• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AFuzzyRoutingAlgorithmforSolarPoweredWirelessSensorNetworks*

    2014-09-06 10:47:47,,,
    傳感技術(shù)學(xué)報(bào) 2014年9期
    關(guān)鍵詞:均衡性泰勒路由

    , , ,

    (School of Electrical Engineering and Automation,Tianjin University,Tianjin 300072,China)

    ?

    AFuzzyRoutingAlgorithmforSolarPoweredWirelessSensorNetworks*

    LIUChao,LIULiping*,ANXinsheng,CUITingting

    (School of Electrical Engineering and Automation,Tianjin University,Tianjin 300072,China)

    Resource limitation and unbalanced energy consumption are two main factors to limit the lifetime for Wireless Sensor Networks(WSNs).This paper first introduced a new metric indicating degree of balance,called Theil index,and then proposed a new routing method for solar powered WSNs to extend network lifetime using a fuzzy approach which is to determine an optimal routing path by favoring the node with the highest Node Quality(NQ),largest Transmitting Capacity(TC)and best Degree of Energy Balance(DEB)of Theil index.This paper validated the proposed method with simulations and made comparisons with other two classic routing algorithms and finally compared the performance under three different DEB indexes,which demonstrated that the proposed method has a better effectiveness and balance of energy consumption,prolonging the network lifetime.

    wireless sensor networks;solar powered system;routing protocol;fuzzy logic control;theil index

    A Wireless Sensor Network(WSN),consisting of a large number of low-cost,low-power,multifunctional sensor nodes to monitor physical conditions,such as temperature,sound,vibration,pressure,motion,etc.usually derives its energy from attached batteries.As shown in Fig.1,a typical sensor node of this network includes:a sensing unit,a transceiver unit,a processing unit,and a power unit composed of solar energy harvesting circuit and NiMH battery.Maximizing the WSN lifetime is a critical issue for applications due to the limited energy resources.Exploiting environmental and renewable energy sources promises to be a breakthrough.

    Fig.1 Components of a sensor node

    A variety of energy harvesting technologies are available and Table 1[1]shows some of the potential energy generating sources.Among them,solar energy provides the highest power density compared to other sources and sensor nodes work at a power order of mW.In addition,commonly or easy available solar matches the requirement and is considered to be the most effective choice for WSNs system.Although solar powered WSNs can prolong network lifetime by supplying the battery with harvested solar energy,the dynamic energy supply brings big challenge for network design as the current state of technology in energy harvesting is still unable to provide a sustained energy supply to enable WSNs continuously.The system needs a special solar panel recharging circuit and the energy state information for all nodes should be update periodically to prolong the network lifetime by providing the solar energy to sensor nodes.

    Many routing algorithms have already been presented to address the problem of effective and balanced energy consumption for solar powered WSNs.Most of these routing algorithms minimize the total energy consumption at the expense of nonuniform energy drainage in the networks,which can significantly reduce network lifetime.This paper first defined two metrics,Node Quality(NQ)and Transmitting Capacity(TC),used to select the next hop,and then introduced another new metric,Theil index,indicating the Degree of Energy Balance(DEB),finally proposed a new algorithm using fuzzy approach to select the optimal routing path from the source to the destination by favoring the node with the highest NQ,largest TC,and best DEB.

    Table 1 Performance of energy harvesters

    This paper is organized as follows:Section Ⅱ provides a brief overview on related works.Fuzzy logic election of node for routing in WSNs is introduced in detail in section Ⅲ.Section Ⅳ shows simulation results and performance evaluation,section Ⅴ concludes this paper.

    1 Related work

    In optimal path routing schemes over WSNs,each node selects specific node to relay data according to some criteria in order to satisfy some specific requirements such as minimum energy consumption,shortest time-delay,lowest latency and maximum network lifetime,among which energy issue has been a hot topic and how to balance network energy consumption,extending the network lifetime has become a evaluation criteria for WSN protocols[2].All of these algorithms proposed to prolong the network lifetime should consider both effectiveness and balance of energy dissipation during the process of selecting the next hop.However,there is a conflict between these two aspects.Simple energy efficient routing algorithm has a fixed transmission path,resulting in unbalanced energy consumption.Correspondingly,energy balanced routing algorithm can not guarantee the data flow toward to the Sink quickly and the collected data may temporarily flow along the peripheral nodes with more residual energy,which causes a larger end to end energy overhead.In addition,an ideal routing protocol should perform the minimum transmission energy consumption and the maximum lifetime of every node[3].

    Fuzzy Logic Control(FLC)system is designed specifically for multi-inputs systems which does not depend on accurate mathematical model and it is a mathematical discipline invented to express human reasoning in rigorous mathematical notation which makes it ideal for wireless sensor network.Aiming to maximize the network lifetime[4],built a fuzzy logic at each node to determine its chance to transfer data based on its residual energy,trust level and distance from the base station.However it directly use the geometric distance from the base station as one selection criteria,which will produce a over impact on selection decisions and the nodes near to the Sink will get drained fast.FML-MP(a fuzzy multi-path maximum lifespan routing scheme),an online multi-path routing scheme that strives to achieve a good distribution of the traffic load was developed in [5],which uses an edge-weight function in the path search process.This scheme is centralized and consumes too much energy.A fully distributed fuzzy logic method based on nodes’ residual energy,hops to the Sink,and traffic loads was proposed in [6].Both the residual energy,and hops to the Sink play over roles on selection decisions as it directly uses the values.In [7] the authors presented Optimal Forwarding by Fuzzy Inference Systems(OFFIS)for flat sensor networks.The OFFIS protocol selects the best node from candidate nodes in the forwarding paths by favoring the minimum number of hops,shortest path and maximum remaining battery power and link usage.Both of these two algorithms are just passive to make up for the emerged unbalanced energy drainage,not proactive in preventing the nonuniform consumption.

