朱 赫, 紀(jì)明山
(沈陽農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,遼寧沈陽110161)
急劇增加的世界人口對(duì)食物需求加大,加上配置可耕地用于生物燃料生產(chǎn),就迫切要求提高全球農(nóng)業(yè)產(chǎn)量[1]。鑒于雜草是造成全世界農(nóng)業(yè)損失的主要原因,維持世界農(nóng)業(yè)生產(chǎn)仍然要直接依賴于化學(xué)合成除草劑防除雜草[2]。但是隨著抗除草劑作物的推廣使用,在同一塊地里連續(xù)重復(fù)使用具有相同作用模式的化學(xué)合成除草劑成為普遍現(xiàn)象,這種做法已經(jīng)產(chǎn)生了選擇壓力,引起了有些地區(qū)雜草譜發(fā)生變化,抗某些作用模式除草劑的雜草生物型替代了敏感雜草生物型[3-4]。迄今為止,全世界約有380個(gè)雜草生物型對(duì)除草劑有抗性[5]。最近20多年來,化學(xué)合成除草劑的作用模式一直保持在20多個(gè),不再有新作用模式的除草劑上市[6],因此研究和開發(fā)作用模式與現(xiàn)有除草劑完全不同的新型除草劑越來越重要。
植物病原真菌產(chǎn)生能在植物病害發(fā)展中起關(guān)鍵作用的植物毒素,從而對(duì)寄主植物產(chǎn)生不良影響。植物病原真菌毒素多數(shù)為低分子量的次生代謝產(chǎn)物,能夠產(chǎn)生特異癥狀,如萎蔫、抑制生長、褪綠、壞死和葉斑等。迄今為止,作用模式得到明確的具有除草活性的植物病原真菌毒素雖然為數(shù)不多,但是其中只有極個(gè)別與有些化學(xué)合成除草劑共享相同作用模式,而且絕大多數(shù)具有與現(xiàn)有化學(xué)合成除草劑完全不同的作用模式和獨(dú)特的分子靶標(biāo)位點(diǎn),很有希望開發(fā)成為新型除草劑。即使天然植物毒素不一定適合直接用作商業(yè)除草劑,鑒定除草劑的新作用模式和分子靶標(biāo)位點(diǎn)對(duì)于開發(fā)新型除草劑也是很有借鑒價(jià)值的[7-8]。本文重點(diǎn)介紹了目前已經(jīng)得到鑒定的具有除草活性的植物病原真菌毒素的作用模式。
已經(jīng)鑒定出作用模式的植物病原真菌毒素很少,其中主要是危害農(nóng)作物的病原真菌產(chǎn)生的植物毒素,只有少數(shù)幾個(gè)雜草病原真菌植物毒素的作用模式得到鑒定。表1為一些具有除草活性的植物病原真菌毒素的作用模式和分子靶標(biāo)位點(diǎn)。
表1 一些具有除草活性的植物病原真菌毒素的作用模式
Qiang等發(fā)現(xiàn),從惡性雜草紫莖澤蘭(Ageratinaadenophora)患病植株上分離出的互隔交鏈孢菌(Alternariaalternata)所產(chǎn)生的植物毒素AAC-毒素(AAC-toxin)具有除草活性,可廣譜防除禾本科雜草和闊葉雜草,殺草速度快,類似于百草枯[42]。利用波譜技術(shù)對(duì)AAC-toxin進(jìn)行結(jié)構(gòu)解析,鑒定AAC-toxin就是tenuazonic acid (TeA)。對(duì)其作用靶標(biāo)和殺草機(jī)理的研究結(jié)果表明,TeA 能夠抑制紫莖澤蘭葉片光合放氧速率并降低葉片表觀量子效率[9]。利用現(xiàn)代葉綠素?zé)晒饪焖僬T導(dǎo)技術(shù)、蛋白質(zhì)電泳技術(shù)、同位素標(biāo)記和競(jìng)爭(zhēng)結(jié)合方法研究發(fā)現(xiàn),該毒素能夠完全抑制光系統(tǒng)Ⅱ 電子傳遞活性,其主要作用靶標(biāo)是光系統(tǒng)Ⅱ的D1蛋白[10]。利用萊茵藻D1蛋白系列突變體和蛋白質(zhì)庫中的信息,結(jié)合經(jīng)典的光系統(tǒng)Ⅱ抑制劑類除草劑的作用靶標(biāo)和光合細(xì)菌反應(yīng)中心晶體結(jié)構(gòu)信息,確定其作用靶標(biāo)是在TeA 和QB位點(diǎn)相互作用過程中,D1蛋白上的256位氨基酸起著關(guān)鍵的作用,但其綁定行為不同于其他經(jīng)典的光系統(tǒng)Ⅱ抑制劑[11],因而首次證明TeA 是一種新型的天然光系統(tǒng)Ⅱ抑制劑。
