• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approach to estimating non-point pollutant load removal rates based on water environmental capacity: a case study in Shenzhen

    2014-09-06 10:49:43LiuLiangLiuAnGuanYuntao
    關(guān)鍵詞:量體裁衣環(huán)境容量面源

    Liu Liang Liu An Guan Yuntao,3

    (1Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)(2School of Environment, Tsinghua University, Beijing 100084, China)(3State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua University, Beijing 100084, China)

    ?

    Approach to estimating non-point pollutant load removal rates based on water environmental capacity: a case study in Shenzhen

    Liu Liang1,2Liu An1Guan Yuntao1,3

    (1Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)(2School of Environment, Tsinghua University, Beijing 100084, China)(3State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua University, Beijing 100084, China)

    An innovative approach based on water environmental capacity for non-point source(NPS) pollution removal rate estimation was discussed by using both univariate and multivariate data analysis. Taking Shenzhen city as the study case, a 67% to 74% NPS pollutant load removal rate can lead to meeting the chemical oxygen demand (COD) pollution control target for most watersheds. In contrast, it is hardly to achieve the ammonia nitrogen (NH4-N), total phosphorus (TP) and biological oxygen demand (BOD5) pollution control target by simply removing NPS pollutants. This highlights that the pollution control strategies should be taken according to different pollutant species and sources in different watersheds, rather than “one-size-fits-all”.

    environmental capacity estimation; non-point source(NPS)pollution; removal rate; control strategy

    In recent decades, the Chinese government has made a lot of efforts to improve urban water quality, but the deterioration of the urban water environment has progressively become a serious problem in many cities[1-4]. This can be attributed to the lack of knowledge regarding urban water pollutant source identification and ineffective pollution control strategies.

    Point and non-point sources(NPS) are the two primary sources of urban water environment pollution. Generally, the point source pollution such as municipal sewage and industrial wastewater has been treated as a major concern for many years. However, non-point source pollution has not received sufficient attention even though it is also among the most important contributors of water environment deterioration in China[5]. Especially in recent years, with the development of point source pollution control technology, NPS pollution has played an increasingly prominent role in influencing urban water environment pollution[6]. Contrary to point source pollution, NPS is characterized by random and intermittent occurrence, complex mechanisms and processes, and difficulties in monitoring, simulation and control[7]. It comes from many diffuse sources such as agriculture, stormwater runoff and deposition of atmospheric pollutants. Among them, stormwater runoff plays a dominant role[8]. The runoff can pick up significant loads of pollutants accumulated on the surface and transport them into the receiving water body. As early as in 1995, the US EPA has classified urban stormwater runoff as the third largest source of water environment pollution[9]. This highlights the immediate need to develop an effective NPS pollution control strategy for urban areas. In this regard, how to estimate the removal rate of the NPS pollution in order to meet a planned water quality objective is an essential step during the control strategy development.

    In this research, we provide an innovative approach to estimating the removal rate of NPS pollutant load based on the water environmental capacity. The water environmental capacity represents a threshold, namely how much pollutant loads the water environment can receive without leading to water quality deterioration[10]. Based on this concept, the removal rates of pollutant loads from different pollution sources (point source and NPS) can be estimated. Taking Shenzhen city as the study case, NPS pollutant removal rates based on the water environmental capacity concept were estimated. Appropriate control strategies for different pollutants in each watershed were also investigated using both univariate and multivariate data analysis technique. Although this research study was based on Shenzhen city, the created knowledge can contribute to the development of NPS pollution control strategies in other rapidly urbanizing cases in China.

    1 Material and Methods

    1.1 Study site selection

    The study site, Shenzhen city, is located in the Pearl River estuary, close to Hong Kong. All the 74 main rivers in the city are rain source typed[11]. According to the distribution of these rivers, Shenzhen city has been divided into nine river basins. In this research, the five major terrestrial basins are focused on. They are Maozhou watershed, Longgang watershed, Shenzhen watershed, Guanlan watershed and Pingshan watershed (see Fig.1). Each of the five watersheds covers more than 100 km2and is located away from coasts.

    Fig.1 Location map of the study sites

    1.2 Study approach

    The research study was undertaken in the following steps. First, for each watershed, the annual pollutant loads exported from point source, NPS and the watershed background were estimated based on the data obtained from a broad literature review, and the total annual pollutant loads can be obtained by adding these three types up. Secondly, the water environmental capacity was estimated by a one-dimensional water quality analytical model based on “Environmental Quality Control Planning of Shenzhen City” (2006—2020)[12]. Accordingly, pollution emission thresholds were determined for total annual pollutant loads, and then the removal rate of each pollutant load was obtained. Finally, the relationship among pollutants, pollution sources and watersheds was investigated using both univariate and multivariate data analysis techniques. Visual PROMETHEE software[13]was used in this research to undertake multivariate data analysis. PROMETHEE (preference ranking organization method for enrichment evaluations) is a non-parametric method providing ranking for objects on the basis of a range of variables while graphical analysis for interactive assistance (GAIA) visually shows the results of PROMETHEE using principal component analysis (PCA). A detailed discussion of PROMETHEE is provided by Keller et al[14-15]. The analysis process for estimating NPS pollutant load removal rates is shown in Fig.2.

    Fig.2 Flow chart for estimating NPS pollutant load removal rates

    It is noteworthy that in this research, the estimation of point source pollutant load was undertaken without considering industrial wastewater because of its much lower pollution emission load compared with municipal wastewater. From 2007 to 2010, the COD pollution generated from industrial wastewater decreased from 5592 to 3582 t/a. By contrast, the COD pollution generated from municipal wastewater ranged from 49 625 to 31 134 t/a, which is almost ten times larger than that of industrial wastewater[16]. In addition, this was supported by the research objective of developing an approach to estimating the NPS removal rate rather than estimating total pollutant loads. In this context, only municipal wastewater was considered during the estimation of point source pollutant loads in this research.

