• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationship between Phase Coexistence and Properties inPiezoelectric Materials

    2014-08-30 03:15:30YAOYonggangZHOUChaoXUEDezhenYANGYaodongRENXiaobing
    中國材料進展 2014年1期

    YAO Yonggang, ZHOU Chao, XUE Dezhen, YANG Yaodong, REN Xiaobing

    (Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology,Xi′an Jiaotong University, Xi′an 710054, China)

    1 Introduction

    With the rising environmental and human health concerns by using toxic Pb in industrial and commercial devices, people are looking for sustainable and environmental friendly Pb-free materials[1]. Intensive works have contributed to Pb-free piezoelectric research, but few reported Pb-free materials can actually compete with Pb family[2-5]. A guideline for developing high performance piezoelectrics becomes essentially important.

    In 2000, Fu and Cohen proposed that the giant piezoelectric response can be induced by intrinsic polarization rotation mechanism by first principle calculation[6]. Experimentally, Noheda et al found a narrow intermediate phase between T and R phase in Pb-based high performance piezoelectric systems, which serviced as a bridge phase facilitating the polarization rotation from T[100] to R[111][7-10]. More recently, the contribution of polarization extension from ferroelectric to paraelectric phase was proposed by Damjanovic et al as another important factor[11-13]. Thus, easy polarization extension and rotation mechanism (low energy barriers for polarization variation) have been accepted as the two most important intrinsic factors contributing to the materials′ permittivity and piezoelectricity (theseacproperties) enhancement.

    However, this mechanism is largely relying on a free energy analysis, which is hard to apply in a material design directly. How to link this free energy mechanism with real applications such as designing high performance piezoelectrics? Is it possible to convert free energy analysis into a simpler materials design guideline? All in all, a simple, clear and operable mechanism is needed.

    On the other hand, from experiment, it is found that the highacproperties in Pb-based piezoelectrics are really related to a morphotropic phase boundary (MPB), a phase transition boundary formed by composition change[14-16]. Recently, Liu and Ren[17]found that the high performance at MPB actually originates from a triple point with three phases (e.g., Cubic-Tetragonal-Rhombohedra, C-T-R) coexisted. Based on this idea, at least three new Pb-free triple point type MPB systems have been discovered and their piezoelectricity are as high as 450-600pC/N[18-20]. Higher piezoelectricity and permittivity have been reported in the Pb-free BaTiO3-xBaSnO3system at its quasi-quadruple point, a point in the phase diagram with nearly four phases coexisted[21].

    Although these materials still have some drawbacks, such as the Curie temperature (Tc) is too low to use in our daily life, these experimental results do give us a hint that the ferroelectric material′s ac properties are highly depended on its phase coexistence state. Obviously, such relationship can be used as a simple guideline to develop high performance piezoelectric materials if it can be clarified. However, a comprehensive study and details of this relationship are still not clear.

    This work clarifies the property and phase coexistence relationship from both theoretical and experimental aspects, will give an important guidance to find a high piezoelectric Pb-free material by different phase-coexistence approach. Phase coexistence analysis method may be a right and simple way to reveal the polarization rotation and extension mechanism and rebuild the structure-property relationship.

    2 Method

    In order to reveal the difference between these phase coexistence states, free energy of different phase coexistence states was calculated by Landau theory. Different energy barriers for polarization rotation and extension for different coexistence states can be found, and their abilities for property enhancement can be revealed too.

    To analyze all four common phases in ferroelectrics: Cubic, Tetragonal, Orthorhombic, Rhombohedra (C, T, O, R), 6th order Landau-Devonshire model is used, the lowest order to have all these four phases[22-23]. The equation is as follow[14, 18, 21, 24-28]:

    (1)

    WhereFmeans the free energy of the system;F0is the free energy of the paraelectric phase;Pis the order parameter-polarization, anda,b,care the fitting parameters. This equation means the free energy of the system can be expanded to the polynomial expression of the order parameter polarization.

    At a phase coexistence state, the free energy of coexisted phases should be equal; also, the first deviation of free energy for these phases should equal to zero to make the phase stable. Take quadruple point with C-T-O-R coexistence as an example:

    phase coexistence:

    (1)

    phase equilibrium:

    (2)

    For simplicity, define ‖PT‖=‖PO‖=‖PR‖=P0, which means the polarizations in different ferroelectric phases have the same length, but different orientations. Our model only concerns up to 6thorder polarizations with the condition of same polarization length for different ferroelectric phases. This gives essential simplicity for us to see the difference between these phase coexistence states while keeps the result similar. For example, sequence of the ability for property enhancement. However, one should notice that this raises the issue of totally isotropic polarization rotation energy profile for C-T-O-R and T-O-R states, which (in reality) should be very low anisotropy states if higher order polarization terms or different length polarization are considered.

    3 Results

    3.1 Calculated result

    Here we summarized the calculated results in Table 1. (NearTccoexistence states: C-T-O-R, C-T-O, C-T; belowTccoexistence states: T-O-R, T-O, T) For these free energy equations, they are composed of three components: i)F0, energy of paraelectric phase, same for every equations; ii) 2-4-6 order isotropic term (underlined with single line), function ofP, the sphere energy; iii) 2-4-6 anisotropy term (underlined with double line), function of [Px,Py,Pz], the anisotropy energy. In this way, every state or its equation can be divided into three parts: the basic energyF0, the isotropic term and the anisotropy term.