    In this paper,we proposed a novel fuzzy based routing method for WSNs to extend network lifetime,which is to determine an optimal routing path from the source to the Sink by favoring the node with the highest NQ,largest TC,and best DEB.On the one hand,we made comparisons with other two classic routing algorithms,on the other hand,we compared the algorithm performance under three different DEB indexes,which demonstrates that our proposed method has a better effectiveness and balance of energy consumption,moreover,it can largely prolong the network lifetime.

    2 Fuzzy logic election of node forrouting in WSNs

    We need to make some definitions before introducing the algorithm.

    ①WSN can be described with a undirected graphG(V,E),whereVandErepresent the collection of all the sensor nodes and the radio link between different nodes,respectively,as follows.

    E={(i,j)}|i∈V,j∈V∪{Sink}}

    We should note that,the distance between the sender and the receiver should be shorter than the maximum communication distance(R)of different nodes.

    ②Neighbor Nodes.

    The neighbor nodes ofican be defined as follows:

    N(i)={j|j∈V,D(i,j)

    WhereD(i,j) is the distance betweeniandj.

    ③Forward Neighbor Nodes

    The forward neighbor nodes ofican be defined as:

    FN(i)={j|j∈N(i),H(j)<=H(i)}

    WhereH(i) andH(j) represent the hop of nodeiandjwhich can be get with the method mentioned in [8].

    Fuzzy logic was first introduced in the mid-1960 s by Lotfi-Zadeh in [9].Since then,its applications have rapidly expanded in adaptive control systems and identification system.It is a mathematical discipline invented to express human reasoning in rigorous mathematical notation and it has the advantages of easy implementation,robustness,and ability to approximate to any nonlinear mapping[8].Moreover,compared to other event classification algorithms based on probability theory,fuzzy logic is much more intuitive and easier to use.

    Fig.2 Structure of the fuzzy logic control

    Fig.2 shows the typical structure of a FLC system which consists of four components namely:fuzzification,rule base,inference engine and defuzzification.The real inputs are fuzzified into fuzzy variables before being inputted into the inference engine which contains fuzzy rules,and then we get the fuzzy output sets after approximate reasoning,finally we get the real outputs that can be acceptable to control systems,for example here the output is the priority level of selecting a node as the next hop,after a process of defuzzification.The process of making crisp inputs is called fuzzification which involves application of membership functions such as triangular,trapezoidal,Gaussian etc.The inference engine process maps fuzzified inputs to the rule base to produce a fuzzy output.The defuzzification process converts the outputs of fuzzy rule base into crisp outputs by one of defuzzification strategies.

    To our best of knowledge,most of the fuzzy based routing algorithms in WSN are focused on the different inputs and outputs of fuzzy system,such as residual energy level,trust level,and distance from the source node to the Sink for inputs and cost value,chance of selecting node as the next hop for outputs.As shown in Fig.3,we proposed a novel mamdani fuzzy based routing algorithm considering three inputs:NQ,TC and DEB of Theil index of all the neighbor nodes and one output:the priority level(PL)for a node to be selected as the next hop.The number in brackets represent fuzzy sets of membership functions.We will introduce the three inputs in details as follows.

    Fig.3 Schematic diagram of the proposed algorithm

    2.1 Node Quality

    Simple energy efficient routing algorithm has a fixed transmission path,resulting in unbalanced energy consumption.Correspondingly,energy balanced routing algorithm can not guarantee that the data flow toward to the Sink quickly and the collected data may temporarily flow along the peripheral nodes with more residual charge,which causes a larger end to end energy consumption.We proposed a novel metric called node quality which considers both effectiveness and balance of energy dissipation.We defined node quality of thekthforward neighbor node of nodeias follows:

    (1)

    In whichk∈FN(i),j∈FN(i),Qand Hop are the residual energy and hop count to the Sink,respectively,andα,βare weighting exponent for residual energy and hop.We can intuitively see from Eq.(1)that a node with more residual energy and smaller hop count to the Sink has a higher quality to be selected as the next hop.Moreover,we can set differentαandβfor different kinds of data to meet different requirements,for example we can set a higherαand lowerβfor data which is insensitive to time delay to get a balance energy consumption and set a higherβand lowerαfor delay-sensitive data,conversely.Most importantly,this proposed metric is fully distributed that can be performed with local information,which largely reduces the overhead of control and communication and realizes the combination of both effectiveness and local balance.

    2.2 Transmitting Capacity

    The TC is defined as the ratio of the number of forward neighbor nodes and the traffic load(or intensity)which represents the pending amount of traffic in a node’s queue.On the one hand,the high traffic load causes a data queue overflow in the sensor nodes,resulting in loss of important information.In addition,since the battery energy of the sensor nodes is quickly exhausted,the entire lifetime of wireless sensor networks would be shortened[10].Therefore,the traffic load in nodes will affect the lifetime of the networks.On the other hand,a node with more forward neighbor nodes has more hubs to assign its traffic load,achieving a predictable balance of traffic load to prolong the network lifetime.

    Different sensor nodes have large different traffic loads and number of forward neighbor nodes,which will cause too much impact on the selecting decision if we directly input the transmitting capacity to the fuzzy system.Meanwhile,as the distributed routing algorithms make routing decision based on local information,such as the forward neighbors’ information,we fixed the node transmitting capacity as Eq.(2).

    Wherek∈FN(i),j∈FN(i),Forward and TL are the number of forward neighbor nodes and traffic load mentioned above,respectively.From Eq.(2)we can see that a node with more forward neighbor nodes and less traffic load has a larger transmitting capacity representing a higher priority level being selected to be the next hop.

    (2)

    2.3 Degree of Energy Balance

    Most of the existing routing algorithms in WSNs will commonly make a selection decision considering residual energy of nodes,giving more chance to these nodes with more energy and less chance to those with less energy.It is a passive routing adjustment method to make selection decision based on residual energy as the energy has been uneven before the adjustment.We adopted a proactive routing adjustment strategy before data transmission,making a selection decision for every forward neighbor node based on the degree of energy balance of all their own neighbor nodes.There are two different metrics often used in terms of degree of balance,standard deviation and Atkinson(ATK)index which are often used to represent the imbalance of economic development in socioeconomics[11].Here we proposed another economic concept,the Theil index,which is also used to indicate the degree of balance of income or development of different regions[12].We will introduce definitions of these three variables as follows.