    1.3 Mathematical models

    As rivers are the main receiving water bodies in Shenzhen city, a one-dimensional water quality analytical model for estimating environmental capacity is used based on river self-purification as follows:

    (1)

    whereCis the planned water quality, mg/L;C0is the threshold of pollution emission, mg/L;kis the attenuation coefficient, 1/d;xis the river length, km;uis the flow velocity, km/d.

    As the river water is considered to be evenly mixed, the uniform mixture model is applied in this research. In addition, taking into account the planned water quality, the summation of pollutant loads from point source, NPS and watershed background should be smaller than the thresholdC0mentioned above. The water environmental capacity calculation model is

    (2)

    whereLis the annual pollution emission threshold of each watershed, t/a;Q0andC0are the total quantity of surface water in a watershed, m3, and the threshold of pollution emission, mg/L, respectively;QB,CBare the river flow volume without wastewater inflow, m3, and the background value of river pollution, mg/L;QM,CMare the quantity of wastewater generated from point source pollution, m3, and the pollutant concentration of wastewater generated from point source pollution, mg/L;QN,CNare the quantity of wastewater generated from NPS pollution, m3, and the pollutant concentration of wastewater generated from NPS pollution, mg/L, respectively.

    Based on this concept, the removal rates of the NPS pollutant load can be obtained in the combination of Eq.(1) and Eq.(2).

    2 Results and Discussion

    2.1 Environmental capacity estimation

    2.1.1 Quantity estimation

    The stormwater runoff volume from the five watersheds were estimated based on land use information and fractions of surface types data provided by “Land use planning of Shenzhen city” (2006—2020)[17]. The surfaces were categorized into two types, namely grass surfaces (pervious surfaces) and impervious surfaces, which are two important surface types in terms of runoff volume estimations. Areas of grass and impervious surfaces in each watershed are shown in Tab.1.

    Tab.1 Areas of different kinds of surfaces in each watershed in 2020

    SurfacetypeMaozhouGuanlanShenzhenLonggangPingshanGrassland184 7124 585 3186 190 4Impervioussurface123 1121 362 7116 635 9

    Xu and Guo[18]noted that the average runoff coefficient of pervious surfaces such as grassland is 0.15 while the corresponding value can reach more than 0.9 for impervious surfaces. Taking into account the relevant data given by past research studies and “Code for design of outdoor wastewater engineering” (GB 50014—2006)[19], 0.15 and 0.8 were selected for the runoff coefficients for grass surfaces and impervious surfaces, respectively. Accordingly, the estimated runoff volumes are shown in Tab.2.

    Tab.2 Estimated water quantities of different pollution sources in each watershed in 2020

    Quantity/(108m3·a-1)MaozhouGuanlanShenzhenLonggangPingshanQR1 9061 8780 9711 8050 556QR10 5360 3610 2480 5400 262QM2 7094 4043 1713 8651 261QB2 5701 9422 0432 8991 421

    Note:QRis the quantity of stormwater runoff generated from impervious surfaces;QR1is the quantity of stormwater runoff generated from grass lands.

    In terms of municipal wastewater volume estimation, considering the development of sewer systems, the collection efficiency of municipal wastewater would increase to 90% in 2020. Therefore, based on the volume of WWTP effluent, the annual quantity of municipal wastewater in each watershed is obtained. Tab.2 summarizes the results of relevant quantity estimations of municipal wastewater volume. Additionally, river flow volume which is referred to in Zhang’s research outcomes[20]are also included in Tab.2.

    2.1.2 Quality estimation

    Tab.3 lists the predicted outcomes of each pollutant’s concentration generated by municipal wastewater, NPS pollution and river background in 2020. “Environmental quality standards for surface water” (GB 3838—2002)[21]are also shown in Tab.3. Each pollutant concentration of WWTP enfluent has been identified according to the “Environmental quality control planning of Shenzhen city” (2006—2020). Furthermore, the quality of WWTP effluent was also predicted based on the current water quality of WWTP effluent in Shenzhen.

    Taking the “Environmental quality control planning of Shenzhen city” (2006—2020) into account, the surface water quality in Shenzhen city should at least meet Grade Ⅳ of “Code for design of outdoor wastewater engineering (GB 50014—2006)” by 2020. For the five watersheds, Longgang, Pingshan, Maozhou and Shenzhen should meet Grade Ⅳ while Guanlan should meet Grade Ⅲ. As shown in Tab.3, in 2010, the organic pollutants concentration of WWTP effluent (COD and BOD5) met Grade Ⅳ standard while NH4-N and TP were still worse than Grade V. This implies that further treatment needs to be undertaken for NH4-N and TP in order to meet Grade Ⅳ by 2020. Consequently, the effluent concentrations of COD (20.98 mg/L) and BOD5(2.96 mg/L) in 2010 were applied to estimate the removal rates while the concentrations of NH4-N (1.50 mg/L) and TP (0.30 mg/L), which are the values of Grade Ⅳ, were used. For NPS pollution, the pollutant concentrations of stormwater runoff generated by grass lands and impervious surfaces were determined respectively based on data obtained from previous research studies[22-24]. The estimation results are shown in Tab.3.