    For property enhancement, it is not the free energy itself but the energy barriers for polarization variation that matters. From free energy view, great property enhancement comes from easy polarization variation, namely low energy barriers for polarization variation. To analyses the polarization variation energy barriers, each polarization variation can be decomposed into two components: variation in its direction and length. The former is polarization rotation, namely polarization variation in its directions but with constant length; the latter is polarization extension, namely polarization variation in its length but in one direction. Energy barriers for polarization rotation only come from the anisotropy term because polarization rotation doesn′t affect the isotropic term at all; while energy barriers for polarization extension mainly come from the scale of the isotropic term, if the anisotropy term is fixed.

    Table1 The calculated results of different phase coexistence states. Single line for the isotropic term, double line for the anisotropy term

    To simply conclude, coexistence of several ferroelectric phases can lower the polarization rotation barriers, and thus facilitate polarization rotation enhancement for ac properties; coexisted with Cubic phase can significantly lower the polarization extension barriers, and thus facilitate the polarization extension enhancement for ac properties.

    3.2 Schematic free energy profiles

    In order to show the difference between these free energy equations clearly, schematic energy landscapes of different situations were showed in Fig.1 and Fig.2. The values of the parameters are chosen according to the relations listed above.

    Since the enhancements ofacproperties usually come from the easy polarization rotation and extension, we analyses the free energy behavior from these two aspects. For polarization rotation case, free energy profile for polarizations of ‖P‖=P0were showing in Figure 1 in 3D view. For polarization extension case, the free energy value for polarizations in directions of T[001], R[111], O[011], were showing in Figure 2.

    From these figures, the rules stated in the equation parts can be also found. From polarization rotation case Fig.1, it is quite clear that coexisted with the same ferroelectric phases gives out similar anisotropy energy barriers for polarization rotation barriers, which is clear in comparison of the upper figures with the lower ones; states with coexistence of several ferroelectric phases have much flatter energy profiles and low energy barriers, and can facilitate polarization rotation process, which is clear by comparing from left to right. For polarization extension case Fig.2, those states coexisting with C phase have very low energy barriers for polarization variation from a ferro to a para phase, and can facilitate the polarization extension process, which is clear from the comparison of upper figures with the lower ones.

    Fig.1 Free energy landscapes for polarization rotation case. Near Tc states: (a) C-T-O-R quadruple point[21], (b) C-T-O triple point, and (c) C-T phase boundary[21]. Below Tc states: (d) T-O-R triple point, (e) T-O phase boundary[21], and (f) T phase only

    Fig.2 Free energy landscapes for polarization extension case. Near Tc states: (a) C-T-O-R quadruple point[21], (b) C-T-O triple point, and (c) C-T phase boundary[21]. Below Tc states: (d) T-O-R triple point, (e) T-O phase boundary[21], and (f) T phase only

    In this way, different phase coexistence states have been successfully related to a certain free energy profile. Further, difference profiles and energy barriers certainly indicate different performances. So what about the experiments?

    3.3 Experimental proofs

    Based on the polarization rotation and extension mechanism, different property enhancements can be expected because of different energy barriers for different phase coexistence states. For example, quadruple point may give the largest enhancement due to no energy barrier for polarization rotation and lowest energy barrier for polarization extension; with less ferroelectric phases exist together, the polarization rotation energy barrier becomes larger; and without a C phase, there is a large energy barrier for polarization extension, thus a decrease inacproperties.

    Below are the experimental measurements of different phase coexistence situations (Fig.3). These systems are carefully chosen to eliminate the effect of system difference. They are BaSnO3doped BaTiO3(as BT-xBS, Fig.3a)[21], Ba(Sn0.12Ti0.88)O3doped (Ba0.7Ca0.3)TiO3(as BST-xBCT, Fig.3b)[19], and CaTiO3doped BaTiO3(as BT-xCT, Fig.3c). These three systems are all BaTiO3based systems with similar dopants; and they show almost all the phase coexistence situations. These facts make these three systems excellent for ac properties comparison and can yield reasonable results. Fig. 3a, 3b, and 3c show the different phase diagrams composed by BT, CT, and BS: quadruple point C-T-O-R and double MPB T-O and O-R in BT-xBS; triple point C-T-R and MPB T-R in BST-xBCT; phase boundary C-T, T-O, and O-R in BT-xCT. Because permittivity is much sensitive nearTc, while piezoelectricity is only sustainable belowTc, so, we choose to compare the permittivity value atTcfor nearTcstates (Fig 3d, 3e, and 3f), and the piezoelectricity coefficientd33at room temperature (RT) for far belowTcstates (Fig.3g, 3h, and 3i).

