• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Non-Ideal Factors of Segmented-Capacitor DAC in CMOS Image Sensor*

    2014-09-06 12:25:57SUNQuanYAOSuyingXUWenjingNIEKaimingXUJiangtao
    傳感技術(shù)學(xué)報 2014年1期
    關(guān)鍵詞:失配橋接分段

    SUN Quan,YAO Suying,XUWenjing,NIE Kaiming,XU Jiangtao

    (School of Electronic Information Engineering,Tianjin University,Tianjin 300072,China)

    Research on Non-Ideal Factors of Segmented-Capacitor DAC in CMOS Image Sensor*

    SUN Quan,YAO Suying,XUWenjing,NIE Kaiming,XU Jiangtao*

    (School of Electronic Information Engineering,Tianjin University,Tianjin 300072,China)

    segmented-capacitor digital analog converter(SC DAC)is usually used in CMOS image sensor to generate a ramp reference voltage.Precise relationships between conversion resolution and non-ideal factors segmented-capacitor digital analog converter are derived.These non-ideal factors consist of coupling capacitormismatch,binary-weightedcapacitormismatch and parasitic effects.Initially,based on the study of SC DAC operation principle,mathematical models are established.Then the effects of non-ideal factors on SCDAC are analyzed.Simulation andmeasurement results verify the theoretical analysis.These precise relationships serve as a guideline for the design of SC DAC.

    microelectronics and solid electronics;segmented-capacitor DAC;capacitormismatch;parasitic;conversion resolution

    Nowadays CMOS image sensors are becoming competitive with regard to charge couple devices(CCD),and they have been applied inmany areas,such as digital photography,industrial vision,medical and space applications[1-2].Single Slope ADC is widely applied in CMOS image sensor serving as the on-chip column-parallel ADC due to its low power costand low FPN contribution.DAC is a critical building block in the single slope ADC,which can determine the ADC’s linearity,and the charge-redistribution DAC(CR DAC)is almost exclusively used in the single slope ADC[3-5].

    Although the CR DAC offers excellent properties,large chip area is an issue in higher digital resolution. For example,to achieve 12-bit SC DAC,4096(212)unit capacitors are required.To solve this problem,segmented-capacitor DAC(SC DAC)with a coupling capacitor connecting two binary weighted capacitor arrays is proposed[6],which just needs 2N/2+1unit capacitors.Compared with traditional CR DAC,the number of capacitors in SC DAC decreases exponentially,which results in higher speed,lower power consumption and smaller chip area.As a consequence,SC DAC iswidely used at present[7-9].

    The available resolution of SC DAC ismainly determined by capacitormismatch and the parasitic effects on each side of the coupling capacitor.Therefore,it is essential to obtain precise relationships between conversion resolution and non-ideal factors.In Ref.[6],the research work was focused on the coupling capacitor mismatch without considering binary weighted capacitormismatch and parasitic effects.In Ref.[10],a 14 bit DAC,designed in a CMOS 0.35μm process and based on segmented arrays of switched capacitors controlled by a dynamic element matching algorithm.This DAC features an INL lower than 0.5 LSB at 5 MHz,and dissipates less than 7 mW.In Ref.[11],an error correction method of coupling capacitormismatch was reported,regardless of binary weighted capacitormismatch and parasitic effects.In Ref.[12],capacitormismatch and the parasitic effects of an improved SCDAC were analyzed,but only qualitative conclusions were deduced.In this paper,precise relationships between conversion resolution and non-ideal factors are proposed.These non-ideal factors consist of coupling capacitor mismatch,binary weighted capacitor mismatch and parasitic capacitors. Simulation and experimental results are in favor of the proposed theory,which can be applied to the design of SC DAC.

    1 Architecture of SC DAC

    Fig.1 shows the architecture of N-bit SC DAC which has two capacitor arrays(LSB NET and MSB NET)connected by a coupling capacitor.The schematic of SCDACwhen N is even is depicted in Fig.1(a),and the schematic when N is odd is shown in Fig.1(b).According to Fig.1,N is the conversion resolution,C is the minimum capacitance used for the least significant bit,VREFis the reference voltage,and VOUTis the DAC output voltage.The N-bit SCDACworks as follows.Initially,all switches are thrown to ground,so that all capacitors are discharged.Next,switch Srstturns off,and switches SNS1are thrown to ground or VREFaccording to digital codes.The output voltage(VOUT)of SC DAC can be expressed as

    Fig.1 Architecture of N bit SCDAC

    where Biis the input digital code of SC DAC.When Biis logic‘high’,Siis thrown to VREF;otherwise,Siis thrown to ground.

    The Thevenin’s equivalent circuit of N-bit SCDAC in Fig.1 is shown in Fig.2,where CLSBstands for the total capacitance value of LSB NET,CMSBstands for the total capacitance value of MSB NET,CCis the coupling capacitor,VLrepresents the equivalent voltage of LSB NET,and VMrepresents the equivalent voltage of MSB NET.When N is even,we have

    When N is odd,we can obtain

    Fig.2 Thevenin’s equivalent circuit of SCDAC

    2 Analysis of Non-Ideal Factors

    2.1 Analysis of Parasitic Capacitors

    Fig.3 shows the Thevenin’s equivalent circuit of SC DAC considering parasitic capacitors.CPLis the total parasitic capacitors,including the left plate of CCand the up plate of CLSB.CPMrepresents the total parasitic capacitors,including the right plate of CCand the up plate of CMSB.