    Tab.3 Prediction of each pollutant’s concentration generated from different sources mg/L

    CategoryofpollutantCODNH4?NTPBOD5MunicipalwastewaterInfluent230 0030 004 50130 00Effluentin201020 983 990 832 96Estimatedeffluentin202020 981 500 302 96Stormwaterrunoff(NPS)Grasssurface120 371 800 747 35Impervioussurface140 183 350 6113 50Backgroundvalue15 000 100 043 00EnvironmentalqualitystandardsⅢ20 001 000 204 00Ⅳ30 001 500 306 00Ⅴ40 002 000 4010 00

    Based on the predicted water quantity and quality results, pollutant loads of each watershed and the environmental capacity can be calculated by using the mathematical models (Eq.(1) and Eq.(2)). As a result, the parameterCin Eq.(1) was determined by referring to the water quality shown in Tab.3;k’s value is set to be 0.2, 0.1, 0.1, 0.3 for COD, NH4-N, TP and BOD5, respectively;u’s value is set to be 1m/s[12]; the river length is considered as 30.9, 22.0, 31.8, 39.3, 23.0 km for Mouzhou, Guanlan, Shenzhen, Longgang and Pingshan river, respectively. Therefore, the parameterC0which indicates the threshold of pollution emission can be obtained.

    2.2 NPS removal rates for different pollutants in each watershed

    2.2.1 Univariate data analysis

    The comparisons of pollutant loads, pollution sources and watersheds are initially investigated using univariate data analysis as shown in Fig.3 and Tab.4.

    It is evident from Fig.3 that the contribution of NPS pollution to water environment deterioration cannot be ignored. Especially for COD, the pollutant load generated from NPS has exceeded the municipal wastewater. This indicates that other than strengthening the municipal wastewater treatment efficiency, reducing pollutant loads from stormwater runoff should be also essential in terms of improving water environment quality.

    It is noted that although Shenzhen and Pingshan watersheds have a similar size, the pollutant load from both municipal wastewater and NPS in Shenzhen watershed are almost twice as high as than that of Pingshan. This may be due to the frequent anthropogenic influence since Shenzhen watershed is a highly developed area while Pingshan watershed is less developed. This highlights that the anthropogenic activities can lead to more municipal wastewater discharge and accumulation of pollutants on urban surfaces.

    (a) (b)

    (c) (d)

    Tab.4 compares the removal rates of municipal wastewater and stormwater runoff (NPS pollution) for each pollutant species. For COD, except in Guanlan watershed, a 67% to 74% NPS pollutant load removal rate can lead to meeting the threshold of water environmental capacity. In contrast, only Shenzhen watershed can achieve the control target by only removing the municipal wastewater pollutant loads. This further confirms that NPS pollution plays a dominant role in COD pollution. However, NH4-N acted totally contrary to COD, the required NPS pollutant load removal rate under the environmental capacity restriction all exceeded 100%. By contrast, a 47% to 92% removal rate for municipal wastewater was enough, which suggests that municipal wastewater plays a dominant role in NH4-N pollution. For TP, only Maozhou and Pingshan watershed can meet the threshold of water environmental capacity by only removing NPS pollutants. However, the required removal rate for municipal wastewater ranged from 47% to 92%. Similarly, municipal wastewater plays a dominant role in BOD5pollution. This indicates that for the development of NH4-N, TP and BOD5control strategies, improving municipal wastewater treatment processes is an effective way, while for COD, stormwater runoff control measures will play even larger roles. This implies the need to take comprehensive NPS and municipal wastewater control strategies in order to meet the requirement of the water environmental capacity.

    Tab.4 Predicting removal rate of each pollutant in five watersheds in 2020 %

    WatershedCODNH4?NTNTPMNMNMNMNMaozhou—70 8262 69—62 1477 7266 5595 18Guanlan——91 28—91 46—95 31—Shenzhen91 6373 3255 72—49 86—55 62—Longgang—70 4658 42—55 32—57 70—Pingshan—66 5646 85—46 2078 6954 18—

    Note: M is the municipal wastewater pollutant; N is the NPS pollution generated from stormwater runoff; “—” means larger than 100%.

    In conclusion, the above outcomes imply that pollution control strategies should be taken based on pollutant species in each watershed and the control strategies should differ in different watersheds rather than “one-size-fits-all”. Additionally, for NH4-N, TP and BOD5, improving the water quality of municipal wastewater discharged from WWTP is an effective way to meet the threshold of water environmental capacity. While for COD, the NPS pollution should be focused on. This highlights that apart from improving wastewater treatment processes, control measures such as LID for stormwater runoff quantity reduction and quality improvement are also important for the improvement of water environment.

    2.2.2 Multivariate data analysis

    Using PROMETHEE and GAIA, the multivariate data analysis on relationships among pollutant loads, pollution sources and watersheds are investigated. Two pollutant sources (municipal wastewater and NPS pollution) in five watersheds are considered as objects while four pollutant loads (COD, NH4-N, TP and BOD5) are seen as variables. Accordingly, the data matrix (10×4) is submitted to PROMETHEE and GAIA. Fig.4 shows the resulting GAIA biplots.

    It is observed from Fig.4 that TP, NH4-N and BOD5vectors show a close relationship with municipal wastewater objects while COD vector indicates a strong correlation with NPS pollution objects, particularly Maozhou, Longgang and Guanlan watersheds. These observations further confirm that the pollutant generations vary highly with pollutant sources and watersheds. For NH4-N, TP and BOD5the primary pollutant source is municipal wastewater while COD is primarily generated from NPS pollution. However, Pingshan watershed does not have a close relationship with either of the pollution sources. This could be due to the lesser quantity of municipal waste water outflow and higher greening ratio in the watershed, which suggests that increasing pervious surfaces could potentially remove a relatively large percentage of the NPS pollution.