    For nearTccases, permittivity at C-T-O-R quadruple point and C-T-R triple point reach a large value while no big different in C-T phase boundary case. Clearly, compared with C-T or C-R phase boundaries, quadruple and triple points have a large enhancement on its permittivity. Also, the permittivity at quadruple point is even larger than that at triple point, indicating the enhancement at quadruple point is even larger. For belowTccases, the phase boundaries T-O and O-R in BT-xBS system and phase boundary T-R in BST-xBCT system have the peakd33value in each system, whiled33decreases slightly for single phase T in BT-xCT system with increase dopants. This indicates phase boundary can enhance the piezoelectric properties, which has been known for long time.

    Fig.3 experimental data for different phase coexistence states: (a), (b), (c) phase diagram; (d), (e), (f) permittivity at Tc (near Tc properties); (g), (h), (i) d33 at RT (below Tc properties) for BT-xBS, BST-xBCT, and BT-xCT system (Partial data are cited from ref[21] and ref[19])

    These experimental results satisfy our calculated results very well, indicating that phase coexistence states do have such a relationship with property enhancement, and this relationship can be well understood by free energy analysis from polarization rotation and extension aspects.

    3.4 T-O-R phase coexisting

    From our calculated result, a T-O-R phase coexistence should possess piezoelectricity much larger than that of a single phase boundary because it′s an isotropic state for polarization rotation. Although clear and direct declaration for a T-O-R coexistence state were not found in previous literature yet, indirect evidences such as Pb-based high performance PZT[9], PZN-PT[29], PMN-PT[7]can support this finding. They all have a very narrow intermediate phase between T and R phase and greatacproperties in this region were found and attributed to the easy polarization rotation from T[100] to R[111] facilitated by this intermediate phase (lower energy barrier for polarization because of this intermediate phase)[10, 30].

    It found[12, 31]that it is not the intermediate phase itself giving large enhancement to the properties, but the narrowness of this intermediate phase really matters. It showed that a narrow intermediate phase, mimicking but not a truly T-O-R coexisting state, can largely enhance theacproperties.

    This may be a new clue to search for high performance piezoelectric ceramic systems by narrowing the intermediate phase between two ferroelectric phases, to mimic a triple phase coexistence state, which is highly possible by modifying BaTiO3or KNbO3, who has a T to O to R ferroelectric transition sequence originally. High performance piezoelectrics[32-33]found in these two systems support our opinion.

    3.5 Relationship

    To summarize above results, a relationship diagram of ac properties at different phase coexistence situations can be drawn out (see Figure 4a): the less ferroelectric phases coexisting (FE loss), the harder for polarization rotation and ac properties decrease; without a C phase (PE loss), a large energy barrier will limit polarization extension andacproperties drop too.

    Fig.4 (a) schematic diagram of the relationship between material′s ac properties with its different phase coexistence states and (b) experimental d33 distribution in BT-xBS system (PB: phase boundaries, QP: quadruple point C-T-O-R, modified from ref[21])

    An experimental proof to reveal this relationship can be found in Fig.4b, showing the distribution of piezoelectric coefficientd33(color contour map, cited and modified from ref[21]) with relation to its phase coexistence state in BT-xBS system. From this figure, the piezoelectricity of different phase coexistence states can be clearly revealed and compared, which shows a phase status dependence of piezoelectric performance, and this dependence fits well to the relationship we summarized above.

    Knowing this relationship in mind, it helps when one tries to design a high performance piezoelectric system or predict the piezoelectricity distribution by its phase diagram. To get high performance, it is better that people can acquire a more-phases coexistence state, which will give largest additional enhancement on the basis of materials′ own performance. This can be achieved by doping elements with different phase transition sequence or simply by strain engineering. Also, the phase diagram becomes even more important to predict the performance of the system according to its phase coexistence states.

    4 Conclusion

    The relationship between phase coexistence state and its properties has been built via free energy analysis. This work concretes the polarization rotation and extension mechanism into a material design view. It may simplify the process of developing high performance piezoelectric materials by searching, or engineering a phase coexistence state. Regarding the similarity between different ferroic materials, one can expect this “phase coexistence and properties” idea also can be applied to the ferromagnetic and ferroelastic fields to seek better materials.

    [1] Cross E. Materials Science: Lead-Free at Last[J].Nature, 2004, 432(7 013): 24-25.

    [2] Zhang S,etal. Lead-Free Piezoelectric Ceramics vs. PZT?[J].JElectroceram, 2007, 19(4): 251-257.

    [3] Panda P. Review: Environmental Friendly Lead-Free Piezoelectric Materials[J].JMaterSci, 2009, 44(19): 5 049-5 062.

    [4] R?del J,etal. Perspective on the Development of Lead-Free Piezoceramics[J].JAmCeramSoc, 2009, 92(6): 1 153-1 177.

    [5] Takenaka T,etal. Current Developments and Prospective of Lead-Free Piezoelectric Ceramics[J].JpnJApplPhys, 2008, 47(5): 3 787-3 801.

    [6] Fu H, Cohen R. Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-Crystal Piezoelectrics[J].Nature, 2000, 403(6 767): 281.

    [7] Noheda B,etal. Phase Diagram of the Ferroelectric Relaxor (1-x)PbMg_{1/3}Nb_{2/3}O_{3}-xPbTiO_{3}[J].PhysRevB, 2002, 66(5): 054 104.