殼單孢菌毒素糖苷配基(ascaulitoxin aglycone)是從作為雜草藜(Chenopodiumalbum)的潛在真菌除草劑進(jìn)行研究的生防菌Ascochytacaulina中得到的3個(gè)具有除草活性的代謝產(chǎn)物之一,它是一個(gè)強(qiáng)效的植物毒素[43]。Duke等采取代謝輪廓(譜)法檢測(cè)確定Ascaulitoxinaglycone對(duì)氨基酸代謝有深刻影響[12],他們將大多數(shù)氨基酸供給處理過的植株,消除了該植物毒素的影響。然而體外檢測(cè)發(fā)現(xiàn),該植物毒素沒有抑制丙氨酸轉(zhuǎn)氨酶或丙氨酸-乙醛酸轉(zhuǎn)氨酶,因此推測(cè)它可能抑制另一個(gè)轉(zhuǎn)氨酶或者一個(gè)或更多氨基酸轉(zhuǎn)運(yùn)體。
騰毒素(tentoxin)是從植物病原互隔交鏈孢菌(Alternariaalternata)得到的一個(gè)環(huán)狀四肽類化合物,它抑制葉綠體的發(fā)育過程,在表現(xiàn)型上葉綠體本身表達(dá)為褪綠組織,但tentoxin不直接影響葉綠素合成[44-45]。有2個(gè)基本過程與這個(gè)表現(xiàn)型有關(guān)聯(lián):第1個(gè)基本過程是抑制葉綠體中CF1 ATP合酶的能量傳遞[13,46],這個(gè)過程只對(duì)褪綠癥狀進(jìn)行了解釋,甚至在沒有CF1 ATP合酶活性的白色質(zhì)體中,tentoxin也能完全阻斷細(xì)胞核編碼酶多酚氧化酶(PPO)向質(zhì)體中傳輸(第2個(gè)基本過程)[47]。這2個(gè)過程的抑制似乎存在著關(guān)聯(lián),其中2個(gè)過程在tentoxin敏感植物種體內(nèi)得到抑制,而在不敏感植物種中不受影響[48],然而在密碼83處質(zhì)子ATP合酶β亞基的編碼似乎導(dǎo)致植物對(duì)tentoxin敏感[49]。在密碼83處的谷氨酸酯編碼與抗性相關(guān),而天冬氨酸編碼導(dǎo)致對(duì)tentoxin敏感。誘變?nèi)R哈衣藻將谷氨酸酯轉(zhuǎn)變成天冬氨酸導(dǎo)致從抗性變成敏感性。Holland等提出,tentoxin在葉綠素積累上通過類囊體過分激發(fā)發(fā)揮其效果[50],但這不能解釋該化合物對(duì)沒有類囊體膜的白色質(zhì)體中PPO過程的深刻影響。質(zhì)子ATP合酶β亞基連接到PPO的過程有待解釋,而正確理解這個(gè)關(guān)系會(huì)有助于解釋PPO在質(zhì)體中的作用,而酶活性就隱藏在質(zhì)體中[51-52]。因此可見,PPO在功能性葉綠體中的生理作用仍是一個(gè)未解之謎。