    The traditional metric in terms of degree of balance is standard deviation whose definition is as follows.

    (3)

    (4)

    In which,λis the uneven aversion parameter reflecting the degree of social aversion to inequality(or equal preference).ATK is in accordance with Lorenz in terms of consistency,and on this basis,it has a good quality of decomposability.

    Inspired by the excellence performance of ATK,we introduced another concept in socioeconomics,the Theil index(TI),which is also used to indicate the degree of balance of income or development of different regions as shown in Eq.(5).

    (5)

    TI is one kind of generalized entropy index in socioeconomics and as ATK,it has a good quality of consistency,but TI out-performs ATK in the aspect of internal and external decomposability of different groups.

    All these three inputs mentioned above rang from zero to one,however,we find that all of them tend to be concentrated in a certain interval of [0,1],and the same values for different forward neighbor nodes of different nodes are quite different,making it tough to determine the appropriate membership functions.As we make a selection decision among all of the forward neighbor nodes,we can change the unprocessed domain to a standard domain of [0,1] with a linear transformation as Eq.(6)

    (6)

    Wherevunprocessedis the unprocessed input,vminandvmaxare the maximum and minimum of these inputs of all the forward neighbor nodes.

    We fuzzified these three processed inputs mentioned above with membership functions as shown in Fig.4,from which we can see there are three linguistic variables in every input crisp set,{good,middle,bad},and nine linguistic variables {PL1-PL9}in output crisp set.

    Current node performs decision making by using the mamdani If-Then rule-based technique about the priority level of selecting the next hop from all of the forward neighbor nodes.Some of the 27 rules is shown by Table 2.

    Table 2 Some of the If-Then rules

    (7)

    We performed the defuzzification process with the most used method:Center of Area(COA)[13]which is shown in Eq.(7).WhereμA(x) is the membership function of fuzzy set A.

    Fig.4 Membership function inputs and output

    3 Simulation results and performanceevaluation

    3.1 First Order Radio Model

    Radio model is an important issue to calculate the energy consumption and different assumptions about the radio characteristics,including energy dissipation in the transmit and receive modes,will change the advantages of different protocols.We choose the first order radio model proposed in [14] as the consumption model in which the overhead for sending and receiving a packet ofkbits are formulated as follows.

    ETx(k,d)=Eelec·k+εamp·k·d2
    ERx(k,d)=Eelec·k

    (8)

    Wheredis the distance between source and destination nodes,Eelecandεampare per bit energy dissipation in transmitting or receiving circuitry and energy that amplifier circuit takes from the node respectively.

    3.2 Simulation results

    To demonstrate the excellence of the proposed method in terms of effectiveness and balance of energy consumption,we compared our FLC approach with the Maximum Residual Energy Based Routing(MREBR)algorithm and Minimum Energy Cost Routing(MECR)[15]algorithm.We also compared the FLC performance under three different inputs of DEB indexes,standard deviation,Atkinson index and Theil index.

    We made the following reasonable assumptions in order to simplify the model of the system:

    ①All of the 100 homogeneous sensor nodes are randomly distributed in the monitoring area of a square of 200 m×200 m and the Sink node at the middle of the area.

    ②Sensor nodes and the Sink node will no longer move once deployed randomly.Each node knows its location coordinate and has a table that records its neighbors’ information,such as their locations,hops or activeness.

    ③As the output voltage of solar panel fluctuates within a small range,we used the same constant voltage MPPT based solar energy harvesting control circuit which was proposed in [16]and the output voltage of the solar panelV0=1.78 V.

    ④We chose 500 simulation periods in one day and every periodTpt=2.88 min.The sensing activity has always being executed during every period,while the transmission occurs at the end of every period.

    ⑤As shown in Fig.5,we used the recharge model proposed in [17] as a function of time in one day.As we used only one small capacity battery to storage the harvested solar energy,the area of the panel we chose is a quarter of that in [17],as a result,the output current of solar panelIois correspondingly a quarter on the condition of a constant output voltage.

    Fig.5 Recharge current Io for different time points in one day

    ⑥The efficiency of the MPPT control circuitEmppt-cc,proposed in [17],is approximately 87% and the battery efficiency,Eff-batis about 66%[18].So the total power that the battery can output during a period is given by:

    Eout=0.25·Io·Vo·Tpt·Emppt-cc·Eff-bat

    (9)

    Other parameters relevant are shown in Table 3.Part of these parameter settings were adopted from [14].As toαandβ,we chose fixed optimal values in our simulation and the case where they vary with will be our future work.

    Table 3 Simulation parameters relevant

    As shown in Fig.6,Stage of Charge(SoC)of all the 100 nodes under FLC algorithm maintains a fairly high level and has a relative balanced consumption after working all night,from which we can infer WSN coupled with harvested solar energy can work theoretically for infinite time,SoC under MECR gets to two extremes,nodes far away from the Sink keeps a very high energy level and those near to the Sink consume almost all the relative available energy,from which we can infer that the WSN will soon get paralyzed after some rounds later because of the death of nodes near to the Sink,while that under MREBR keeps a best balance but worst effectiveness.

    Fig.6 SoC of all the nodes at 6:00 on the third day

    Fig.7 Average hops to the Sink under three different algorithms in five days

    Fig.7 and Fig.8 show the contradistinctions of average hops to the Sink of FLC,MECR,MREBR and three different fuzzy based algorithms after working a few cycles,respectively.As every node has a determined path to the Sink under MECR,the average hops will not change with time.The curve for MREBR maintains maximum as the collected data transfer only between those nodes with higher residual energy.The average hop to the Sink for FLC fluctuates between those of MECR and MREBR as it considers both effectiveness and balance of energy consumption.Fig.8 shows that Theil index based FLC algorithm outperforms those of both Atkinson index and standard deviation in terms of effectiveness.