    [8] Noheda B,etal. Polarization Rotation via a Monoclinic Phase in the Piezoelectric 92% PbZn_{1/3}Nb_{2/3}O_{3}-8% PbTiO_{3}[J].PhysRevLett, 2001, 86(17): 3 891-3 894.

    [9] Noheda B,etal. A Monoclinic Ferroelectric Phase in the Pb (ZrTi) O Solid Solution[J].ApplPhysLett, 1999, 74: 2 059.

    [10] Guo R,etal. Origin of the High Piezoelectric Response in PbZr_{1-x}Ti_{x}O_{3}[J].PhysRevLett, 2000, 84(23): 5 423-5 426.

    [11] Damjanovic D. Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics[J].JAmCeramSoc, 2005, 88(10): 2 663-2 676.

    [12] Damjanovic D. A Morphotropic Phase Boundary System Based on Polarization Rotation and Polarization Extension[J].ApplPhysLett, 2010, 97(6): 062 906.

    [13] Damjanovic D. Comments on Origins of Enhanced Piezoelectric Properties in Ferroelectrics[J].Ultrasonics,FerroelectricsandFrequencyControl,IEEETransactionson, 2009, 56(8): 1 574-1 585.

    [14] Carl K, H?rdtl K H. On the Origin of the Maximum in the Electromechanical Activity in Pb(ZrxTi1-x)O3Ceramies near the Morphotropic Phase Boundary[J].PhysicaStatusSolidiA, 1971, 8(1): 87-98.

    [15] Jaffe B,etal. Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics[J].JApplPhys, 1954, 25: 809.

    [16] Jaffe B,etal.PiezoelectricCeramics[M]. London: Academic Press, 1971.

    [17] Liu W, Ren X. Large Piezoelectric Effect in Pb-Free Ceramics[J].PhysRevLett, 2009, 103(25): 257 602.

    [18] Zhou C,etal. Triple-Point-Type Morphotropic Phase Boundary Based Large Piezoelectric Pb-Free Material-Ba(Ti[sub 0.8]Hf[sub 0.2])O[sub 3]-(Ba[sub 0.7]Ca[sub 0.3])TiO[sub 3][J].ApplPhysLett, 2012, 100(22): 222 910.

    [19] Xue D,etal. Large Piezoelectric Effect in Pb-Free Ba (Ti, Sn) O3-x(Ba, Ca) TiO3Ceramics[J].ApplPhysLett, 2011, 99: 122 901.

    [20] Bao H,etal. A Modified Lead-Free Piezoelectric BZT-xBCT System with Higher T C[J].JournalofPhysicsD:AppliedPhysics, 2010, 43(46): 465 401.

    [21] Yao Y,etal. Large Piezoelectricity and Dielectric Permittivity in BaTiO3-xBaSnO3System: the Role of Phase Coexisting[J].EurophysicsLetters, 2012, 98(2): 27 008.

    [22] Sergienko I,etal. Phenomenological Theory of Phase Transitions in Highly Piezoelectric Perovskites[J].PhysRevB, 2002, 65(14): 144 104.

    [23] Vanderbilt D, Cohen M H. Monoclinic and Triclinic Phases in Higher-Order Devonshire Theory[J].PhysRevB, 2001, 63(9): 094 108.

    [24] Khachaturyan A G. Ferroelectric Solid Solutions with Morphotropic Boundary: Rotational Instability of Polarization, Metastable Coexistence of Phases and Nanodomain Adaptive States[J].PhilosophicalMagazine, 2010, 90(1): 37-60.

    [25] Rossetti G A,etal. Ferroelectric Solid Solutions with Morphotropic Boundaries: Vanishing Polarization Anisotropy, Adaptive, Polar Glass, and Two-Phase States[J].JApplPhys, 2008, 103(11): 114 113.

    [26] George A, Rossetti J, Khachaturyan A G. Inherent Nanoscale Structural Instabilities near Morphotropic Boundaries in Ferroelectric Solid Solutions[J].ApplPhysLett, 2007, 91(7): 072 909.

    [27] Landau L. The Theory of Phase Transitions[J].Nature, 1936, 138(3 498): 840-841.

    [28] Devonshire A. Theory of Ferroelectrics[J].AdvPhys, 1954, 3(10): 85-130.

    [29] La-Orauttapong D,etal. Phase Diagram of the Relaxor Ferroelectric (1-x)Pb(Zn_{1/3}Nb_{2/3})O_{3}-xPbTiO_{3}[J].PhysRevB, 2002, 65(14): 144 101.

    [30] Noheda B, Cox D E. Bridging Phases at the Morphotropic Boundaries of Lead Oxide Solid Solutions[J].PhaseTransitions, 2006, 79(1-2): 5-20.

    [31] Damjanovic D,etal. What Can be Expected from Lead-Free Piezoelectric Materials?[J].FunctMaterLett, 2010, 3(4): 5-13.