    Fig.3 Thevenin’s equivalent circuit of SCDAC considering parasitic capacitors

    According to superposition principle,VOUTis the sum of VOUTL(VM=0)and VOUTM(VL=0).

    Considering Eq.(12)and Eq.(13),VOUTis obtained:

    A.N is even

    (1)When the digital codes of LSB NET change and those of MSB NET do not change,the Thevenin’s equivalent voltage difference between neighboring codes according to Eq.(5)and Eq.(6)can be expressed as follows:

    Combining Eq.(14)and Eq.(15),the voltage difference of VOUTbetween neighboring codes is given by

    Obviously,in this case,the step heights of the SC DAC output voltage(Δ)are consistent,hence,Δis defined as the new LSB.

    (2)When the digital codes of MSB NET change,the digital codes of LSBNETmust change from all‘1’to all‘0’,then the Thevenin’s equivalent voltage difference between neighboring codes is

    Applying Eq.(17)to Eq.(14),the voltage difference of VOUTbetween neighboring codes is expressed as Eq.(18),which indicates that the step heights of the SC DAC output voltage()are concordant in this case.

    Comparing Eq.(16)with Eq.(18),it is obvious that although the step heights of the SC DAC output voltage are consistent respectively in the two casesmentioned above,voltage difference exists between them,which results in the deterioration of DNL.Take 8-bit SC DAC with parasitic capacitors for an example,as shown in Fig.4.During the period of SC DAC conversion,the digital codes of MSB NET will change 2N/2-1times,so the integral nonlinearity(INL)is given by

    Fig.4 8-bit SC DAC with parasitic capacitors

    In order to realize N-bit SC DAC,INL must be less than LSB/2,and then we have

    According to Eq.(2),Eq.(3),Eq.(4),Eq.(16),Eq.(18)and Eq.(20),Eq.(21)can be obtained.

    From Eq.(16),Eq.(18),Eq.(20)and Eq. (21),it can be seen that CPMhas no effect on the linearity of SC DAC while CPLdeteriorates the linearity.

    (B)When N is odd,applying the similar analysis method above to this situation,and then we have

    According to Eq.(21)and Eq.(22),the curve which depicts themaximum allowable parasitic capacitor for a given resolution can be drawn,as shown inFig.5,where N≤12 because of the limitation of passive components.From Fig.5,it is found that themaximum allowable parasitic capacitor CPLdecreases with the increasing of resolution.

    Fig.5 the relationship between resolution and the maximum allowable parasitic capacitor

    2.2 Analysis of Coupling Capacitor Mismatch

    The Thevenin’s equivalent circuit of SC DAC with coupling capacitor mismatch is as shown in Fig.2,in which the coupling capacitor CCis expressed as

    Whereδ(-1<δ<1)is the maximum mismatch ratio.The analysis method of coupling capacitor mismatch is the same as parasitic capacitors,and the only difference is that CPL=CPM=0.Therefore,considering CPL=CPM=0,Eq.(16)and Eq.(18)can be simplified as

    Applying Eq.(2),Eq.(3),Eq.(23),Eq.(24) and Eq.(25)to Eq.(20),Eq.(26)is derived.When N is odd,we have Eq.(27).From Eq.(26)and Eq. (27),F(xiàn)ig.6 is acquired,which reflects the relationship between resolution and the maximum permissible coupling capacitormismatch.According to Fig.6,it can be seen that not only the maximum permissible coupling capacitor mismatch can be obtained according to the resolution,but also the available resolution can be predicted conversely.

    Fig.6 the relationship between resolution and themaximum permissible coupling capacitormismatch

    2.3 Analysis of BinaryWeighted Capacitor Mismatch

    The architecture of N-bit weighted capacitor SC DAC is shown in Fig.1,where each weighted capacitor is assumed to be off by a factor of(1+ei)from the ideal value due to process variations.

    Ci=2i-1C(1+ei),i=1…N,C0=C(1+e0)(28)

    Because of the randomness of binary weighted capacitor mismatch,we can suppose that both CLSBand CMSBare fixed values[13],then Eq.(29)and Eq.(30) can be obtained.

    Whereξ(0<ξ<1)is themaximum mismatch ratio. Considering that CLSBand CMSBare fixed values,Eq.(2),Eq.(3),Eq.(4),Eq.(7),Eq.(8)and Eq.(9)are all suitable for binary weighted capacitormismatch analysis. The output voltage of SC DAC with binary weighted capacitormismatch can be derived by taking CPL=CPM=0 in Eq.(14).

    When N is even,VLand VMcan be expressed as Eq.(32)and Eq.(33)according to Eq.(28).

    Combining Eq.(2),Eq.(3),Eq.(4),Eq.(32) and Eq.(33)with Eq.(31),we have

    The ideal DAC output(VOUT,ideal)and ideal LSB(LSBideal)can be obtained by taking ei=0 for all i in Eq.(34).