    Fig.8 Average hops to the Sink under three different metrics of degree of balance in five days

    Fig.9 compares the performance in the aspect of balance of residual energy.Once again,the curve for our proposed algorithm varies within the range between those of MECR and MREBR.Moreover,every day from 0:00 to 6:00 and 18:00 to 24:00,nodes near to the Sink consume almost all the relative available energy,while remote nodes keeps a very high energy levels,which leads to a increase in standard deviation.During the daytime,the SoC of all the nodes comes to increase because of the increasing charging current,which leads to a decrease in standard deviation.

    Fig.9 Standard deviation of SoC in five days

    The residual energy under these three algorithm are shown in Fig.10.As MECR chooses a shortest path from the source to the Sink,it keeps the maximum residual energy,on the contrary,MREBR maintains the lowest as it performs the largest end to end energy dissipation,while the proposed algorithm waves in the middle.

    Fig.11 and Fig.12 compares the degree of balance of these three different fuzzy based algorithms.For more comparative,we chose standard deviation as the balance index when the DEB input is Theil index or Atkinson index,and the Atkinson index when the DEB input is Theil index or standard deviation,from which we can deduce that the Theil index based fuzzy algorithm outperforms that of standard deviation all the time and Atkinson for most of the time in one day in terms of balance of residual energy.

    Fig.10 Average residual energy in five days

    Fig.11 Degree of balance using standard deviation

    Fig.12 Degree of balance using Atkinson Index

    4 Conclusion

    In this paperwe introduced three metricsnodes qualitytransmitting capacity and Theil indexindicating the degree of balance of residual energyto select the next hop.A new fuzzy based routing methodwhich is to determine an optimal routing path from the source to the sink by favoring the node with the highest NQlargest TCand best DEBis proposed for solar driven WSNs to solve the problems of energy shortage and the uneven energy consumptionultimately to extend network lifetime.We finally validated the proposed algorithm with simulations and in addition to the comparisons with MECR and MREBRwe also compared the algorithm performance under three different DEB indexesstandard deviationAtkinson index and Theil indexwhich demonstrates that our proposed method has a better effectiveness and balance of energy consumptionand it can largely prolong the network lifetime.

    [1] Wan Z G,Tan Y K,Yuen C.Review on Energy Harvesting and Energy Management for Sustainable Wireless Sensor Networks[C]//Communication Technology(ICCT),2011 IEEE 13th International Conference on.IEEE,2011:362-367.

    [2]Chen B C,Yao H Z,Yang M C,et al.An Inter-Cluster Multi-Hop Routing Protocol Improved Based on LEACH Protocol[J].Chinese Journal of Sensors and Actuators,2014,27(3):373-377.

    [3]Duan Q C,Chen Y,Zhou Y.A New Energy Balance Routing Algorithm Based on Energy-Distance Composite Weights Dijkstra Algorithm in WSN[J].Chinese Journal of Sensors and Actuators,2011,23(11):1610-1616.

    [4]Babu S S,Raha A,Naskar M K,et al.Fuzzy Logic Election of Node for Routing in WSNs[C]//Trust,Security and Privacy in Computing and Communications(TrustCom),2012 IEEE 11th International Conference on.IEEE,2012:1279-1284.

    [5]Minhas M R,Gopalakrishnan S,Leung V C M.An Online Multipath Routing Algorithm for Maximizing Lifetime in Wireless Sensor Networks[C]//Information Technology:New Generations,2009.ITNG’09.Sixth International Conference on.IEEE,2009:581-586.

    [6]AlShawi I S,Yan L,Pan W,et al.Lifetime Enhancement in Wireless Sensor Networks Using Fuzzy Approach and A-Star Algorithm[J].Sensors Journal,IEEE,2012,12(10):3010-3018.

    [7]Azim M A,Jamalipour A.Performance Evaluation of Optimized Forwarding Strategy for Flat Sensor Networks[C]//Global Telecommunications Conference,2007.Globecom’07.IEEE.IEEE,2007:710-714.

    [8]Jiang H F.Research on Energy Optimized Routing Algorithms for Wireless Sensor Networks[D].Jiang Su:China University of Mining and Technology.2010.

    [9]Zadeh L A.Soft Computing and Fuzzy Logic[J].Software,IEEE,1994,11(6):48-56.

    [10]Zhang H,Shen H.Balancing Energy Consumption to Maximize Network Lifetime in Data-Gathering Sensor Networks[J].Parallel and Distributed Systems,IEEE Transactions on,2009,20(10):1526-1539.

    [11]Atkinson A B.On the Measurement of Inequality[J].Journal of Economic Theory,1970,2(3):244-263.

    [12]Liu Z W.Methods of Income Distribution Inequities Measurement[J].Statistics and Information Forum,2003(5):28-32.

    [13]Lau H C W,Samaranayake P,Nakandala D.A Fuzzy-Based Integrated Framework for Monitoring Stochastic Demand in a Supply Chain Environment[C]//Industrial Engineering and Engineering Management(IEEM),2011 IEEE International Conference on.IEEE,2011:66-70.

    [14]Jiang J A,Lin T S,Chuang C L,et al.A QoS-Guaranteed Coverage Precedence Routing Algorithm for Wireless Sensor Networks[J].Sensors,2011,11(4):3418-3438.

    [15]Han K H,Ko Y B,Kim J H.A Novel Gradient Approach for Efficient Data Dissemination in Wireless Sensor Networks[C]//Vehicular Technology Conference,2004.VTC2004-Fall.2004 IEEE 60th.IEEE,2004,4:2979-2983.