    [32] Damjanovic D,etal. Elastic, Dielectric, and Piezoelectric Anomalies and Raman Spectroscopy of 0.5Ba(Ti[sub 0.8]Zr[sub 0.2])O[sub 3]-0.5(Ba[sub 0.7]Ca[sub 0.3])TiO[sub 3][J].ApplPhysLett, 2012, 100(19): 192 907.

    [33] Zuo R, Fu J. Rhombohedral-Tetragonal Phase Coexistence and Piezoelectric Properties of (NaK)(NbSb) O3-LiTaO3-BaZrO3Lead-Free Ceramics[J].JAmCeramSoc, 2011, 94(5): 1 467-1 470.

    最近最新免费中文字幕在线| 国产成人av教育| 亚洲三级黄色毛片| 欧美午夜高清在线| 丰满的人妻完整版| 国产老妇女一区| 久久国产精品影院| 精品一区二区三区视频在线观看免费| 身体一侧抽搐| 欧美三级亚洲精品| 国产伦在线观看视频一区| 免费看光身美女| 亚洲中文日韩欧美视频| 99精品在免费线老司机午夜| 日韩欧美在线乱码| 欧美成人性av电影在线观看| 亚洲av美国av| 我的女老师完整版在线观看| 长腿黑丝高跟| 亚洲国产精品sss在线观看| 此物有八面人人有两片| 国产av在哪里看| 久久精品国产亚洲av香蕉五月| 免费av毛片视频| 亚洲无线在线观看| 精品免费久久久久久久清纯| 女人十人毛片免费观看3o分钟| 欧美成人性av电影在线观看| 免费搜索国产男女视频| 亚洲欧美日韩高清专用| 成人鲁丝片一二三区免费| 别揉我奶头 嗯啊视频| 日本三级黄在线观看| 国产在线男女| 国产视频一区二区在线看| 成人国产综合亚洲| 欧美区成人在线视频| 国产三级在线视频| 午夜福利18| 色噜噜av男人的天堂激情| 亚洲自拍偷在线| 国产精品av视频在线免费观看| 日韩精品青青久久久久久| 亚洲乱码一区二区免费版| 国产精品综合久久久久久久免费| 成年女人看的毛片在线观看| 91久久精品电影网| 人人妻,人人澡人人爽秒播| 精品人妻偷拍中文字幕| 久久精品人妻少妇| 亚洲成人精品中文字幕电影| 人人妻人人澡欧美一区二区| 男人舔奶头视频| 少妇丰满av| 亚洲美女视频黄频| 97超视频在线观看视频| 亚洲18禁久久av| 精品午夜福利在线看| 精品久久久久久久久av| 美女高潮的动态| 欧美乱色亚洲激情| 国产精品av视频在线免费观看| 成人午夜高清在线视频| 丰满乱子伦码专区| 老鸭窝网址在线观看| 国产高清视频在线观看网站| 亚洲国产欧洲综合997久久,| 亚洲自偷自拍三级| 久久久久久大精品| 国产一区二区激情短视频| 18禁在线播放成人免费| 性色av乱码一区二区三区2| 桃红色精品国产亚洲av| 精品人妻熟女av久视频| 又爽又黄无遮挡网站| 国产久久久一区二区三区| 精华霜和精华液先用哪个| 亚洲片人在线观看| 有码 亚洲区| 美女黄网站色视频| 免费看美女性在线毛片视频| 亚洲男人的天堂狠狠| 成年版毛片免费区| 色吧在线观看| 欧美成狂野欧美在线观看| 亚洲第一电影网av| 免费观看精品视频网站| 国产一区二区在线观看日韩| 欧美日本亚洲视频在线播放| 午夜影院日韩av| 婷婷精品国产亚洲av在线| 美女大奶头视频| 亚洲,欧美精品.| 亚洲性夜色夜夜综合| 亚洲精品影视一区二区三区av| 中国美女看黄片| x7x7x7水蜜桃| 亚洲欧美清纯卡通| 午夜福利在线观看吧| www.www免费av| 国内精品久久久久久久电影| 首页视频小说图片口味搜索| 国产aⅴ精品一区二区三区波| 欧美乱色亚洲激情| 神马国产精品三级电影在线观看| 自拍偷自拍亚洲精品老妇| av国产免费在线观看| 久久久久久久久久黄片| 成人特级av手机在线观看| 99国产综合亚洲精品| 亚洲av熟女| 亚洲精华国产精华精| x7x7x7水蜜桃| 日韩精品中文字幕看吧| 国产成年人精品一区二区| av女优亚洲男人天堂| 国产av麻豆久久久久久久| 精品人妻1区二区| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 免费av不卡在线播放| 亚洲,欧美精品.