AAL-毒素(AAL-toxins)和伏馬菌素(fumonisins)這2個(gè)化學(xué)結(jié)構(gòu)相關(guān)的真菌代謝物都特異性地抑制植物中神經(jīng)酰胺合酶(二氫鞘氨醇N-?;D(zhuǎn)移酶)[14-15],AAL-toxins由互隔交鏈孢菌(Alternariaalternata)番茄致病變種產(chǎn)生,而fumonisins由鐮刀菌屬(fusariumspp)真菌產(chǎn)生。最初報(bào)道AAL-toxins是寄主專化性,但AAL-toxins對(duì)許多植物種都有植物毒性,fumonisins是AAL-toxins的密切化學(xué)結(jié)構(gòu)類似物。這兩類天然化合物都是神經(jīng)酰胺合酶底物的類似物[53],當(dāng)用這些抑制劑處理植物組織時(shí),鞘脂類前體及其前體衍生物濃度迅速上升到比未處理組織中見到的高出許多倍[54],隨后質(zhì)膜完整性迅速損失并遭到破壞。Gechev等通過誘導(dǎo)細(xì)胞死亡(程序化細(xì)胞死亡)尋找解釋這類毒素的作用,但甚至在低劑量下該效果也過于迅速[55-56],這個(gè)現(xiàn)象似乎不大可能起直接作用,除非在極低劑量下才行。使用神經(jīng)酰胺合酶的鞘氨醇類前體處理植物產(chǎn)生類似于抑制神經(jīng)酰胺合酶產(chǎn)生的效果[57]。鞘氨醇類前體通過質(zhì)膜功能障礙引起迅速的光依賴性細(xì)胞滲漏,鞘氨醇類化合物還可引起植物細(xì)胞中生成活性氧自由基(ROS)[58],在質(zhì)膜中迅速生成ROS會(huì)引起與細(xì)胞凋亡無關(guān)的細(xì)胞死亡,而較慢生成可引起程序化細(xì)胞死亡。
二苯醚化合物莎草素(cyperin)是從真菌Ascochytacypericola、Phomasorghina、Preussiafleischhakii中得到的植物毒性代謝物[59-61],對(duì)莎草(Cyperusrotundus)和美洲商陸(PhytolaccaAmericana)等雜草均有毒性,cyperin抑制植物烯酰(?;d體蛋白)還原酶(ENR),ENR是被稱為三氯生的化學(xué)合成二苯醚的靶標(biāo)位點(diǎn)。ENR的抑制導(dǎo)致不依賴光的細(xì)胞膜完整性被破壞[16],在高濃度時(shí),這個(gè)代謝物抑制卟啉合成中一個(gè)關(guān)鍵酶——原卟啉原氧化酶[17]。然而,不同于將這個(gè)酶作靶標(biāo)的化學(xué)合成除草劑二苯醚,cyperin的作用模式不依賴光,在黑暗中產(chǎn)生細(xì)胞膜降解??梢钥闯觯鳛槌輨?,cyperin的主要作用是植物烯酰(酰基載體蛋白)還原酶。
beticolins是從甜菜褐斑病病原真菌Cercosporabeticola中得到的一類黃色植物毒素,可以自裝配成多聚體離子通道,從而破壞細(xì)胞膜功能[18-19]。
T-毒素(T-toxins)是從玉米葉斑病病原真菌Cochiobolusheterstrophus、玉米黃葉枯病病原真菌Phyllostictamaydis、玉米小斑病病原真菌Bipolarismaydis中得到的寄主?;詥味随呙瓜┲参锒舅?。在敏感作物中通過與內(nèi)線粒體膜蛋白結(jié)合,T-toxins可抑制線粒體呼吸,導(dǎo)致氣孔形成,滲漏NAD+和其他離子,并造成線粒體膨脹[20-21]。
殼梭孢菌素(fusicoccin)是真菌fusicoccum(Phomopsis)amygdali的一個(gè)代謝產(chǎn)物,它能不可逆地活化植物質(zhì)膜H+-ATP合酶,使氣孔沒有能力關(guān)閉,隨后致死枯萎[22-23]。
Victorin C是從真菌Cochiobolusvictoriae中得到的一個(gè)寄主選擇性植物毒素[62],可引起線粒體膜電位暴跌,繼而導(dǎo)致線粒體膜轉(zhuǎn)變[24]。它還可以結(jié)合線粒體甘氨酸去羧酶復(fù)合體的P蛋白質(zhì)。這一切與程序性細(xì)胞死亡有關(guān),但是它還可以通過等離子體膜離子流作用在細(xì)胞表面上以引起超敏反應(yīng)[25]。