    The error voltage is the difference between ideal and actual output voltages:

    In order to realize N-bit SC DAC,INLmust be less than LSBideal/2,then

    From Eq.(29),Eq.(30)and Eq.(37),we can see that VOUT.errorwill take maximum value when eiare expressed as

    Applying Eq.(39)to Eq.(37),themaximum value of VOUT,erroris given by

    Combining Eq.(38)with Eq.(40),Eq.(41)is derived.When N is odd,we have Eq.(42).The curve of the relationship between the maximum allowable binary weighted capacitormismatch and resolution are shown in Fig.7 according to Eq.(41)and Eq.(42).Therefore,with the increasing of resolution,themaximum allowable binary weighted capacitormismatch decreases exponentially.

    Fig.7 the relationship between themaximum allowable binary weighted capacitormismatch and resolution

    3 Simulation and Measurement Results

    3.1 Simulation Results

    In order to verify the precise theory derived above,simulations are conducted with Spectre.The following simulation takes8-bit SCDAC as an example.The schematic of the ideal 8-bit SC DAC is shown in Fig.8,where themain parameters are as follows:VREF=3.3 V,C=150 fF,CC=160 fF.

    Fig.8 8-bit SC DAC

    (A)Simulation results of 8-bit SC DAC with parasitic capacitors.

    The parasitic capacitor CPLis added in the ideal 8-bit SC DAC,as shown in Fig.9.As for an 8-bit SC DAC,considering Eq.(21),the capacitance of CPLmust be less than 4%C.When CPL=4%,C=6 fF,as can be seen from Fig.10,DNL of SC DAC with parasitic capacitors deteriorates when the codes of MSB NET change and INL is less than LSB/2 if the value of CPLis selected by Eq.(21),which are in consistent with the theoretical analysis.

    Fig.9 8-bit SCDACwith parasitic capacitor

    (B)Simulation results of 8-bit SC DAC with coupling capacitormismatch.

    Supposing the coupling capacitor CCof ideal 8-bit SC DAC has a factor of(1+δ),the equivalent circuit is depicted in Fig.11.According to Eq.(26),the allowable maximum coupling capacitor mismatch|δ|is 0.35%. Whenδ=0.35%,CCis calculated to be 160.56 fF;otherwise,whenδ=-0.35%,CC=159.44 fF.From Fig. 12 and Fig.13,it is concluded that if the coupling capacitormismatch is selected by Eq.(26),INL is less than LSB/ 2,which is in positive to the theoretical analysis above.

    Fig.10 DNL and INL of 8-lib SCDACwhen CPL=4%C

    Fig.11 8-bit SCDAC with coupling capacitormismatch

    Fig.12 DNL and INL of8-lib SC DACwhen coupling capacitormismatchδ=0.35%

    Fig.13 DNL and INL of8-lib SC DACwhen coupling capacitormismatchδ=-0.35%

    (C)Simulation results of8-bit SCDACwith binary weighted capacitormismatch.

    Each weighted capacitor in Fig.8 is assumed to be off by a factor of(1+ei),which can be expressed as Eq. (39).The permissiblemaximum binary weighted capacitormismatch in Eq.(39)is 0.4%from Eq.(41).Fig.14 illustrates that INL of SC DAC is less than LSB/2 when the value ofξis in accordancewith Eq.(41),which is also in favor of the theoretical analysis.

    Fig.14 INL of8-bit SCDACwith binary weighted capacitormismatch

    3.2 Measurement Results

    According to the theoretical analysis and simulation results discussed above,to realize an 8-bit SC DAC,the ranges of non-ideal factors are obtained.In order tomeet the range requirements of the coupling capacitor mismatch and the binary weighted capacitor mismatch,thevalue of unit capacitor must be larger than 200 fF according to the capacitormismatch data in process characterization report.When the unit capacitor is selected to be 200 fF,the parasitic capacitor CPLis 3.8%C,which iswithin the error range.

    The 8-bit SCDAC is applied to a single-slope ADC which is fabricated in GSMC 0.18μm 1P4Mstandard CMOS technology.The chip micrograph is given in Fig. 15.The FFT spectrum of the designed ADC with 1.27 Hz input frequency at 5.2 ksample/s sample rate is shown in Fig.16.It is obvious that the signal-to-noise and distortion ratio(SNDR)and the effective number of bit(ENOB)are 50.73 dB and 8.1 bit respectively.Considering SCDAC is a component of the ADC,there is no doubt that the resolution of SC DAC reaches 8 bit.Consequently,the proposed precise relationships are applied to the design of SC DAC successfully.

    Fig.15 Chip micrograph of single-slope ADC

    Fig.16 FFT spectrum for input frequency of1.27 Hz at5.2 ksample/s

    4 Conclusion

    In this paper,precise relationships between conversion resolution and non-ideal factors are derived.These non-ideal factors consist of coupling capacitor mismatch,binary weighted capacitormismatch and parasitic capacitors.According to the simulation andmeasurement results,it is obvious that the precise relationships can be applied to the design of SC DAC.Therefore,the precise relationships serve as a guideline for the design of SC DAC.