    [16]Win K K,Wu X,Dasgupta S,et al.Efficient Solar Energy Harvester for Wireless Sensor Nodes[C]//Communication Systems(ICCS),2010 IEEE International Conference on.IEEE,2010:289-294.

    [17]Castagnetti A,Pegatoquet A,Belleudy C,et al.An Efficient State of Charge Prediction Model for Solar Harvesting WSN Platforms[C]//Systems,Signals and Image Processing(IWSSIP),2012 19th International Conference on.IEEE,2012:122-125.

    [18]Gakkestad J,Hanssen L.Powering Wireless Sensor Networks Nodes in Northern Europe Using Solar Cell Panel for Energy Harvesting[C]//New Technologies,Mobility and Security(NTMS),2011 4th IFIP International Conference on.IEEE,2011:1-5.

    劉超(1989-),男,山東省濟(jì)寧市人,漢族,碩士研究生,主要研究方向?yàn)闊o線傳感器網(wǎng)絡(luò)路由協(xié)議;

    劉麗萍(1979-),女,河北省保定市人,漢族,副教授,研究方向?yàn)闊o線傳感器網(wǎng)絡(luò)、網(wǎng)絡(luò)優(yōu)化、智能信息獲取等。

    2014-04-10修改日期:2014-08-05

    基于模糊控制的太陽能驅(qū)動(dòng)無線傳感器網(wǎng)絡(luò)路由算法*

    劉 超,劉麗萍*,安新升,崔婷婷

    (天津大學(xué)電氣與自動(dòng)化工程學(xué)院,天津 300072)

    能量受限和能耗的不均衡性是限制無線傳感器網(wǎng)絡(luò)(WSNs)生命周期的兩大主要因素。首先引入了一個(gè)新均衡性指數(shù)—泰勒指數(shù),其次為太陽能驅(qū)動(dòng)的無線傳感器網(wǎng)絡(luò)提出了一個(gè)新的基于模糊邏輯控制的路由算法。該算法綜合考慮最優(yōu)節(jié)點(diǎn)質(zhì)量,傳輸能力以及剩余能量的泰勒均衡性最終確定最優(yōu)路由路徑。實(shí)驗(yàn)將該算法與另外兩種經(jīng)典路由算法做對(duì)比,并且比較了不同均衡性參數(shù)下該算法的性能,最后仿真結(jié)果表明:本文提出的路由算法改善了能耗有效性和均衡性,延長了網(wǎng)絡(luò)生命周期。

    無線傳感器網(wǎng)絡(luò);太陽能驅(qū)動(dòng)系統(tǒng);路由協(xié)議;模糊邏輯控制;泰勒指數(shù)

    TP393

    :A

    :1004-1699(2014)09-1238-09

    項(xiàng)目來源:國家自然科學(xué)基金項(xiàng)目(61104208);天津市自然科學(xué)基金項(xiàng)目(13JCQNJC00800);國際科技合作專項(xiàng)項(xiàng)目(2013DFA11040)