    Fig.4 GAIA biplot for relationships among pollutant loads, pollution sources and watersheds (Δ=99.99%). (M—Maozhou; G—Guanlan; S—Shenzhen; L—Longgang; P—Pingshan; W—Municipal wastewater; N—Non-point source pollution; e.g. M-W represents the municipal wastewater pollution in Maozhou watershed)

    3 Conclusion

    This paper details the outcomes of a research study undertaken to investigate the contribution of point source and NPS pollution of five major watersheds in Shenzhen. An innovative approach to estimating the removal rates of NPS pollutant load based on environmental capacity concepts was presented. In terms of Shenzhen, COD is the primary non-point pollutant for most watersheds and a 67% to 74% removal rate of COD from non-point sources can lead to meeting the threshold of water environmental capacity. In contrast, it is hardly to achieve the NH4-N, TP and BOD5pollution control target by simply removing NPS pollutant loads in most watersheds. This highlights that urban water pollutant loads exported vary highly with pollutant species, pollutant sources and watersheds. In order to keep the water environment from continuing to deteriorate, NPS pollution control strategies should be taken in different watersheds rather than “one-size-fits-all”. Although this research study is based on Shenzhen city, the provided approach can be applied in other rapidly urbanizing cases in order to assist in water quality enhancement.

    [1]Zhang J, Erik J S. Modelling of point and non-point nutrient loadings from a watershed [J].EnvironmentalModelling&Software, 2005, 20(5): 561-574.

    [2]Peng Shenghua, Yin Kuihao, Liang Yongxian, et al. Study on river water pollution control and storm water utilization in Shenzhen [J].JournalofEnvironmentalEngineeringTechnology, 2011, 1(6): 495-504. (in Chinese)

    [3]Yin Z, Walcott S. An analysis of the relationship between spatial patterns of water quality and urban development in Shanghai, China [J].Computers,EnvironmentandUrbanSystems, 2005, 29(2): 197-221.

    [4]Li C. Ecohydrology and good urban design for urban storm water-logging in Beijing, China [J].Ecohydrology&Hydrobiology, 2012, 12(4): 287-300.

    [5]Li Jinxiu, Ma Wei, Shi Xiaoxin, et al. Determination of allowable total discharge amount of pollutant [J].JournalofHydraulics, 2005, 36(7): 812-817. (in Chinese)

    [6]State Environment Protection Administration of China. Report on the state of the environment in China [R]. Beijing: China Environment Science Press, 2000. (in Chinese)

    [7]Shen Z, Liao Q. An overview of research on agricultural non-point source pollution modelling in China [J].SeparationandPurificationTechnology, 2012, 84: 104-111.

    [8]Ongley E D,Zhang X L. Current status of agricultural and rural non-point source pollution assessment in China [J].EnvironmentalPollution, 2010, 158(5): 1159-1168.

    [9]US EPA. National Water Quality Inventory. Report to congress executive summary [R]. Washington DC: US EPA, 1995:344.

    [10]Chen Dingjiang, Lü Jun, Jin Peijian, et al. Uncertainty analysis of water environmental capacity in the nonpoint source polluted river [J].EnvironmentalScience, 2010, 31(5): 1215-1219. (in Chinese)

    [11]Meteorological Bureau of Shenzhen Municipality. The Year Book of Shenzhen City (2012) [EB/OL]. (2013-03-01) [2013-10-12]. http://www.szmb.gov.cn/article/XinXiGongKai.

    [12]Urban Planning Land and Resource Commission of Shenzhen Municipality. Environmental quality control planning of Shenzhen city (2006—2020) [EB/OL]. (2007-07-12)[2013-10-12]. http://wenku.baidu.com/view/550695c758f5f61fb73666e9.html.

    [13]Bertrand Mareschal. Operation manual for visual PROMETHEE [EB/OL]. (2013-09-05)[2013-10-12]. http://www.promethee-gaia.net/vpa.html.

    [14]Herngren L,Goonetilleke A. Analysis of heavy metals in road-deposited sediments [J].AnalyticaChimicaActa, 2006, 571(2): 270-278.

    [15]Keller H R, Massart D L. Multicriteria decision making: a case study [J].ChemometricsandIntelligentLaboratorySystems, 1991, 11(2): 175-189.

    [16]Environmental Protection Bureau of Shenzhen Municipality. Report of the environmental quality in Shenzhen city (2006—2010) [EB/OL]. (2011-09-23)[2013-10-12]. http://www.docin.com/p-262454505.html.

    [17]Urban Planning Land and Resource Commission of Shenzhen Municipality. Land use planning of Shenzhen city (2006—2020) [EB/OL]. (2013-03-26)[2013-10-12]. http://www.szpl.gov.cn/xxgk/ghjh/td/201303/P020130326414200155682.pdf.

    [18]Xu Zhenci, Guo Yongchen. Simulation test of runoff on different underlying surfaces in urban area [J].South-to-NorthWaterTransfersandWaterScience&Technology, 2007(1): 64-66. (in Chinese)

    [19]Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50014—2006 Code for design of outdoor wastewater engineering [S]. Beijing: China Planning Press, 2006. (in Chinese)

    [20]Zhang Yuying. Analysis on the utilization of the surface water in Shenzhen [J].GuangdongWaterResourcesandHydropower, 2001(5): 26-27. (in Chinese)

    [21]Ministry of Environmental Protection of the People’s Republic of China. GB 3838—2002 Environmental quality standards for surface water [S]. Beijing: China Environmental Science Press, 2003. (in Chinese)

    [22]Li L, Yin C. First flush of storm runoff pollution from an urban catchment in China [J].JournalofEnvironmentalSciences, 2007, 19(3): 295-299.

    [23]Lee J H, Bang K W. First flush analysis of urban storm runoff [J].ScienceoftheTotalEnvironment, 2002, 293(1/2/3): 163-175.