刺盤孢菌素(colletotrichin)是從刺盤孢屬(Colletotrichum)真菌幾個(gè)種得到的高植物毒性化合物[63]。從超微結(jié)構(gòu)上觀察,這個(gè)化合物的主要作用是破壞質(zhì)膜,并伴隨大量細(xì)胞泄漏[26]。該作用不依賴光,而且不可能用抗氧化劑逆轉(zhuǎn),表明colletotrichi可以直接影響質(zhì)膜。
zinniol最早由Starratt于1968年從百日草鏈格孢(Alternariazinniae)中獲得[64],后來又從鏈格孢屬(Alternaria)真菌其他幾個(gè)種(例如Alternariacarthami、Alternariacirsinoxia、Alternariamacrospora、Alternariaporri、Alternariasolani、Alternariatagetica)[65-66]以及向日葵黑莖病病原真菌Phomamacdonaldii[67]中得到的一個(gè)代謝產(chǎn)物。zinniol與植物原生質(zhì)體結(jié)合,并且刺激Ca2+進(jìn)入細(xì)胞[27],此外zinniol還可作用在特定類型植物鈣離子通道上。
T-2毒素(T-2 toxin)是由鐮孢屬(Fusariumspp)真菌天然生成的一個(gè)單端孢霉烯化合物,與抑制蛋白質(zhì)合成的其他單端孢霉烯類不同,在低濃度時(shí)T-2毒素還可引起植株質(zhì)膜電解質(zhì)泄漏[28]。
蛇孢菌素(ophiobolins)是從通常侵染水稻、玉米和高粱的平臍蠕孢屬(Bipolaris)和內(nèi)臍蠕孢屬(Drechslera)真菌某些種中得到的二倍半萜烯植物毒素,這個(gè)植物毒素可引起植株上許多受害癥狀,大都認(rèn)為這很大程度上是由于對(duì)質(zhì)膜的影響造成的[29]。ophiobolins對(duì)玉米根離子滲漏影響與其直接拮抗鈣調(diào)蛋白有關(guān)[30]。ophiobolins對(duì)鈣調(diào)蛋白影響引起抑制細(xì)胞核編碼蛋白質(zhì)向線粒體[31]和質(zhì)體[32]傳遞。
Herbarumins I、II、III是從蒲公英病原真菌草莖點(diǎn)霉(Phomaherbarum)發(fā)酵液中分離出的具有潛在除草活性的植物毒素,它們能抑制鈣調(diào)蛋白依賴性酶cAMP磷酸二酯酶活性[33]。
串珠鐮刀菌素(moniliformin)是從串珠鐮刀菌(Fusariummoniliforme)中得到的一個(gè)真菌植物毒素,具有植物毒性,可在分裂中期阻止玉米根分生細(xì)胞的有絲分裂[34]。moniliformin可以破壞有絲分裂紡錘體,但沒有觀察到對(duì)微管蛋白有直接影響。
正常有絲分裂以及與細(xì)胞骨架相關(guān)的其他細(xì)胞功能都需要功能肌動(dòng)蛋白絲。細(xì)胞松弛素[cytochalasins (A-H)]是幾個(gè)真菌種(如Phomaexigua和Zygosporiummasonii)的結(jié)合肌動(dòng)蛋白代謝物[35]。結(jié)合肌動(dòng)蛋白阻止肌動(dòng)蛋白聚合成絲,因此抑制需要肌動(dòng)蛋白絲的過程,如有絲分裂以及其他植物過程[36]。
HC-毒素(HC-toxin)是從玉米圓斑病真菌Cochlioboluscarbonum中得到的一個(gè)環(huán)狀四肽化合物,抑制目標(biāo)植物生長和細(xì)胞分裂[37]。HC-toxin的分子作用靶標(biāo)位點(diǎn)是組蛋白脫乙?;?HDAC)。在處理過的植株中,與染色體DNA有關(guān)的組蛋白變得超級(jí)乙酰化,這個(gè)條件似乎可阻止細(xì)胞分裂。HC-toxin還可明顯改變基因表達(dá)來危害植株。