    10.3969/j.issn.1004-1699.2014.09.016

    猜你喜歡
    均衡性泰勒路由
    京津冀全域旅游供需系統(tǒng)構(gòu)建及均衡性研究
    探究路由與環(huán)路的問題
    均衡性原則司法適用解讀及適用路徑的精致化構(gòu)造——以四個(gè)案例為出發(fā)點(diǎn)
    行政法論叢(2016年0期)2016-07-21 14:52:23
    著力破解基層民主“非均衡性”的困境
    一起綿羊泰勒焦蟲病的診斷治療經(jīng)過
    政府間均衡性轉(zhuǎn)移支付績效評(píng)價(jià)體系構(gòu)建
    PRIME和G3-PLC路由機(jī)制對(duì)比
    WSN中基于等高度路由的源位置隱私保護(hù)
    泰勒公式的簡單應(yīng)用
    河南科技(2014年14期)2014-02-27 14:12:08
    eNSP在路由交換課程教學(xué)改革中的應(yīng)用
    河南科技(2014年5期)2014-02-27 14:08:56
    成人国语在线视频| 中文字幕精品免费在线观看视频| 国产成人欧美在线观看| 最新美女视频免费是黄的| 亚洲avbb在线观看| 亚洲一区二区三区不卡视频| 国产精品一区二区精品视频观看| 女人高潮潮喷娇喘18禁视频| 国产成人系列免费观看| 国产精品,欧美在线| 黄片小视频在线播放| 啪啪无遮挡十八禁网站| 如日韩欧美国产精品一区二区三区| 午夜成年电影在线免费观看| 黄色成人免费大全| 久久精品aⅴ一区二区三区四区| 国产伦人伦偷精品视频| 亚洲成国产人片在线观看| 久久 成人 亚洲| 黄网站色视频无遮挡免费观看| 中文字幕人成人乱码亚洲影| 日韩av在线大香蕉| 美女扒开内裤让男人捅视频| 少妇熟女aⅴ在线视频| 午夜免费成人在线视频| 日韩欧美免费精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美网| 好看av亚洲va欧美ⅴa在| 少妇粗大呻吟视频| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美98| 中文字幕久久专区| 丝袜在线中文字幕| 国产精品日韩av在线免费观看 | 搡老熟女国产l中国老女人| 欧美乱码精品一区二区三区| 日韩欧美国产一区二区入口| 日韩欧美三级三区| 男女之事视频高清在线观看| 欧美一级毛片孕妇| 欧美不卡视频在线免费观看 | 午夜精品国产一区二区电影| 亚洲av日韩精品久久久久久密| 欧美色视频一区免费| 黑人欧美特级aaaaaa片| 亚洲中文字幕一区二区三区有码在线看 | 国产高清有码在线观看视频 | 日本免费a在线| 人人妻人人澡人人看| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 黑丝袜美女国产一区| 国产精品秋霞免费鲁丝片| 免费一级毛片在线播放高清视频 | 亚洲欧美精品综合久久99| 一本综合久久免费| av欧美777| 欧美在线一区亚洲| 黄片播放在线免费| 亚洲专区中文字幕在线| av有码第一页| 首页视频小说图片口味搜索| 欧美国产精品va在线观看不卡| 男人舔女人的私密视频| 黄色视频,在线免费观看| av片东京热男人的天堂| 国产精品乱码一区二三区的特点 | 精品第一国产精品| 少妇粗大呻吟视频| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 精品国产亚洲在线| 国产精品日韩av在线免费观看 | avwww免费| cao死你这个sao货| 高清在线国产一区| 亚洲av五月六月丁香网| 亚洲专区中文字幕在线| 在线永久观看黄色视频| 99re在线观看精品视频| 亚洲伊人色综图| 亚洲精品在线观看二区| 涩涩av久久男人的天堂| 国产人伦9x9x在线观看| 免费高清视频大片| 亚洲精品在线观看二区| 村上凉子中文字幕在线| 精品人妻1区二区| 国产真人三级小视频在线观看| 欧美黑人精品巨大| 99精品欧美一区二区三区四区| 久9热在线精品视频| 免费不卡黄色视频| 可以免费在线观看a视频的电影网站| 熟女少妇亚洲综合色aaa.| 国内精品久久久久精免费| 日日夜夜操网爽| 久久精品亚洲精品国产色婷小说| 精品国产亚洲在线| 成人免费观看视频高清| 成年女人毛片免费观看观看9| 欧美乱色亚洲激情| 日本欧美视频一区| 久久九九热精品免费| 午夜免费鲁丝| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 午夜福利成人在线免费观看| 激情视频va一区二区三区| 十八禁网站免费在线| 免费在线观看黄色视频的| 成人精品一区二区免费| 国产又色又爽无遮挡免费看| 两性夫妻黄色片| 日日摸夜夜添夜夜添小说| av天堂在线播放| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 久久精品亚洲熟妇少妇任你| 国产91精品成人一区二区三区| 给我免费播放毛片高清在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲精品美女久久av网站| 美女 人体艺术 gogo| 国产精品亚洲美女久久久| 美女免费视频网站| 欧美乱妇无乱码| 国产精品电影一区二区三区| 午夜影院日韩av| 狠狠狠狠99中文字幕| svipshipincom国产片| 亚洲 欧美 日韩 在线 免费| av在线天堂中文字幕| 亚洲成国产人片在线观看| 国产乱人伦免费视频| 91麻豆精品激情在线观看国产| 如日韩欧美国产精品一区二区三区| 久久国产亚洲av麻豆专区| 人人妻人人澡欧美一区二区 | 999精品在线视频| 琪琪午夜伦伦电影理论片6080| 国产精品亚洲av一区麻豆| 老熟妇乱子伦视频在线观看| 国产三级黄色录像| svipshipincom国产片| 亚洲精品中文字幕在线视频| 亚洲av电影在线进入| 成熟少妇高潮喷水视频| 午夜福利高清视频| 国产亚洲精品久久久久5区| 欧美国产日韩亚洲一区| 18禁观看日本| 亚洲国产精品成人综合色| 久久人妻av系列| 午夜精品国产一区二区电影| 国产精品 国内视频| 伦理电影免费视频| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看 | 国产亚洲精品综合一区在线观看 | 久久婷婷成人综合色麻豆| 黄色视频,在线免费观看| 最新在线观看一区二区三区| 老司机在亚洲福利影院| 国产一区二区激情短视频| 在线av久久热| 999精品在线视频| 国产精品av久久久久免费| 一卡2卡三卡四卡精品乱码亚洲| 