    [24]Zheng Jieyuan, Huang Guoru, Wang Zhijun, et al. Analysis of temporal and spatial variation of rainfall in Guangzhou city at recent years [J].WaterResourcesandPower, 2011(3): 5-8. (in Chinese)

    基于水環(huán)境容量的面源污染削減率估算方法探討:以深圳市為例

    劉 梁1,2劉 安1管運(yùn)濤1,3

    (1清華大學(xué)深圳研究生院, 深圳 518055) (2清華大學(xué)環(huán)境學(xué)院, 北京 100084) (3清華大學(xué)國家環(huán)境保護(hù)環(huán)境微生物利用與安全控制重點(diǎn)實(shí)驗(yàn)室, 北京 100084)

    以深圳市為例,采用單元分析與多元分析相結(jié)合的手段,探討了一種基于城市水環(huán)境容量估算面源污染負(fù)荷削減率的方法在環(huán)境規(guī)劃中的實(shí)際應(yīng)用.計(jì)算結(jié)果表明:對于COD指標(biāo),67%~74%的面源污染負(fù)荷削減率即可滿足深圳市規(guī)劃后環(huán)境容量的限制;而對于NH4-N, TP和BOD5,僅依靠削減面源污染負(fù)荷則無法滿足規(guī)劃要求.因此,在城市水環(huán)境質(zhì)量規(guī)劃過程中,應(yīng)針對不同流域及目標(biāo)污染物種類,制定“量體裁衣”式的水環(huán)境控制策略,而非采用一成不變的措施.

    環(huán)境容量估算; 面源污染; 削減率; 控制策略

    X321

    s:The National Science and Technology Major Project of China(No.2012ZX07301-001), the Shenzhen Environmental Research Project, China Postdoctoral Science Foundation (No.2013M530642).

    :Liu Liang, Liu An, Guan Yuntao.Approach to estimating non-point pollutant load removal rates based on water environmental capacity: a case study in Shenzhen[J].Journal of Southeast University (English Edition),2014,30(2):143-149.

    10.3969/j.issn.1003-7985.2014.02.002

    10.3969/j.issn.1003-7985.2014.02.002

    Received 2013-10-19.

    Biographies:Liu Liang (1988—), male, graduate; Guan Yuntao (corresponding author), male, professor, guanyt@mail.tsinghua.edu.cn.