由對(duì)決明(Sennaobtusifolia)、苘麻(Abutilontheophrasti)和一些牽牛花有強(qiáng)植物毒性的植物病原真菌腐皮鐮刀菌(Fusariumsolani)產(chǎn)生的2,5-脫水-D-葡萄糖醇(2,5-anhydro-D-glucitol)具有輕度植物毒性[69]。當(dāng)由植物磷酸化時(shí),它是果糖-1,6-二磷酸的類似物,因此抑制醣酵解中生成甘油醛-3-磷酸和磷酸二羥丙酮所需果糖-1,6-二磷酸醛縮酶的活性[40]。
從加拿大薊(Cirsiumarvense)生防菌巨腔莖點(diǎn)霉(Phomamacrostoma)得到的macrocidins (A,B)是環(huán)狀特胺酸,這種新化合物類型極有潛力作為設(shè)計(jì)新型除草劑的模板[70]。特胺酸是羥基苯丙酮酸加雙氧酶(HPPD)的一個(gè)抑制劑,然而macrocidins似乎通過不同作用模式來抑制類胡蘿卜素合成[41],產(chǎn)生八氫番茄紅素脫氫酶(類胡蘿卜素生物合成中涉及到的一個(gè)酶)輔因子質(zhì)體醌則需要HPPD活性。
在作用模式已經(jīng)得到明確的具有除草活性的植物病原真菌毒素中,絕大多數(shù)植物真菌毒素的作用模式與化學(xué)合成除草劑的作用模式并不重疊。而近些年來新獲得的絕大多數(shù)具有除草活性的雜草病原植物真菌毒素的作用模式尚未得到鑒定??梢栽O(shè)想,這些具有除草活性的雜草病原真菌植物毒素中蘊(yùn)藏著大量與化學(xué)合成除草劑作用模式完全不同的獨(dú)特作用模式和分子靶標(biāo)位點(diǎn)。而且,具有除草活性的雜草病原真菌植物毒素與作物病原真菌產(chǎn)生的植物毒素相比的優(yōu)勢(shì)在于有可能只對(duì)雜草有毒性而對(duì)作物無毒害作用,可直接用作天然除草劑防除作物田間各種惡性雜草。
就發(fā)現(xiàn)新型除草劑而言,與化學(xué)合成除草劑作用模式完全不同的獨(dú)特作用模式使得具有除草活性的植物病原真菌毒素極具吸引力,這些天然化合物有著作為天然除草劑的極大潛力。即使這些天然化合物或許沒有適于直接用作新型除草劑的生物學(xué)或理化特性,但這些天然化合物可以為開發(fā)新作用模式提供新知識(shí),并且可以作為開發(fā)具有新作用模式的化學(xué)合成新型除草劑的有用模板。
值得指出的是,將代謝組學(xué)和生理組學(xué)應(yīng)用于具有除草活性雜草病原真菌植物毒素作用模式的快速分類和鑒定工作中會(huì)對(duì)發(fā)現(xiàn)新除草劑有較大價(jià)值。
參考文獻(xiàn):
[1]Edgerton M D. Increasing crop productivity to meet global needs for feed,food,and fuel[J]. Plant Physiology,2009,149(1):7-13.
[2]Neve P,Vila-Aiub M,Roux F. Evolutionary-thinking in agricultural weed management[J]. New Phytologist,2009,184(4):783-793.
[3]Cerdeira A L,Gazziero D L,Duke S O,et al. Agricultural impacts of Glyphosate-resistant soybean cultivation in South America[J]. Journal of Agricultural and Food Chemistry,2011,59(11):5799-5807.