| 国产真实乱freesex| 国产欧美日韩精品一区二区| 2021天堂中文幕一二区在线观| 亚洲性夜色夜夜综合| 精品午夜福利视频在线观看一区| 国产精品一区二区三区四区免费观看 | 最好的美女福利视频网| 色哟哟哟哟哟哟| 久久久久亚洲av毛片大全| 麻豆国产97在线/欧美| 国模一区二区三区四区视频| 一区二区三区免费毛片| 国产一区二区三区在线臀色熟女| 少妇裸体淫交视频免费看高清| 亚洲五月婷婷丁香| 日本黄色片子视频| 国产大屁股一区二区在线视频| 国产精品久久久久久久电影| 成人特级av手机在线观看| 麻豆av噜噜一区二区三区| 亚洲av五月六月丁香网| 天堂√8在线中文| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 90打野战视频偷拍视频| 99热这里只有精品一区| 日韩免费av在线播放| 日本免费a在线| 亚洲美女搞黄在线观看 | 成人永久免费在线观看视频| 深夜精品福利| 蜜桃亚洲精品一区二区三区| 三级国产精品欧美在线观看| 男女之事视频高清在线观看| 免费观看精品视频网站| 热99在线观看视频| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添av毛片 | 日韩av在线大香蕉| 中文字幕久久专区| 男女下面进入的视频免费午夜| 国产亚洲精品久久久com| 真人做人爱边吃奶动态| 国产精品av视频在线免费观看| 国产欧美日韩一区二区精品| 欧美日韩瑟瑟在线播放| 国产成人福利小说| 内地一区二区视频在线| 91午夜精品亚洲一区二区三区 | 欧美高清性xxxxhd video| 欧美三级亚洲精品| 亚洲av熟女| 夜夜躁狠狠躁天天躁| 久久人人精品亚洲av| 嫩草影院入口| 亚洲成av人片在线播放无| 国产一区二区在线观看日韩| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 床上黄色一级片| 欧美中文日本在线观看视频| av在线蜜桃| 日韩欧美免费精品| 国产色婷婷99| 国产主播在线观看一区二区| 成人性生交大片免费视频hd| 亚洲av二区三区四区| 国产精品一区二区三区四区久久| 久久久国产成人精品二区| 在线天堂最新版资源| 久久久精品欧美日韩精品| 久久精品国产亚洲av天美| 永久网站在线| 欧美黑人巨大hd| 精品国内亚洲2022精品成人| 久久精品夜夜夜夜夜久久蜜豆| 好男人在线观看高清免费视频| 国产成+人综合+亚洲专区| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影| 欧美日韩福利视频一区二区| 在线观看66精品国产| 国产一区二区在线av高清观看| 老司机福利观看| 精品一区二区三区视频在线观看免费| 啪啪无遮挡十八禁网站| 国产精品99久久久久久久久| 99在线人妻在线中文字幕| 51国产日韩欧美| h日本视频在线播放| a级毛片免费高清观看在线播放| 午夜福利成人在线免费观看| 日韩欧美国产一区二区入口| 毛片女人毛片| 久久久久国产精品人妻aⅴ院| 亚洲18禁久久av| 蜜桃亚洲精品一区二区三区| 又粗又爽又猛毛片免费看| 亚洲国产精品成人综合色| 免费在线观看日本一区| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| 网址你懂的国产日韩在线| 精品久久国产蜜桃| 男女那种视频在线观看| 在线观看一区二区三区| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费| 嫁个100分男人电影在线观看| 久久久久久久久久成人| 欧美一区二区国产精品久久精品| 亚洲人成网站高清观看| 久久99热这里只有精品18| 国产成人aa在线观看| 久久国产精品影院| 女人十人毛片免费观看3o分钟| a级一级毛片免费在线观看| 日本 av在线| 在线免费观看不下载黄p国产 | 国产欧美日韩一区二区三| 成年免费大片在线观看| 97碰自拍视频| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| av在线天堂中文字幕| 老女人水多毛片| 一级a爱片免费观看的视频| 亚洲人成电影免费在线| 日本黄色视频三级网站网址| 夜夜爽天天搞| 久久久久国产精品人妻aⅴ院| 国产一区二区亚洲精品在线观看| 国内精品久久久久精免费| av欧美777| x7x7x7水蜜桃| 亚洲精品在线美女| 日韩欧美精品免费久久 | 亚洲欧美清纯卡通| 波野结衣二区三区在线| 深爱激情五月婷婷| 亚洲欧美日韩高清在线视频| 男人舔女人下体高潮全视频| 欧美中文日本在线观看视频| 久久久久久九九精品二区国产| 在线观看午夜福利视频| 亚洲av二区三区四区| 超碰av人人做人人爽久久| 欧美一级a爱片免费观看看| 欧美bdsm另类| 国产成人欧美在线观看| 欧美又色又爽又黄视频| 狂野欧美白嫩少妇大欣赏| 亚洲国产高清在线一区二区三| 欧美成人性av电影在线观看| 国产探花极品一区二区| a级毛片免费高清观看在线播放| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩| 亚洲精品456在线播放app | 亚洲av日韩精品久久久久久密| 九色国产91popny在线| 久久精品国产自在天天线| 国内精品久久久久久久电影| 97碰自拍视频| 午夜激情欧美在线| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看| 真实男女啪啪啪动态图| 老司机深夜福利视频在线观看| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 国产真实乱freesex| 