    猜你喜歡
    量體裁衣環(huán)境容量面源
    駐馬店市十三五期間大氣環(huán)境容量和緊缺度核算及分析
    農(nóng)業(yè)面源污染的危害與治理
    澄江市農(nóng)業(yè)面源污染成因及對策
    量體裁衣
    川南經(jīng)濟(jì)區(qū)年大氣環(huán)境容量核算的初步研究
    基于SWAT模型的漳河流域面源污染模擬研究
    量體裁衣
    自貢市貢井區(qū)河流水環(huán)境容量分析
    量體裁衣
    讀寫算(上)(2016年9期)2016-02-27 08:45:02
    農(nóng)業(yè)面源污染對水質(zhì)的影響及防治對策
    亚洲精品久久午夜乱码| 黑人猛操日本美女一级片| 99久久综合精品五月天人人| 精品熟女少妇八av免费久了| 精品无人区乱码1区二区| 国产精品久久久久久人妻精品电影| 香蕉丝袜av| 国产精品九九99| 中文字幕人妻丝袜一区二区| 90打野战视频偷拍视频| 捣出白浆h1v1| 亚洲九九香蕉| 国产精品av久久久久免费| 这个男人来自地球电影免费观看| 嫁个100分男人电影在线观看| 男女下面插进去视频免费观看| 午夜精品在线福利| 国产精品亚洲av一区麻豆| 精品一区二区三区四区五区乱码| 国产亚洲欧美精品永久| 成人18禁在线播放| 成人影院久久| 高潮久久久久久久久久久不卡| 久久热在线av| 亚洲av成人一区二区三| 国产成+人综合+亚洲专区| 9热在线视频观看99| 国产一区二区三区视频了| 丝瓜视频免费看黄片| 精品电影一区二区在线| 精品电影一区二区在线| 每晚都被弄得嗷嗷叫到高潮| 精品国产国语对白av| 亚洲中文日韩欧美视频| 亚洲国产欧美网| 国产精品乱码一区二三区的特点 | 国产麻豆69| 看免费av毛片| 嫩草影视91久久| 啦啦啦 在线观看视频| 欧美精品一区二区免费开放| 国产精品电影一区二区三区 | 午夜老司机福利片| 黄色毛片三级朝国网站| 女人高潮潮喷娇喘18禁视频| 一夜夜www| 亚洲一区高清亚洲精品| 亚洲午夜精品一区,二区,三区| 无遮挡黄片免费观看| 国产一区二区激情短视频| 久久九九热精品免费| 两个人看的免费小视频| 国产精品综合久久久久久久免费 | 成人av一区二区三区在线看| 99re6热这里在线精品视频| 在线观看免费日韩欧美大片| 淫妇啪啪啪对白视频| 久久久精品区二区三区| 精品人妻熟女毛片av久久网站| 成年人黄色毛片网站| xxxhd国产人妻xxx| av线在线观看网站| 大型av网站在线播放| 精品午夜福利视频在线观看一区| 成人精品一区二区免费| 国产亚洲精品久久久久久毛片 | 9191精品国产免费久久| 咕卡用的链子| 国产成+人综合+亚洲专区| 99久久人妻综合| 精品人妻熟女毛片av久久网站| 男女免费视频国产| 中国美女看黄片| 日本wwww免费看| 伦理电影免费视频| 黑人操中国人逼视频| 一级黄色大片毛片| 极品少妇高潮喷水抽搐| 宅男免费午夜| 日韩欧美免费精品| 午夜精品在线福利| 亚洲avbb在线观看| 一区二区三区国产精品乱码| 少妇 在线观看| 国产日韩欧美亚洲二区| 久久中文看片网| 少妇裸体淫交视频免费看高清 | 精品人妻1区二区| 亚洲视频免费观看视频| 99精国产麻豆久久婷婷| 免费av中文字幕在线| 91九色精品人成在线观看| 麻豆乱淫一区二区| 国产在线观看jvid| 国产欧美亚洲国产| 老司机影院毛片| 亚洲一区二区三区欧美精品| 国产97色在线日韩免费| 久久 成人 亚洲| a级毛片黄视频| 国产99白浆流出| 韩国精品一区二区三区| 国产又色又爽无遮挡免费看| 亚洲久久久国产精品| 精品国产一区二区三区久久久樱花| 丝袜人妻中文字幕| 亚洲avbb在线观看| 日本黄色视频三级网站网址 | 91在线观看av| 亚洲国产看品久久| 午夜精品在线福利| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区三| 国产有黄有色有爽视频| 国产成人影院久久av| 久久午夜亚洲精品久久| 久久久国产一区二区| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区mp4| 精品亚洲成国产av| 免费在线观看完整版高清| 黄色视频不卡| 在线看a的网站| 国产极品粉嫩免费观看在线| 国产精品免费大片| 国产免费男女视频| 一进一出抽搐gif免费好疼 | 大码成人一级视频| 亚洲精品国产区一区二| 亚洲av电影在线进入| 欧美黄色淫秽网站| 亚洲中文字幕日韩| 欧美激情高清一区二区三区| av一本久久久久| 久久久久久免费高清国产稀缺| 国产一区二区激情短视频| 国产97色在线日韩免费| 天堂俺去俺来也www色官网| 亚洲精品粉嫩美女一区| 久久草成人影院| 又紧又爽又黄一区二区| 成在线人永久免费视频| 国产精品久久电影中文字幕 | av网站免费在线观看视频| 国产精品久久电影中文字幕 | 久久国产乱子伦精品免费另类| 国产精品二区激情视频| 高清黄色对白视频在线免费看| 免费在线观看亚洲国产| 日日摸夜夜添夜夜添小说| 国产精品99久久99久久久不卡| 婷婷成人精品国产| 精品久久久久久,| 成年人免费黄色播放视频| 午夜福利在线观看吧| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩av久久| 在线免费观看的www视频| 在线观看免费午夜福利视频| 成年版毛片免费区| 高清视频免费观看一区二区| 老司机福利观看| 欧美成人午夜精品| 人人妻人人澡人人爽人人夜夜| 久久久久久亚洲精品国产蜜桃av| 天堂俺去俺来也www色官网| 色94色欧美一区二区| 老司机午夜福利在线观看视频| 一二三四在线观看免费中文在| 欧美日本中文国产一区发布| 午夜久久久在线观看| 妹子高潮喷水视频| 天堂中文最新版在线下载| 亚洲欧洲精品一区二区精品久久久| 中文字幕制服av| 天堂中文最新版在线下载| 中文字幕最新亚洲高清| 老熟女久久久| 母亲3免费完整高清在线观看| 人人妻人人添人人爽欧美一区卜| 日本欧美视频一区| 欧美日韩福利视频一区二区| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| 在线播放国产精品三级| 久久久国产欧美日韩av| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| 亚洲精品国产精品久久久不卡| 精品久久蜜臀av无| 午夜精品国产一区二区电影| 最近最新中文字幕大全免费视频| 看黄色毛片网站| avwww免费| 