[4]Beckie H J. Herbicide-resistant weed management:focus on glyphosate[J]. Pest Management Science,2011,67(9):1037-1048.
[5]Heap I. International survey of herbicide resistant weeds[EB/OL]. [2014-07-01]. http://www. weedscience.com/summary/home.aspx.
[6]Duke S O. Why have no new herbicide modes of action appeared in recent years?[J]. Pest Management Science,2012,68(4):505-512.
[7]Duke S O,Dayan F E,Rimando A M,et al. Chemicals from nature for weed management[J]. Weed Science,2002,50(2):138-151.
[8]Zhang J P,Duan G F,Zhou Y J,et al. Fungal phytotoxins for weed management[J]. Allelopathy Journal,2011,27(1):1-13.
[9]Liu Y X,Xu X M,Dai X B,et al.Alternariaalternatacrofton-weed toxin:a natural inhibitor of photosystem Ⅱ inChlamydomonasreinhardtiithylakoids[J]. Journal of Agricultural and Food Chemistry,2007,55(13):5180-5185.
[10]Chen S G,Yin C Y,Dai X B,et al. Action of tenuazonic acid,a natural phytotoxin,on photosystem Ⅱ of spinach[J]. Environmental and Experimental Botany,2008,62(3):279-289.
[11]Chen S G,Strasser R J,Qiang S,et al. Tenuazonic acid,a novel aatural PSII inhibitor,impacts on photosynthetic activity by occupying the QB-binding site and inhibiting forward electron flow[C]. Beijing:Photosynthesis Research for Food,F(xiàn)uel and the Future- Advanced Topics in Science and Technology in China,2013:447-450.
[12]Duke S O,Evidente A,F(xiàn)iore M,et al. Effects of the aglycone of ascaulitoxin on amino acid metabolism inLemnapaucicostata[J]. Pesticide Biochemistry and Physiology,2011,100(1):41-50.
[13]Selman B R,Durbin R D. Evidence for a catalytic function of the coupling factor 1 protein reconstituted with chloroplast thylakoid membranes[J]. Biochimica et Biophysica acta,1978,502(1):29-37.
[14]Abbas H K,Paul R N,Riley R T,et al. Ultrastructural effects of AAL-toxin TA from the fungus Alternaria alternata on black nightshade (SolanumnigrumL.) leaf discs and correlation with biochemical measures of toxicity[J]. Toxicon,1998,36(12):1821-1832.
[15]Abbas H K,Duke S O,Jr Merrill A H,et al. Phytotoxicity of australifungin,AAL-toxins and fumonisin B1 toLemnapausicostata[J]. Phytochemistry,1998,47(8):1509-1514.
[16]Dayan F E,F(xiàn)erreira D,Wang Yan Hong,et al. A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase[J]. Plant Physiology,2008,147(3):1062-1071.
[17]Harrington P M,Singh B K,Szamosi I T,et al. Synthesis and herbicidal activity of cyperin[J]. Journal of Agricultural and Food Chemistry,1995,43(3):804-808.
[18]Goudet C,Very A A,Milat M L,et al. Magnesium ions promote assembly of channel-like structures from beticolin 0,a non-peptide fungal toxin purified fromCercosporabeticola[J]. Plant Journal,1998,14(3):359-364.
[19]Goudet C,Benitah J P,Milat M L,et al. Cluster organization and pore structure of ion channels formed by beticolin 3,a nonpeptidic fungal toxin[J]. Biophysical Journal,1999,77(6):3052-3059.
[20]Turgeon B G,Baker S E. Genetic and genomic dissection of theCochliobolusheterostrophusTox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin[J]. Advances in Genetics,2007,57:219-261.
[21]Levings Ⅲ C S,Rhoads D M,Siedow J N. Molecular interactions ofBipolarismaydisT-toxin and maize[J]. Canadian Journal of Botany,1995,73(S1):483-489.
[22]Aducci P,Marra M,F(xiàn)ogliano V,et al. Fusicoccin receptors:perception and transduction of the fusicoccin signal[J]. Journal of Experimental Botany,1995,46(291):1463-1478.
