线观看| 欧美午夜高清在线| 在线国产一区二区在线| 亚洲精品久久国产高清桃花| 好男人电影高清在线观看| 精品日产1卡2卡| 日本精品一区二区三区蜜桃| 一本综合久久免费| 香蕉国产在线看| 村上凉子中文字幕在线| 淫妇啪啪啪对白视频| 香蕉丝袜av| 午夜两性在线视频| 日本撒尿小便嘘嘘汇集6| 国产免费av片在线观看野外av| 国产激情偷乱视频一区二区| 欧美在线一区亚洲| 嫩草影视91久久| 法律面前人人平等表现在哪些方面| 国产欧美日韩精品亚洲av| 老司机深夜福利视频在线观看| 嫁个100分男人电影在线观看| av天堂在线播放| 在线播放国产精品三级| 一个人免费在线观看的高清视频| 一二三四在线观看免费中文在| 亚洲人与动物交配视频| 国产高清激情床上av| 人人妻人人看人人澡| 日本 欧美在线| 久久久久亚洲av毛片大全| 久久久久精品国产欧美久久久| 天天添夜夜摸| 国产极品精品免费视频能看的| 欧美黄色淫秽网站| 一二三四社区在线视频社区8| 欧美激情久久久久久爽电影| 亚洲国产色片| 男人舔女人下体高潮全视频| 丁香六月欧美| 日本 欧美在线| 女人高潮潮喷娇喘18禁视频| 亚洲人成网站高清观看| 亚洲欧美日韩卡通动漫| 国产精品综合久久久久久久免费| 欧美另类亚洲清纯唯美| 亚洲av日韩精品久久久久久密| 国产亚洲av高清不卡| 97超级碰碰碰精品色视频在线观看| 97超视频在线观看视频| 熟妇人妻久久中文字幕3abv| 成年人黄色毛片网站| 搡老岳熟女国产| 国产激情偷乱视频一区二区| 一边摸一边抽搐一进一小说| 国产男靠女视频免费网站| 最新美女视频免费是黄的| 香蕉丝袜av| 国产高潮美女av| www.熟女人妻精品国产| 我要搜黄色片| 1000部很黄的大片| 国产激情久久老熟女| 亚洲无线在线观看| 国产亚洲av高清不卡| 久久草成人影院| 九色成人免费人妻av| 精品福利观看| 国内精品久久久久久久电影| 欧美黑人欧美精品刺激| 欧美日韩瑟瑟在线播放| 国产美女午夜福利| 久久天堂一区二区三区四区| 99国产精品一区二区三区| 99久久国产精品久久久| 精品国产美女av久久久久小说| 日韩欧美三级三区| 老司机深夜福利视频在线观看| 久99久视频精品免费| 国产私拍福利视频在线观看| 老司机深夜福利视频在线观看| 国产成人aa在线观看| 欧美午夜高清在线| 757午夜福利合集在线观看|