制服诱惑二区| 亚洲专区国产一区二区| 久久中文字幕一级| 啦啦啦在线免费观看视频4| 丁香欧美五月| 女警被强在线播放| 精品国产亚洲在线| 国产成人精品无人区| 黄片播放在线免费| 80岁老熟妇乱子伦牲交| 女人被狂操c到高潮| 国产亚洲av高清不卡| 国产成人精品在线电影| 国产精品一区二区免费欧美| avwww免费| 99热国产这里只有精品6| 欧美日韩瑟瑟在线播放| 国产精品自产拍在线观看55亚洲 | 亚洲精品国产精品久久久不卡| 成熟少妇高潮喷水视频| 乱人伦中国视频| 一边摸一边抽搐一进一小说 | 视频在线观看一区二区三区| 亚洲一区二区三区不卡视频| av欧美777| 操出白浆在线播放| 麻豆成人av在线观看| 大陆偷拍与自拍| 国产高清国产精品国产三级| 日本欧美视频一区| 一进一出抽搐动态| 国产亚洲一区二区精品| 亚洲黑人精品在线| 欧美乱色亚洲激情| 亚洲中文av在线| 亚洲国产中文字幕在线视频| 国产男靠女视频免费网站| 国产精品偷伦视频观看了| 国产免费男女视频| 国产成人精品在线电影| 欧美大码av| 午夜影院日韩av| 热re99久久国产66热| 超碰97精品在线观看| 18禁国产床啪视频网站| 亚洲五月婷婷丁香| 淫妇啪啪啪对白视频| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区久久久樱花| 狂野欧美激情性xxxx| 国产乱人伦免费视频| 精品乱码久久久久久99久播| av福利片在线| 国产在视频线精品| 欧美精品高潮呻吟av久久| 满18在线观看网站| 欧美大码av| 久久久久久久国产电影| 国产一区二区三区在线臀色熟女 | 久久影院123| 女人被躁到高潮嗷嗷叫费观| 俄罗斯特黄特色一大片| 人妻久久中文字幕网| 国产亚洲精品久久久久久毛片 | 久久国产亚洲av麻豆专区| 男女午夜视频在线观看| 少妇裸体淫交视频免费看高清 | 午夜福利影视在线免费观看| 国产亚洲欧美在线一区二区| 国产在线精品亚洲第一网站| 80岁老熟妇乱子伦牲交| 亚洲精品国产一区二区精华液| 乱人伦中国视频| 欧美精品一区二区免费开放| 亚洲熟女毛片儿| 久久人妻熟女aⅴ| 国产99久久九九免费精品| 黄色女人牲交| 国产男女内射视频| 一级a爱片免费观看的视频| 在线观看日韩欧美| 精品少妇一区二区三区视频日本电影| 欧美精品人与动牲交sv欧美| 欧美精品啪啪一区二区三区| 精品国产乱码久久久久久男人| 亚洲 欧美一区二区三区| 人妻 亚洲 视频| 亚洲一区高清亚洲精品| 免费看a级黄色片| 男人操女人黄网站| 一区二区三区激情视频| 这个男人来自地球电影免费观看| 国产精品1区2区在线观看. | 国产在视频线精品| 人人妻人人澡人人爽人人夜夜| 淫妇啪啪啪对白视频| 欧美黑人精品巨大| 亚洲成a人片在线一区二区| 久久久久久人人人人人| 一区在线观看完整版| 九色亚洲精品在线播放| 久久久国产精品麻豆| 老司机午夜福利在线观看视频| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 中文字幕人妻丝袜制服| 大码成人一级视频| 国产精品免费视频内射| 国产精品国产av在线观看| 久久午夜亚洲精品久久| 曰老女人黄片| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 黄色视频不卡| 啦啦啦视频在线资源免费观看| 亚洲第一青青草原| 精品第一国产精品| 宅男免费午夜| 久久人妻av系列| 精品一品国产午夜福利视频| 国产成人欧美在线观看 | 国产男女内射视频| 亚洲欧美色中文字幕在线| aaaaa片日本免费| 久久久久久久国产电影| 成人黄色视频免费在线看| 中文亚洲av片在线观看爽 | 久久久久久人人人人人| av福利片在线| 大型黄色视频在线免费观看| 日本一区二区免费在线视频| ponron亚洲| tocl精华| 黄色 视频免费看| 国产成人影院久久av| 国产精品1区2区在线观看. | 老司机亚洲免费影院| 日韩欧美免费精品| av不卡在线播放| 香蕉丝袜av| 午夜91福利影院| av有码第一页| 久久 成人 亚洲| 在线天堂中文资源库| 50天的宝宝边吃奶边哭怎么回事| 精品人妻熟女毛片av久久网站| xxx96com| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 国产精品二区激情视频| xxxhd国产人妻xxx| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| 天堂√8在线中文| 久久久久久久久免费视频了| 老汉色av国产亚洲站长工具| 亚洲色图综合在线观看| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人 | 欧美国产精品一级二级三级| 国产欧美日韩一区二区三| 色尼玛亚洲综合影院| av欧美777| 欧美另类亚洲清纯唯美| 黄色女人牲交| 两个人看的免费小视频| 亚洲精品美女久久av网站| 人妻丰满熟妇av一区二区三区 | www.精华液| 国产又色又爽无遮挡免费看| 国产精品欧美亚洲77777| 女人高潮潮喷娇喘18禁视频| 在线观看免费日韩欧美大片| 日韩免费高清中文字幕av| 超碰97精品在线观看| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 久久久精品区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲精品乱久久久久久| 韩国精品一区二区三区| 亚洲人成电影观看| 国产精品久久久久成人av| 欧美黑人欧美精品刺激| 成人三级做爰电影| 99国产极品粉嫩在线观看| 精品国产乱码久久久久久男人| 91大片在线观看| 日韩精品免费视频一区二区三区| av片东京热男人的天堂| 日韩免费av在线播放| 欧美日韩乱码在线| 久久 成人 亚洲| 午夜福利,免费看| 欧美日韩亚洲国产一区二区在线观看 | 大香蕉久久成人网| 日韩免费高清中文字幕av| 久久久久精品人妻al黑| 午夜成年电影在线免费观看| 999久久久国产精品视频| 久久天躁狠狠躁夜夜2o2o| 丝袜美足系列| 黑丝袜美女国产一区| 人人澡人人妻人| 一区二区日韩欧美中文字幕| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 狠狠狠狠99中文字幕| 99国产精品99久久久久| 国产不卡av网站在线观看| 欧美成人免费av一区二区三区 | 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 