在线观看www视频免费| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 自线自在国产av| 亚洲av熟女| 黄片播放在线免费| 午夜影院日韩av| 日韩高清综合在线| 99国产精品一区二区三区| 午夜免费观看网址| 少妇的丰满在线观看| 一级黄色大片毛片| 黄频高清免费视频| 欧美最黄视频在线播放免费| 美女免费视频网站| 99久久国产精品久久久| 色老头精品视频在线观看| 91精品三级在线观看| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女| 人妻久久中文字幕网| 国产午夜福利久久久久久| 国产精品av久久久久免费| 国产人伦9x9x在线观看| 精品人妻1区二区| 一边摸一边抽搐一进一小说| 国产亚洲精品综合一区在线观看 | 中文字幕人成人乱码亚洲影| 国产欧美日韩综合在线一区二区| 亚洲最大成人中文| 在线天堂中文资源库| 少妇的丰满在线观看| 动漫黄色视频在线观看| 久久久久久久精品吃奶| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看| 这个男人来自地球电影免费观看| 搡老熟女国产l中国老女人| 宅男免费午夜| 亚洲男人的天堂狠狠| 少妇粗大呻吟视频| 国产成人影院久久av| 窝窝影院91人妻| 男人舔女人下体高潮全视频| 老司机午夜十八禁免费视频| 动漫黄色视频在线观看| 亚洲国产欧美一区二区综合| svipshipincom国产片| 亚洲av成人不卡在线观看播放网| 成人手机av| 欧美绝顶高潮抽搐喷水| 在线观看免费视频网站a站| 日韩高清综合在线| 久久青草综合色| 免费搜索国产男女视频| 中亚洲国语对白在线视频| 母亲3免费完整高清在线观看| 少妇粗大呻吟视频| 亚洲 欧美一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 777久久人妻少妇嫩草av网站| 久久久久久免费高清国产稀缺| 欧美在线黄色| 亚洲 国产 在线| 日韩国内少妇激情av| 欧美一区二区精品小视频在线| 日韩欧美三级三区| 午夜福利在线观看吧| 熟女少妇亚洲综合色aaa.| 搞女人的毛片| 此物有八面人人有两片| 国产一区二区激情短视频| 精品无人区乱码1区二区| 黄色丝袜av网址大全| 亚洲三区欧美一区| 午夜福利18| 丝袜美腿诱惑在线| 很黄的视频免费| 热re99久久国产66热| 亚洲精品在线美女| 啪啪无遮挡十八禁网站| 久久精品亚洲熟妇少妇任你| av有码第一页| 成熟少妇高潮喷水视频| 在线视频色国产色| 女警被强在线播放| 一区二区三区高清视频在线| 免费看十八禁软件| 欧美精品啪啪一区二区三区| 久久精品人人爽人人爽视色| 日日夜夜操网爽| 国产不卡一卡二| 99久久国产精品久久久| 久久精品91蜜桃| 满18在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 国产精品九九99| 久久伊人香网站| 手机成人av网站| videosex国产| 国产成人av激情在线播放| 在线观看免费视频网站a站| 免费不卡黄色视频| 亚洲精品在线观看二区| 国产成人av教育| 国产亚洲精品久久久久久毛片| 日本a在线网址| 91精品国产国语对白视频| 久久婷婷人人爽人人干人人爱 | av天堂在线播放| 一区在线观看完整版| 国产免费男女视频| 久久久水蜜桃国产精品网| 国产一区二区三区在线臀色熟女| 性欧美人与动物交配| 色av中文字幕| 日本在线视频免费播放| 午夜福利视频1000在线观看 | videosex国产| 两性夫妻黄色片| 午夜精品在线福利| 最新在线观看一区二区三区| 亚洲色图综合在线观看| 在线观看免费视频日本深夜| 国产精品香港三级国产av潘金莲| 人成视频在线观看免费观看| 亚洲一区高清亚洲精品| 黑人操中国人逼视频| 国产男靠女视频免费网站| 国产精品免费一区二区三区在线| 一边摸一边抽搐一进一小说| 国产在线精品亚洲第一网站| 国产精品免费视频内射| 日本 av在线| 老鸭窝网址在线观看| 中文字幕最新亚洲高清| 精品一区二区三区视频在线观看免费| 国产三级黄色录像| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av香蕉五月| 亚洲免费av在线视频| 久久久久久人人人人人| 好男人在线观看高清免费视频 | 啦啦啦免费观看视频1| 国产成人一区二区三区免费视频网站| 少妇粗大呻吟视频| 欧美色视频一区免费| 一级黄色大片毛片| 亚洲五月天丁香| 日韩国内少妇激情av| 久久精品人人爽人人爽视色| 久久 成人 亚洲| 欧美黄色片欧美黄色片| 91大片在线观看| 国产一区在线观看成人免费| 亚洲av电影不卡..在线观看| 国产精品久久久av美女十八| 极品人妻少妇av视频| 动漫黄色视频在线观看| 18禁裸乳无遮挡免费网站照片 | 999久久久精品免费观看国产| 亚洲国产欧美一区二区综合| 午夜激情av网站| 久久人妻熟女aⅴ| 久久精品国产综合久久久| 啦啦啦 在线观看视频| 久久午夜综合久久蜜桃| 久久精品国产清高在天天线| x7x7x7水蜜桃| 午夜精品国产一区二区电影| 精品熟女少妇八av免费久了| 国产高清视频在线播放一区| 亚洲一卡2卡3卡4卡5卡精品中文| 天天添夜夜摸| 精品第一国产精品| 99热只有精品国产| 怎么达到女性高潮| 亚洲熟妇中文字幕五十中出| 国产成人av激情在线播放| 一进一出好大好爽视频| 中文字幕最新亚洲高清| 人人妻人人爽人人添夜夜欢视频| 国产在线精品亚洲第一网站| 一二三四社区在线视频社区8| 久久影院123| 少妇被粗大的猛进出69影院| 亚洲第一电影网av| 亚洲激情在线av| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 国产97色在线日韩免费| 亚洲欧美日韩无卡精品| 中出人妻视频一区二区| 亚洲精品一区av在线观看| 在线观看免费午夜福利视频| 12—13女人毛片做爰片一| 青草久久国产| 老司机靠b影院| 青草久久国产| 999精品在线视频| 99在线视频只有这里精品首页| 禁无遮挡网站| 午夜福利影视在线免费观看| 香蕉丝袜av| 欧美乱码精品一区二区三区| 日韩欧美免费精品| 不卡av一区二区三区| 日本免费a在线| 国产伦一二天堂av在线观看| 免费女性裸体啪啪无遮挡网站| 搡老熟女国产l中国老女人| 亚洲狠狠婷婷综合久久图片| 精品久久久精品久久久| 国产亚洲精品久久久久5区| 午夜福利影视在线免费观看| 亚洲精品中文字幕一二三四区| 一本综合久久免费| 满18在线观看网站| 国产精品99久久99久久久不卡| 