    [1]Sun Quan,Yao Suying,Xu Jiangtao,et.al.Research on the FullWell Capacity of Four-Transistor Pixel[J].Chinese Journal of Sensorsand Actuators,2013,26(6):815-819.

    [2]Li Xiaochen,Yao Suying,Huang Bizhen,etal.A Novel High Dynamic Range Exposure Control for CMOS Image Sensor[J].Chinese Journal of Sensors and Actuators,2013,26(3):328-332.

    [3]Matsuo S,Bales T J,Shoda M,et al.8.9 Megapixel Video Image Sensorwith 14-b Column-Parallel SA-ADC[J].IEEE Transactions on Electron Device,2009,56(11):2380-2389.

    [4]Harpe P,Cui Zhou,Xiaoyan Wang,etal.A 30fJ/Conversion-Step 8b 0-to-10 MS/s Asynchronous SAR ADC in 90 nm CMOS[C]//2010 IEEE International Solid-State Circuits Conference,7-11 Feb. 2010,San Francisco,CA:388-389.

    [5]Yoshioka M,Ishikawa K,Takayama T,et al.A 10b 50MS/s 820μWSAR ADCwith On-Chip Digital Calibration[C]//2010 IEEE International Solid-State Circuits Conference,7-11 Feb.2010,San Francisco,CA:384-385.

    [6]Ohri K B,Callahan MJ.Integrated PCMCodec[J].IEEE Journal of Solid-State Circuits,1979,14(1):38-46.

    [7]Agnes A,Bonizzoni E,Malcovati P,et al.A 9.4-ENOB 1 V 3.8μW100 kS/s SAR ADC with Time-Domain Comparator[C]//2010 IEEE International Solid-State Circuits Conference,3-7 Feb.2008,San Francisco,CA 246-610.

    [8]Shin MS,Kwon O K.14-bit Two-Step Successive Approximation ADC with Calibration Circuit for High-Resolution CMOS Imagers[J].Electronics Letters,2011,47(14):790-791.

    [9]Zhao Hongliang,Zhao Yiqiang,Zhang Zhisheng.A Cryogenic SAR ADC for Infrared Readout Circuits[J].Journal of Semiconductors,2011,32(11):115015.

    [10]Gallin-Martel L,Dzahini D,Rarbi F,et.al.A Low Power 5 MS/s 14 bit Switched Capacitors Digital to Analog Converter[C]//2010 IEEE International Conference on IC Design and Technology,2-4 June 2010,Grenoble:240-243.

    [11]Yanfei Chen,Xiaolei Zhu,Hirotaka Tamura,et al.Split Capacitor DACMismatch Calibration in Successive Approximation ADC[C]// 2009 IEEE Custom Integrated Circuits Conference,13-16 Sept. 2009,San Jose,CA:279-282.

    [12]Sun Lei,Dai Qinyuan,Qiao Gaoshuai,et al.Analysis on Capacitor Mismatch and Parasitic Capacitors Effect of Improved Segmented-Capacitor Array in SAR ADC[C]//2009 3rd International Symposium on Intelligent Information Technology Application,21-22 Nov. 2009,NanChang,China:280-283.

    [13]Lee Hae-Seung,Hodges David A.Self-Calibration Technique for A/ D Converters[J].IEEE Transactions on Circuits and Systems,1983,30(3):188-190.

    Sun Quan(1979-),male,Ph.D.candidate,main research interest is design of CMOS image sensor,sunquan98@ sina.com;

    Yao Suying(1947-),female,professor and Ph.D.candidate supervisor,main research interests are design of CMOS image sensor and application specific integrated circuit,syyao@tju.edu.cn;

    Xu Jiangtao(1979-),male,Associate professor,main research interest is design of CMOS image sensor,xujiangtao@tju. edu.cn.

    CMOS圖像傳感器中分段電容DAC非理想因素研究*

    孫權(quán),姚素英,徐文靜,聶凱明,徐江濤*
    (天津大學(xué)電子信息工程學(xué)院,天津300072)

    CMOS圖像傳感器信號處理中通常采用分段電容DAC產(chǎn)生斜坡參考電壓。研究了分段電容DAC精確的電容失配及寄生與其轉(zhuǎn)換精度的關(guān)系式。基于對分段電容DAC工作原理的研究,導(dǎo)出了電容失配及寄生模型;針對其分?jǐn)?shù)橋接電容失配、各二進(jìn)制電容間的失配及寄生電容問題進(jìn)行了理論分析;對分段電容DAC進(jìn)行非理想因素仿真,設(shè)計了一個采用分段電容DAC的10位單斜ADC并對其進(jìn)行測試,仿真和測試結(jié)果均驗證了理論分析的正確性。上述理論分析結(jié)果可作為分段電容DAC的設(shè)計指導(dǎo)。

    微電子學(xué)與固體電子學(xué);分段電容DAC;電容失配;寄生;轉(zhuǎn)換精度

    TN402

    A

    1004-1699(2014)01-0032-08

    2013-12-01修改日期:2013-12-28

    C:1265H;2570D

    10.3969/j.issn.1004-1699.2014.01.007

    項目來源:National Natural Science Foundation of China(61036004)