免费少妇av软件| 99热国产这里只有精品6| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区| 久久国产亚洲av麻豆专区| 国产精品国产av在线观看| 狂野欧美激情性xxxx| 久久人人97超碰香蕉20202| 大香蕉久久成人网| 欧美不卡视频在线免费观看 | tube8黄色片| 日本一区二区免费在线视频| 中文亚洲av片在线观看爽 | 成年人午夜在线观看视频| videosex国产| 两个人看的免费小视频| av在线播放免费不卡| 欧美黄色淫秽网站| 黑人巨大精品欧美一区二区蜜桃| 两性夫妻黄色片| av免费在线观看网站| 免费观看人在逋| 国产1区2区3区精品| 亚洲av美国av| 欧美日韩亚洲国产一区二区在线观看 | 女人高潮潮喷娇喘18禁视频| 波多野结衣一区麻豆| 精品少妇一区二区三区视频日本电影| 18禁美女被吸乳视频| 9191精品国产免费久久| 天堂动漫精品| 国产高清videossex| 亚洲片人在线观看| 国产精品亚洲av一区麻豆| 天天躁夜夜躁狠狠躁躁| 久久九九热精品免费| 一级a爱视频在线免费观看| 黄频高清免费视频| 怎么达到女性高潮| 人人妻人人爽人人添夜夜欢视频| 国产成人啪精品午夜网站| 村上凉子中文字幕在线| 免费在线观看黄色视频的| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o| 岛国在线观看网站| 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品大桥未久av| 热re99久久国产66热| 成人免费观看视频高清| 丁香六月欧美| 19禁男女啪啪无遮挡网站| 精品少妇久久久久久888优播| 日韩欧美三级三区| 国产精品一区二区在线不卡| 久热这里只有精品99| 老司机福利观看| 99re在线观看精品视频| 精品一区二区三区四区五区乱码| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 最近最新中文字幕大全免费视频| 无限看片的www在线观看| 国产男女超爽视频在线观看| 99国产精品99久久久久| 日本黄色日本黄色录像| 人人妻人人添人人爽欧美一区卜| 深夜精品福利| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区二区三区在线观看 | 黄色毛片三级朝国网站| 99在线人妻在线中文字幕 | 国产精品九九99| xxxhd国产人妻xxx| 日韩视频一区二区在线观看| 下体分泌物呈黄色| 久久香蕉激情| 国产真人三级小视频在线观看| 黄色丝袜av网址大全| 国产精品九九99| 热99国产精品久久久久久7| 欧美日韩成人在线一区二区| 婷婷精品国产亚洲av在线 | 久久香蕉国产精品| 亚洲国产精品合色在线| 后天国语完整版免费观看| 精品亚洲成a人片在线观看| www.熟女人妻精品国产| 国产一区二区激情短视频| 757午夜福利合集在线观看| 超色免费av| 婷婷精品国产亚洲av在线 | 亚洲精品国产精品久久久不卡| 亚洲自偷自拍图片 自拍| 嫁个100分男人电影在线观看| av线在线观看网站| 在线播放国产精品三级| 国产午夜精品久久久久久| 色婷婷久久久亚洲欧美| 后天国语完整版免费观看| 波多野结衣av一区二区av| 最近最新中文字幕大全电影3 | 免费av中文字幕在线| 19禁男女啪啪无遮挡网站| 热99国产精品久久久久久7| 青草久久国产| 亚洲国产毛片av蜜桃av| 我的亚洲天堂| 亚洲精品中文字幕一二三四区| 久久久久久免费高清国产稀缺| 久久久久久亚洲精品国产蜜桃av| 亚洲,欧美精品.| 天天躁日日躁夜夜躁夜夜| 久久久久国内视频| 男女午夜视频在线观看| xxx96com| 性色av乱码一区二区三区2| 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 他把我摸到了高潮在线观看| 黑人操中国人逼视频| 欧美日韩乱码在线| 身体一侧抽搐| 老司机午夜福利在线观看视频| 日本精品一区二区三区蜜桃| 中文字幕精品免费在线观看视频| 欧美成狂野欧美在线观看| 欧美精品高潮呻吟av久久| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av高清一级| 国产成人欧美| 精品久久蜜臀av无| 久久久水蜜桃国产精品网| 女性被躁到高潮视频| 在线观看日韩欧美| 国产主播在线观看一区二区| 色综合婷婷激情| 一边摸一边抽搐一进一小说 | 国产精品永久免费网站| 国产男女超爽视频在线观看| 亚洲熟女毛片儿| 日本撒尿小便嘘嘘汇集6| a级片在线免费高清观看视频| 99久久99久久久精品蜜桃| 十八禁人妻一区二区| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区免费欧美| 亚洲欧美一区二区三区黑人| 老司机靠b影院| 国产男女内射视频| 国产精品一区二区在线观看99| 国产亚洲av高清不卡| 亚洲免费av在线视频| 天堂动漫精品| a级毛片黄视频| 人人妻人人澡人人看| 日韩欧美一区视频在线观看| 精品国产国语对白av| 国产精品偷伦视频观看了| 搡老岳熟女国产| 一级毛片女人18水好多| 精品国产一区二区三区久久久樱花| 侵犯人妻中文字幕一二三四区| e午夜精品久久久久久久| 日本精品一区二区三区蜜桃| 美女国产高潮福利片在线看| 操出白浆在线播放| 亚洲视频免费观看视频| 超碰成人久久| 精品熟女少妇八av免费久了| 亚洲欧美色中文字幕在线| 成年女人毛片免费观看观看9 | 亚洲精品自拍成人| 精品国产亚洲在线| 国产精品美女特级片免费视频播放器 | 国产精品二区激情视频| 色播在线永久视频| а√天堂www在线а√下载 | 最新的欧美精品一区二区| 黄色 视频免费看| 在线av久久热| 国产不卡av网站在线观看| 国产成人免费无遮挡视频| 在线看a的网站| 黑人巨大精品欧美一区二区蜜桃| 丰满迷人的少妇在线观看| 满18在线观看网站| 老熟女久久久| 夜夜躁狠狠躁天天躁| 久久亚洲真实| 村上凉子中文字幕在线| 亚洲精品av麻豆狂野| 久久久久国内视频| 免费少妇av软件| 看黄色毛片网站| 欧美乱妇无乱码| 日韩欧美一区视频在线观看| 搡老熟女国产l中国老女人| 麻豆国产av国片精品| 在线永久观看黄色视频| 高清欧美精品videossex| 免费在线观看黄色视频的| 国产精品免费一区二区三区在线 | 久久精品人人爽人人爽视色| 国产视频一区二区在线看| 99久久综合精品五月天人人| 一个人免费在线观看的高清视频|