亚洲国产日韩欧美精品在线观看| 久久亚洲精品不卡| 给我免费播放毛片高清在线观看| 男人狂女人下面高潮的视频| h日本视频在线播放| 国产精品自产拍在线观看55亚洲| 亚洲人成网站高清观看| 亚洲国产精品sss在线观看| 国产真实乱freesex| 网址你懂的国产日韩在线| 我要看日韩黄色一级片| 淫妇啪啪啪对白视频| 男女下面进入的视频免费午夜| 美女 人体艺术 gogo| 日韩中文字幕欧美一区二区| 在线观看美女被高潮喷水网站 | 久久人人爽人人爽人人片va | 亚洲男人的天堂狠狠| 欧美精品啪啪一区二区三区| 五月伊人婷婷丁香| 嫩草影院入口| 亚洲av二区三区四区| 最近中文字幕高清免费大全6 | 精品福利观看| 欧美成人a在线观看| 欧美日韩瑟瑟在线播放| 99国产精品一区二区蜜桃av| 免费看光身美女| 欧美一区二区亚洲| 在线观看舔阴道视频| 欧美日韩中文字幕国产精品一区二区三区| av在线老鸭窝| 久久亚洲精品不卡| 欧美国产日韩亚洲一区| 国产精品av视频在线免费观看| 婷婷丁香在线五月| av中文乱码字幕在线| 简卡轻食公司| 国产精品综合久久久久久久免费| 精品人妻熟女av久视频| 嫩草影视91久久| 可以在线观看的亚洲视频| 精品一区二区三区人妻视频| 午夜老司机福利剧场| 一个人看的www免费观看视频| 久久6这里有精品| 亚洲色图av天堂| 最近视频中文字幕2019在线8| 高潮久久久久久久久久久不卡| 亚洲av.av天堂| 内地一区二区视频在线| 丰满的人妻完整版| 最近最新中文字幕大全电影3| 亚洲美女视频黄频| 又爽又黄a免费视频| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片 | 岛国在线免费视频观看| 成人高潮视频无遮挡免费网站| 美女xxoo啪啪120秒动态图 | 日韩高清综合在线| 动漫黄色视频在线观看| 一本一本综合久久| 三级国产精品欧美在线观看| 亚洲人成电影免费在线| 日韩精品青青久久久久久| 51国产日韩欧美| 中文字幕av成人在线电影| 欧美日韩福利视频一区二区| 男人舔奶头视频| 少妇人妻精品综合一区二区 | 亚洲欧美日韩高清专用| ponron亚洲| 最近在线观看免费完整版| 一区二区三区激情视频| 久久久国产成人免费| 999久久久精品免费观看国产| 久久久久九九精品影院| 三级国产精品欧美在线观看| 国产成人aa在线观看| 91字幕亚洲| 午夜激情福利司机影院| 亚洲自拍偷在线| 久久久国产成人精品二区| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 久久精品久久久久久噜噜老黄 | 小说图片视频综合网站| 18禁裸乳无遮挡免费网站照片| 久久香蕉精品热| 一个人观看的视频www高清免费观看| 亚洲色图av天堂| 最近最新免费中文字幕在线| 久久精品91蜜桃| 久久久色成人| 久久久久久九九精品二区国产| 能在线免费观看的黄片| 2021天堂中文幕一二区在线观| 麻豆av噜噜一区二区三区| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| av国产免费在线观看| 亚洲avbb在线观看| 国产免费av片在线观看野外av| 日本在线视频免费播放| 97超视频在线观看视频| 国产欧美日韩精品一区二区| 极品教师在线免费播放| 91在线观看av| 嫩草影院新地址| 老司机深夜福利视频在线观看| 一区二区三区四区激情视频 | 亚洲欧美日韩高清专用| 日韩欧美国产一区二区入口| 亚洲精品456在线播放app | 最近最新免费中文字幕在线| 亚洲第一区二区三区不卡| 久9热在线精品视频| 身体一侧抽搐| 免费在线观看亚洲国产| www日本黄色视频网| 亚洲国产精品久久男人天堂| 国产成年人精品一区二区| 免费人成在线观看视频色| 成人特级av手机在线观看| 亚洲无线观看免费| 免费搜索国产男女视频| 亚洲 欧美 日韩 在线 免费| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 中文字幕精品亚洲无线码一区| 人人妻,人人澡人人爽秒播| 欧美中文日本在线观看视频| 99久久精品热视频| 亚洲欧美日韩高清在线视频| or卡值多少钱| 少妇高潮的动态图| 毛片女人毛片| 国产精品久久久久久亚洲av鲁大| 又爽又黄无遮挡网站| 亚洲片人在线观看| 成人美女网站在线观看视频| or卡值多少钱| 伦理电影大哥的女人| 一区二区三区免费毛片| 国产高清视频在线播放一区| 中文字幕精品亚洲无线码一区| 日韩成人在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| 美女高潮喷水抽搐中文字幕| 国产伦精品一区二区三区四那| 麻豆国产av国片精品| 成年女人看的毛片在线观看| 午夜激情福利司机影院| 国产一区二区在线观看日韩| 又黄又爽又刺激的免费视频.