    猜你喜歡
    失配橋接分段
    基于無差拍電流預(yù)測控制的PMSM電感失配研究
    一類連續(xù)和不連續(xù)分段線性系統(tǒng)的周期解研究
    Microchip推出首款車載以太網(wǎng)音視頻橋接(AVB)全集成解決方案
    汽車零部件(2021年4期)2021-04-29 01:47:10
    分段計算時間
    基于特征分解的方位向多通道SAR相位失配校正方法
    3米2分段大力士“大”在哪兒?
    太空探索(2016年9期)2016-07-12 10:00:04
    蘋果腐爛病樹橋接復(fù)壯技術(shù)
    雙靜脈皮瓣橋接移植修復(fù)手指腹皮膚缺損
    殘留應(yīng)變對晶格失配太陽電池設(shè)計的影響
    交錯采樣技術(shù)中的失配誤差建模與估計
    两个人免费观看高清视频| 精品福利永久在线观看| 大话2 男鬼变身卡| 久久久国产精品麻豆| 熟女电影av网| 欧美xxⅹ黑人| 天天躁夜夜躁狠狠久久av| 美女大奶头黄色视频| 男女边摸边吃奶| 男女边摸边吃奶| 五月伊人婷婷丁香| 18在线观看网站| 99香蕉大伊视频| 草草在线视频免费看| 国产精品人妻久久久影院| 有码 亚洲区| 中文字幕最新亚洲高清| 人人澡人人妻人| 丝袜美足系列| 亚洲四区av| 欧美日韩亚洲高清精品| 日韩电影二区| 亚洲av在线观看美女高潮| 国产亚洲精品久久久com| 婷婷色av中文字幕| 青春草视频在线免费观看| 久久av网站| 亚洲一码二码三码区别大吗| 欧美日韩精品成人综合77777| 亚洲精品乱久久久久久| 黄色毛片三级朝国网站| 51国产日韩欧美| 国产在线一区二区三区精| 巨乳人妻的诱惑在线观看| 捣出白浆h1v1| 母亲3免费完整高清在线观看 | 欧美成人午夜免费资源| h视频一区二区三区| 久久精品人人爽人人爽视色| 亚洲精品乱码久久久久久按摩| 欧美精品一区二区免费开放| 啦啦啦在线观看免费高清www| 国产免费一区二区三区四区乱码| 侵犯人妻中文字幕一二三四区| 日韩制服丝袜自拍偷拍| 国产乱人偷精品视频| 日韩一区二区视频免费看| 在线看a的网站| 精品久久蜜臀av无| 亚洲国产精品成人久久小说| 热99久久久久精品小说推荐| 观看av在线不卡| 午夜免费鲁丝| 欧美3d第一页| 亚洲国产精品999| 亚洲精品,欧美精品| 久久ye,这里只有精品| 日韩 亚洲 欧美在线| 精品人妻在线不人妻| 91午夜精品亚洲一区二区三区| 久久久精品94久久精品| 超碰97精品在线观看| 久久久久精品人妻al黑| 欧美人与性动交α欧美精品济南到 | 国产探花极品一区二区| 亚洲av成人精品一二三区| 91精品国产国语对白视频| 男人舔女人的私密视频| 色网站视频免费| 桃花免费在线播放| 下体分泌物呈黄色| 免费看不卡的av| 日产精品乱码卡一卡2卡三| 制服人妻中文乱码| 欧美日韩亚洲高清精品| 色网站视频免费| 一本色道久久久久久精品综合| 我要看黄色一级片免费的| 丝袜喷水一区| 亚洲精品视频女| 国产片内射在线| 国产精品国产三级国产专区5o| 久久av网站| av免费观看日本| 91精品国产国语对白视频| 乱人伦中国视频| 黑丝袜美女国产一区| 七月丁香在线播放| 久久久久精品性色| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片| 天美传媒精品一区二区| 久久久久久久大尺度免费视频| 亚洲中文av在线| 国产国语露脸激情在线看| 国产成人a∨麻豆精品| 国产乱人偷精品视频| 免费观看av网站的网址| 男女高潮啪啪啪动态图| 欧美日韩亚洲高清精品| 99视频精品全部免费 在线| 亚洲一级一片aⅴ在线观看| 99久久精品国产国产毛片| 免费少妇av软件| 边亲边吃奶的免费视频| 久久人人爽av亚洲精品天堂| av在线app专区| 在线看a的网站| 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| 亚洲国产日韩一区二区| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 国产毛片在线视频| av片东京热男人的天堂| 国产精品99久久99久久久不卡 | 精品一区二区三卡| 亚洲激情五月婷婷啪啪| 一区二区三区四区激情视频| 免费少妇av软件| 亚洲精品自拍成人| 亚洲精品久久午夜乱码| 午夜福利视频在线观看免费| 大香蕉久久成人网| 王馨瑶露胸无遮挡在线观看| 国产av一区二区精品久久| 街头女战士在线观看网站| 免费观看无遮挡的男女| 男人添女人高潮全过程视频| 观看av在线不卡| 午夜老司机福利剧场| 国产色婷婷99| 免费观看a级毛片全部| av卡一久久| 国产精品麻豆人妻色哟哟久久| 