色播亚洲综合网| 欧美不卡视频在线免费观看 | 成在线人永久免费视频| 天天一区二区日本电影三级 | 身体一侧抽搐| 日韩有码中文字幕| 涩涩av久久男人的天堂| 性欧美人与动物交配| 午夜福利18| 亚洲成国产人片在线观看| 波多野结衣av一区二区av| 老司机午夜福利在线观看视频| 最好的美女福利视频网| 首页视频小说图片口味搜索| 搡老岳熟女国产| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 美女午夜性视频免费| 欧美另类亚洲清纯唯美| 免费av毛片视频| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区| 丁香六月欧美| 久久久水蜜桃国产精品网| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| 国产精品野战在线观看| 午夜福利免费观看在线| 国产精品亚洲美女久久久| 免费看美女性在线毛片视频| 久久精品国产综合久久久| 日本免费a在线| 亚洲午夜精品一区,二区,三区| 中亚洲国语对白在线视频| 黄色成人免费大全| 给我免费播放毛片高清在线观看| 成人亚洲精品av一区二区| 欧美av亚洲av综合av国产av| 欧美另类亚洲清纯唯美| 在线免费观看的www视频| 免费在线观看日本一区| or卡值多少钱| 久久精品亚洲熟妇少妇任你| 亚洲五月天丁香| 久久精品91蜜桃| 欧美色视频一区免费| 亚洲av成人不卡在线观看播放网| 性欧美人与动物交配| av欧美777| 国产高清videossex| 日韩欧美三级三区| 中文字幕高清在线视频| 香蕉丝袜av| 老司机在亚洲福利影院| 亚洲五月婷婷丁香| 午夜福利高清视频| 成人国语在线视频| 一区二区日韩欧美中文字幕| 啦啦啦观看免费观看视频高清 | 色婷婷久久久亚洲欧美| 亚洲精品久久国产高清桃花| 丝袜在线中文字幕| 极品人妻少妇av视频| 国产真人三级小视频在线观看| 日韩欧美在线二视频| 1024香蕉在线观看| 波多野结衣巨乳人妻| 99国产综合亚洲精品| www日本在线高清视频| 色精品久久人妻99蜜桃| 丝袜在线中文字幕| 久久久国产成人精品二区| 免费少妇av软件| 成人18禁在线播放| 长腿黑丝高跟| 搡老熟女国产l中国老女人| 免费人成视频x8x8入口观看| 亚洲 欧美 日韩 在线 免费| aaaaa片日本免费| 巨乳人妻的诱惑在线观看| 日本在线视频免费播放| 亚洲精品粉嫩美女一区| 无限看片的www在线观看| 色精品久久人妻99蜜桃| 999久久久国产精品视频| 成年女人毛片免费观看观看9| 久久亚洲精品不卡| 夜夜躁狠狠躁天天躁| 成人亚洲精品一区在线观看| 欧美国产精品va在线观看不卡| 免费人成视频x8x8入口观看| 黄色 视频免费看| 国产麻豆69| 国产一区在线观看成人免费| 淫妇啪啪啪对白视频| 久久久久久大精品| 一边摸一边抽搐一进一出视频| 成人手机av| 亚洲av成人不卡在线观看播放网| 国产精品久久电影中文字幕| 黄色视频不卡| 老司机深夜福利视频在线观看| www.www免费av| 久久人人97超碰香蕉20202| 亚洲成国产人片在线观看| 午夜免费观看网址| 男男h啪啪无遮挡| 亚洲aⅴ乱码一区二区在线播放 | 久久国产精品影院| 69精品国产乱码久久久| 欧美av亚洲av综合av国产av| 久久人人爽av亚洲精品天堂| 黑丝袜美女国产一区| 9热在线视频观看99| 一区在线观看完整版| 乱人伦中国视频| 欧美一级毛片孕妇| 88av欧美| 香蕉久久夜色| 大香蕉久久成人网| 国产av在哪里看| 亚洲av电影不卡..在线观看| 欧美日本中文国产一区发布| 搞女人的毛片| 91国产中文字幕| 91成人精品电影| 国产片内射在线| 久久久久久国产a免费观看| 成人国产综合亚洲| 欧美日韩福利视频一区二区| 国产又爽黄色视频| 亚洲 欧美一区二区三区| а√天堂www在线а√下载| 一级黄色大片毛片| 日本撒尿小便嘘嘘汇集6| 精品人妻在线不人妻| 91老司机精品| 黄色视频,在线免费观看| av免费在线观看网站| 99久久国产精品久久久| 中文字幕人成人乱码亚洲影| 怎么达到女性高潮| 大型av网站在线播放| 国产精品亚洲一级av第二区| 女警被强在线播放| 亚洲精品久久成人aⅴ小说| 亚洲 欧美一区二区三区| 最近最新中文字幕大全免费视频| 国产一区二区三区视频了| 狂野欧美激情性xxxx| 一二三四社区在线视频社区8| 99国产精品一区二区三区| 久久性视频一级片| 国产三级在线视频| 1024视频免费在线观看| 好男人电影高清在线观看| 色尼玛亚洲综合影院| 女生性感内裤真人,穿戴方法视频| 曰老女人黄片| 在线观看免费午夜福利视频| 精品人妻在线不人妻| 色播在线永久视频| 在线观看午夜福利视频| 亚洲专区中文字幕在线| 国产成人啪精品午夜网站| 亚洲精品美女久久av网站| 曰老女人黄片| 非洲黑人性xxxx精品又粗又长| 国产高清激情床上av| 淫妇啪啪啪对白视频| 日日干狠狠操夜夜爽| 欧美亚洲日本最大视频资源| 久久久久国产一级毛片高清牌| 久久久水蜜桃国产精品网| 国产乱人伦免费视频| 久久这里只有精品19| 少妇被粗大的猛进出69影院| 国产亚洲精品一区二区www| 一本久久中文字幕| 久久国产乱子伦精品免费另类| 9色porny在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲成人久久性| 熟女少妇亚洲综合色aaa.| 亚洲精品美女久久久久99蜜臀| 成人永久免费在线观看视频| 一区二区三区精品91| 波多野结衣av一区二区av| 啦啦啦韩国在线观看视频| 久久中文字幕一级| 国产一级毛片七仙女欲春2 | 9热在线视频观看99| x7x7x7水蜜桃| 国产成年人精品一区二区| 欧美激情久久久久久爽电影 | 丁香欧美五月| 久久 成人 亚洲| 在线观看午夜福利视频| 亚洲国产毛片av蜜桃av| 久久影院123| 久久人妻熟女aⅴ| ponron亚洲| 国产精品永久免费网站| 国产av精品麻豆| 在线观看www视频免费| 精品欧美一区二区三区在线| videosex国产| 激情视频va一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 淫秽高清视频在线观看| 亚洲欧美激情在线| 欧美中文日本在线观看视频| 久久香蕉国产精品| 久久香蕉精品热| 亚洲第一欧美日韩一区二区三区| 中文字幕人妻丝袜一区二区| 9热在线视频观看99| 亚洲免费av在线视频| 黄色视频不卡| 亚洲欧美激情在线| 亚洲av电影不卡..在线观看| 日韩视频一区二区在线观看| 久久婷婷成人综合色麻豆| 高清在线国产一区|