| 国产一区二区激情短视频| 好看av亚洲va欧美ⅴa在| 精品免费久久久久久久清纯| 国产精品亚洲一级av第二区| 国产精品美女特级片免费视频播放器| 欧美一区二区精品小视频在线| 日本一二三区视频观看| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 国产伦精品一区二区三区四那| 国内揄拍国产精品人妻在线| 国产中年淑女户外野战色| 黄色日韩在线| 亚洲av成人av| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 国产视频内射| 亚洲专区中文字幕在线| 亚洲av免费高清在线观看| 黄色日韩在线| а√天堂www在线а√下载| 国产av麻豆久久久久久久| 男女床上黄色一级片免费看| 99热这里只有精品一区| 五月伊人婷婷丁香| 亚洲一区高清亚洲精品| 波多野结衣高清无吗| 热99re8久久精品国产| 亚洲中文字幕日韩| 一区二区三区免费毛片| 亚洲av二区三区四区| 欧美在线一区亚洲| 欧美高清成人免费视频www| 欧美黑人欧美精品刺激| av黄色大香蕉| 久久精品国产亚洲av香蕉五月| 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| 午夜老司机福利剧场| av福利片在线观看| 天天躁日日操中文字幕| 色5月婷婷丁香| 在线观看美女被高潮喷水网站 | 中文字幕人成人乱码亚洲影| 99久久成人亚洲精品观看| 国产成年人精品一区二区| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区久久| 一本综合久久免费| 一本久久中文字幕| 人人妻人人澡欧美一区二区| 日韩欧美国产在线观看| 中文字幕熟女人妻在线| 国产精品一区二区三区四区免费观看 | 一区福利在线观看| 精品国内亚洲2022精品成人| 国产高清有码在线观看视频| 精品一区二区三区人妻视频| 亚洲精品456在线播放app | 欧美色视频一区免费| 无遮挡黄片免费观看| 直男gayav资源| 国产亚洲欧美在线一区二区| 激情在线观看视频在线高清| 欧美色视频一区免费| 美女大奶头视频| 国产在线精品亚洲第一网站| 露出奶头的视频| 男人的好看免费观看在线视频| 中文字幕av成人在线电影| 欧美日韩亚洲国产一区二区在线观看| 五月玫瑰六月丁香| 伊人久久精品亚洲午夜| 日韩亚洲欧美综合| 成人国产一区最新在线观看| 精品久久久久久成人av| 亚洲国产欧美人成| 黄色日韩在线| 精品无人区乱码1区二区| 久久精品国产亚洲av香蕉五月| 国产激情偷乱视频一区二区| 欧美成人a在线观看| 久久精品人妻少妇| 高清在线国产一区| 最近视频中文字幕2019在线8| 一级黄色大片毛片| xxxwww97欧美| 亚州av有码| 国产免费男女视频| 日韩亚洲欧美综合| 一a级毛片在线观看| 国产欧美日韩精品一区二区| 久久亚洲真实| 日韩免费av在线播放| 99热这里只有精品一区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av二区三区四区| 非洲黑人性xxxx精品又粗又长| 精品一区二区免费观看| 少妇的逼水好多| 一个人观看的视频www高清免费观看| 日本免费一区二区三区高清不卡| 人妻久久中文字幕网| 欧美精品国产亚洲| 亚洲va日本ⅴa欧美va伊人久久| 麻豆国产av国片精品| 一a级毛片在线观看| 看片在线看免费视频| 狠狠狠狠99中文字幕| 国产一区二区三区视频了| 特大巨黑吊av在线直播| 国产一区二区亚洲精品在线观看| av福利片在线观看| 桃色一区二区三区在线观看| 国产成年人精品一区二区| 天天一区二区日本电影三级| 亚洲欧美日韩高清专用| 久久精品夜夜夜夜夜久久蜜豆| 看黄色毛片网站| 18禁裸乳无遮挡免费网站照片| 色在线成人网| 淫妇啪啪啪对白视频| 欧美zozozo另类| 嫩草影视91久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 中文在线观看免费www的网站| 亚洲狠狠婷婷综合久久图片| 99视频精品全部免费 在线| 久久久国产成人精品二区| АⅤ资源中文在线天堂| 国产精品一区二区三区四区免费观看 | 国产一区二区亚洲精品在线观看| 波野结衣二区三区在线| 色视频www国产| АⅤ资源中文在线天堂| 国产精品1区2区在线观看.| 99热这里只有是精品在线观看 | 特级一级黄色大片| 一本一本综合久久| 久久亚洲精品不卡| 亚洲无线观看免费| 精品一区二区三区视频在线| 在线观看一区二区三区| 国产亚洲精品av在线| 免费观看的影片在线观看| 亚洲欧美日韩无卡精品| 国内精品久久久久精免费| 99久久无色码亚洲精品果冻| 免费看a级黄色片| 亚洲三级黄色毛片| 久久午夜福利片| 此物有八面人人有两片| 观看免费一级毛片| 丝袜美腿在线中文| av在线观看视频网站免费| 亚洲三级黄色毛片| 一区二区三区免费毛片| 少妇人妻一区二区三区视频| 天堂av国产一区二区熟女人妻| a在线观看视频网站| 亚洲精品一区av在线观看| 天堂网av新在线| 色精品久久人妻99蜜桃| 亚洲国产精品999在线| 赤兔流量卡办理|