成人毛片a级毛片在线播放| 成人影院久久| 日日啪夜夜爽| 中文欧美无线码| 大片免费播放器 马上看| 亚洲第一av免费看| av播播在线观看一区| 久久韩国三级中文字幕| 秋霞伦理黄片| 人人妻人人澡人人看| 一本大道久久a久久精品| 久久久精品免费免费高清| 午夜av观看不卡| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 亚洲国产av影院在线观看| www日本在线高清视频| 日韩在线高清观看一区二区三区| 国产成人91sexporn| 人妻少妇偷人精品九色| 欧美bdsm另类| 久久国内精品自在自线图片| 亚洲精品美女久久av网站| 国产麻豆69| 欧美人与性动交α欧美软件 | 99热国产这里只有精品6| 黑人猛操日本美女一级片| 亚洲国产色片| 97在线人人人人妻| 伦精品一区二区三区| 国产福利在线免费观看视频| 99久久中文字幕三级久久日本| 91精品国产国语对白视频| 999精品在线视频| 80岁老熟妇乱子伦牲交| 亚洲av电影在线进入| 国产 一区精品| 黑人猛操日本美女一级片| 欧美精品亚洲一区二区| 亚洲精品美女久久久久99蜜臀 | 两个人免费观看高清视频| 最黄视频免费看| 亚洲综合精品二区| 在线精品无人区一区二区三| 成人国产av品久久久| 亚洲欧洲日产国产| 乱人伦中国视频| 精品人妻偷拍中文字幕| 精品少妇内射三级| 97超碰精品成人国产| 久久这里只有精品19| 欧美精品亚洲一区二区| 99精国产麻豆久久婷婷| 黄片播放在线免费| 成人综合一区亚洲| 精品国产乱码久久久久久小说| 日本欧美国产在线视频| 国产一区二区三区综合在线观看 | 欧美老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 99热6这里只有精品| 亚洲av电影在线进入| 一级毛片电影观看| 丝袜喷水一区| 视频区图区小说| 熟女人妻精品中文字幕| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 高清在线视频一区二区三区| 欧美日韩视频精品一区| 国产成人aa在线观看| 久久久久久久久久久免费av| 黑人欧美特级aaaaaa片| 国产色婷婷99| 女人精品久久久久毛片| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 少妇猛男粗大的猛烈进出视频| 免费人成在线观看视频色| 欧美日韩精品成人综合77777| a级毛片黄视频| 国产在线免费精品| 成人影院久久| 久久久a久久爽久久v久久| 国产精品偷伦视频观看了| 国产精品女同一区二区软件| 亚洲欧美日韩另类电影网站| 伦精品一区二区三区| 视频区图区小说| 久久午夜福利片| 精品人妻一区二区三区麻豆| 精品国产露脸久久av麻豆| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区国产| a级片在线免费高清观看视频| 伊人亚洲综合成人网| 亚洲内射少妇av| 亚洲欧美日韩另类电影网站| 日本黄大片高清| av国产精品久久久久影院| 亚洲精品久久成人aⅴ小说| 国产极品粉嫩免费观看在线| 超碰97精品在线观看| 在线看a的网站| 免费观看无遮挡的男女| 伦精品一区二区三区| 又粗又硬又长又爽又黄的视频| 欧美日韩亚洲高清精品| 两性夫妻黄色片 | 亚洲成色77777| 亚洲欧洲精品一区二区精品久久久 | 午夜激情久久久久久久| 天天躁夜夜躁狠狠躁躁| 国产 一区精品| 国产精品一区www在线观看| 欧美最新免费一区二区三区| 日日爽夜夜爽网站| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区| 欧美日韩国产mv在线观看视频| a级片在线免费高清观看视频| 精品久久蜜臀av无| 乱码一卡2卡4卡精品| 国产熟女午夜一区二区三区| 在线观看www视频免费| 天堂中文最新版在线下载| av国产精品久久久久影院| 国产av一区二区精品久久| 日韩大片免费观看网站| 内地一区二区视频在线| av福利片在线| 国产精品久久久久久久久免| 日产精品乱码卡一卡2卡三| 国产精品熟女久久久久浪| 亚洲成色77777| 在线观看美女被高潮喷水网站| 精品国产一区二区三区四区第35| 美女国产视频在线观看| 亚洲图色成人| 国产一区二区在线观看日韩| 欧美丝袜亚洲另类| av在线观看视频网站免费| 亚洲四区av| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 国产淫语在线视频| 欧美精品国产亚洲| 午夜影院在线不卡| 色婷婷av一区二区三区视频| 亚洲美女搞黄在线观看| 26uuu在线亚洲综合色| 国产精品国产三级国产专区5o| 国产福利在线免费观看视频| 婷婷色综合www| videosex国产| 久久久久久久精品精品| 精品少妇黑人巨大在线播放| 狂野欧美激情性xxxx在线观看| 夜夜爽夜夜爽视频| 国产精品国产三级国产av玫瑰| 久久久久久久国产电影| 日本午夜av视频| 午夜激情av网站| 精品熟女少妇av免费看| 久久国内精品自在自线图片| 99视频精品全部免费 在线| 国产免费视频播放在线视频| 五月开心婷婷网| 两个人看的免费小视频| 国产伦理片在线播放av一区| 国产视频首页在线观看| 国产乱人偷精品视频| 亚洲第一区二区三区不卡| 视频中文字幕在线观看| 亚洲在久久综合| 搡老乐熟女国产| 精品视频人人做人人爽| 国产激情久久老熟女| 免费黄频网站在线观看国产| 我的女老师完整版在线观看| av黄色大香蕉| 成人国语在线视频| 涩涩av久久男人的天堂| 成人国产av品久久久| 亚洲婷婷狠狠爱综合网| 欧美最新免费一区二区三区| 久久精品国产综合久久久 | 又黄又粗又硬又大视频| 九九在线视频观看精品| 午夜福利影视在线免费观看| 人体艺术视频欧美日本| 又黄又粗又硬又大视频| 制服丝袜香蕉在线| 中文乱码字字幕精品一区二区三区| 欧美日韩综合久久久久久| 国产精品久久久久久av不卡| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜爱| 伦精品一区二区三区| 中国国产av一级| 热99久久久久精品小说推荐| 黑人猛操日本美女一级片| 成年女人在线观看亚洲视频| 欧美国产精品一级二级三级| 午夜免费男女啪啪视频观看| 国产日韩一区二区三区精品不卡| 深夜精品福利| 色视频在线一区二区三区| 国产成人午夜福利电影在线观看| av天堂久久9| 少妇被粗大的猛进出69影院 | 国产精品麻豆人妻色哟哟久久| 国产成人91sexporn| 乱人伦中国视频| 草草在线视频免费看| 免费黄网站久久成人精品| 欧美bdsm另类| 久久精品国产鲁丝片午夜精品| 亚洲av成人精品一二三区| 国产爽快片一区二区三区| 最黄视频免费看| 成人二区视频| 国产欧美日韩综合在线一区二区| 亚洲图色成人| 十分钟在线观看高清视频www| 精品亚洲成a人片在线观看| 少妇人妻久久综合中文| 在线观看人妻少妇| 国产男人的电影天堂91| 久热这里只有精品99| 国产精品三级大全| 国产不卡av网站在线观看| 欧美少妇被猛烈插入视频| 成人午夜精彩视频在线观看| 久久久久人妻精品一区果冻| 亚洲在久久综合| 精品少妇久久久久久888优播| 精品少妇黑人巨大在线播放| av在线播放精品| 大香蕉久久网| 午夜老司机福利剧场| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 人成视频在线观看免费观看| 少妇熟女欧美另类| 国产一区二区三区av在线| 国产一级毛片在线| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 久久精品国产自在天天线| 男人舔女人的私密视频| 桃花免费在线播放| 男人添女人高潮全过程视频| 亚洲欧洲精品一区二区精品久久久 | 中文字幕av电影在线播放| 亚洲国产日韩一区二区| 王馨瑶露胸无遮挡在线观看| 国产成人精品久久久久久| 热99国产精品久久久久久7| 亚洲精品aⅴ在线观看| 亚洲国产精品成人久久小说| 国产精品国产三级专区第一集| 国产日韩欧美视频二区| 亚洲精品,欧美精品| 999精品在线视频| 日本色播在线视频| 黑人巨大精品欧美一区二区蜜桃 | h视频一区二区三区| 免费av中文字幕在线| 少妇的逼水好多| 青春草亚洲视频在线观看| 欧美人与善性xxx| 日本爱情动作片www.在线观看| 日韩,欧美,国产一区二区三区| 日日摸夜夜添夜夜爱| 免费高清在线观看日韩| 女性被躁到高潮视频| 伊人亚洲综合成人网| 99热全是精品| 最黄视频免费看| 乱人伦中国视频| 亚洲成国产人片在线观看| 精品国产一区二区三区四区第35| 欧美精品av麻豆av| 欧美激情国产日韩精品一区| 卡戴珊不雅视频在线播放| 99国产综合亚洲精品| 国产精品熟女久久久久浪| 国产精品 国内视频| 麻豆乱淫一区二区| 99香蕉大伊视频| 国产在线一区二区三区精| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产看品久久| 美女xxoo啪啪120秒动态图| 国产在线视频一区二区| 在线观看免费高清a一片| 色网站视频免费| 老司机影院成人| 一级,二级,三级黄色视频| 麻豆精品久久久久久蜜桃| 成人黄色视频免费在线看| 韩国精品一区二区三区 | 久久av网站| 啦啦啦视频在线资源免费观看| 国产精品一区二区在线观看99| 欧美人与性动交α欧美软件 | 精品99又大又爽又粗少妇毛片| 亚洲av男天堂| 免费人成在线观看视频色| 中文字幕最新亚洲高清| 亚洲中文av在线| 亚洲精品国产av成人精品| av网站免费在线观看视频| 国产乱来视频区| 免费在线观看黄色视频的| 老女人水多毛片| 男女边吃奶边做爰视频| 国产在线视频一区二区| 最近手机中文字幕大全| 亚洲av中文av极速乱| 晚上一个人看的免费电影| 日韩制服骚丝袜av| 亚洲国产看品久久| 欧美日韩视频高清一区二区三区二| videosex国产| 男人爽女人下面视频在线观看| 欧美日韩成人在线一区二区| 天天躁夜夜躁狠狠躁躁| 自拍欧美九色日韩亚洲蝌蚪91| 97超碰精品成人国产| 国产成人免费无遮挡视频| 精品熟女少妇av免费看| a级毛色黄片| 亚洲美女视频黄频| 日韩视频在线欧美| 丰满迷人的少妇在线观看| 久久久久久久久久久免费av| 国产片特级美女逼逼视频| 大香蕉久久成人网| 97在线人人人人妻| 日本猛色少妇xxxxx猛交久久| 久久av网站| 王馨瑶露胸无遮挡在线观看| 精品人妻偷拍中文字幕| 国产免费视频播放在线视频| 国产白丝娇喘喷水9色精品| 免费日韩欧美在线观看| 只有这里有精品99| 日韩制服丝袜自拍偷拍| 免费高清在线观看视频在线观看| 免费黄网站久久成人精品| 在线观看三级黄色| 亚洲,欧美精品.| 美女内射精品一级片tv| 久久久久久久久久久久大奶| 18禁动态无遮挡网站| 亚洲精品色激情综合| 国产不卡av网站在线观看| 国产成人a∨麻豆精品| 国产免费一级a男人的天堂| 欧美3d第一页| 一本—道久久a久久精品蜜桃钙片| 热99久久久久精品小说推荐| 丝袜美足系列| 亚洲激情五月婷婷啪啪| 高清毛片免费看| 国产男人的电影天堂91| 亚洲精品美女久久久久99蜜臀 | 1024视频免费在线观看| 高清毛片免费看| 一级a做视频免费观看| 久久鲁丝午夜福利片| 免费日韩欧美在线观看| 成人黄色视频免费在线看| 丝袜喷水一区| 国产综合精华液| 香蕉丝袜av| 黄网站色视频无遮挡免费观看| www.色视频.com| 午夜免费男女啪啪视频观看| 国产免费一区二区三区四区乱码| 视频在线观看一区二区三区| 伊人久久国产一区二区| av天堂久久9| 久久国产精品大桥未久av| 侵犯人妻中文字幕一二三四区| 少妇人妻 视频| 久久精品熟女亚洲av麻豆精品| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| 欧美丝袜亚洲另类| 黑人高潮一二区| 亚洲性久久影院| 日韩免费高清中文字幕av| 大香蕉久久成人网| av在线老鸭窝| 日韩成人av中文字幕在线观看| 99视频精品全部免费 在线| 麻豆精品久久久久久蜜桃| 女人精品久久久久毛片| 久久av网站| 99久久精品国产国产毛片| 国产精品一国产av| 成人综合一区亚洲| 高清不卡的av网站| 国产女主播在线喷水免费视频网站| 晚上一个人看的免费电影| 大片电影免费在线观看免费| 岛国毛片在线播放| 国产黄色视频一区二区在线观看| 日韩制服骚丝袜av| 久久亚洲国产成人精品v| 丰满少妇做爰视频| 免费高清在线观看视频在线观看| 91成人精品电影| 天堂8中文在线网| 午夜福利在线观看免费完整高清在| 亚洲精品中文字幕在线视频| 亚洲综合色网址| av有码第一页| 亚洲精品第二区| 亚洲综合色惰| 伦精品一区二区三区| 国产精品嫩草影院av在线观看| av福利片在线| 欧美变态另类bdsm刘玥| 亚洲婷婷狠狠爱综合网| 在线观看免费日韩欧美大片| 国产日韩欧美在线精品| 免费观看无遮挡的男女| 视频在线观看一区二区三区| 在线观看人妻少妇| 最近中文字幕高清免费大全6| 精品福利永久在线观看| 99久久人妻综合| 欧美精品av麻豆av| 国产精品久久久久久久电影| 久热久热在线精品观看| 国产精品欧美亚洲77777| 久久久国产精品麻豆| 麻豆乱淫一区二区| 国产精品人妻久久久影院| 岛国毛片在线播放| 亚洲五月色婷婷综合| 十分钟在线观看高清视频www| 精品少妇黑人巨大在线播放| a 毛片基地| 美女国产视频在线观看| 亚洲在久久综合| 黄色视频在线播放观看不卡| 亚洲av男天堂| 久久久久精品人妻al黑| 国产黄色视频一区二区在线观看| 桃花免费在线播放| 久久久久精品人妻al黑| 亚洲人与动物交配视频| 国产精品国产三级国产av玫瑰| 国产一区二区三区综合在线观看 | 国产极品粉嫩免费观看在线| 18+在线观看网站| 99久国产av精品国产电影| 日韩伦理黄色片| 久久久欧美国产精品| 亚洲四区av| 亚洲av成人精品一二三区| 国产毛片在线视频| 下体分泌物呈黄色| 国产一区二区在线观看av| 欧美激情国产日韩精品一区| 黄色视频在线播放观看不卡| av免费在线看不卡| 99国产精品免费福利视频| 国产成人aa在线观看| 成人国产av品久久久| 精品国产一区二区三区四区第35| 大片免费播放器 马上看| 香蕉国产在线看|