[23]Gomarasca S,Vannini C,Venegoni A,et al. A mutant ofArabidopsisthalianawith a reduced response to fusicoccin[J]. Plant Physiology,1993,103(1):165-170.
[24]Curtis M J,Wolpert T J. The victorin-induced mitochondrial permeability transition precedes cell shrinkage and biochemical markers of cell death,and shrinkage occurs without loss of membrane integrity[J]. Plant Journal,2004,38(2):244-259.
[25]Tada Y,Kusaka K,Betsuyaku S,et al. Victorin triggers programmed cell death and the defense response via interaction with a cell surface mediator[J]. Plant & Cell Physiology,2005,46(11):1787-1798.
[26]Duke S O,Gohbara M,Paul R N,et al. Colletothricin causes rapid membrane damage to plant cells[J]. Journal of Phytopathology,1992,134(4):289-305.
[27]Thuleau P,Graziana A,Rossignol M,et al. Binding of the phytotoxin zinniol stimulates the entry of calcium into plant protoplasts[J]. Proceedings of the National Academy of Sciences of the United States of America,1988,85(16):5932-5935.
[28]Iacobellis N S,Bottalico A. Effects of some trichothecenes produced byFusariumspp. on electrolyte leakage from tomato leak disk[J]. Phytopathol Medierranea,1981,20(1):129-132.
[29]Au T K,Wallace S C,Leung P C. The biology of ophioboins[J]. Life Sciences,2000,67(7):733-742.
[30]Leung P C,Taylor W A,Wang J H,et al. Role of calmodulin inhibition in the mode of action of ophiobolin A[J]. Plant Physiol,1985,77(2):303-308.
[31]Kuhn S,Bussemer J,Chigri F,et al. Calcium depletion and calmodulin inhibition affect the import of nuclear-encoded proteins into plant mitochondria[J]. The Plant Journal:for Cell and Molecular Biology,2009,58(4):694-705.
[32]Chigri F,Soll J,Vothknecht U C. Calcium regulation of chloroplast protein import[J]. Plant Journal,2005,42(6):821-831.
[33]Rivero-Cruz J F,Macías M,Cerda-García-Rojas C M,et al. A new phytotoxic nonenolide fromPhomaherbarum[J]. Journal of Natural Products,2003,66(4):511-514.
[34]Styer C H,Cutler H G. Effects of moniliformin on mitosis in maize (ZeamaysL.)[J]. Plant and Cell Physiology,1984,25(6):1077-1082.
[35]Wyss R,Tamm C,Vederas J C. Differential hydrogen exchange during biosynthesis of cytochalasins B and D[J]. Helvetica Chimica Acta,1980,63(6):1538-1541.
[36]Yang C J,Zhai Z X,Guo Y H,et al. Effects of acetylcholine,cytochalasin B and amiprophos-methyl on phloem transport in radish (Raphanussativa)[J]. Journal of Integrative Plant Biology,2007,49(4):550.
[37]Walton J D. HC-toxin[J]. Phytochemistry,2006,67(14):1406-1413.
[38]Daub M E,Hangarter R P. Light-induced production of singlet oxygen and superoxide by the fungal toxin,cercosporin[J]. Plant Physiology,1983,73(3):855-857.
[39]Liao H L,Chung K R. Genetic dissection defines the roles of elsinochrome Phytotoxin for fungal pathogenesis and conidiation of the citrus pathogenElsinoefawcettii[J]. Molecular Plant-microbe Interactions:MPMI,2008,21(4):469-479.
[40]Dayan F E,Rimando A M,Tellez M R,et al. Bioactivation of the fungal phytotoxin 2,5-anhydro-D-glucitol by glycolytic enzymes is an essential component of its mechanism of action[J]. Zeitschrift Fur Naturforschung C-A Journal of Biosciences,2002,57(7/8):645-653.
[41]Graupner P R,Gerwick B C,Siddall T L,et al. Chlorosis inducing phytotoxic metabolites:new herbicides fromPhomamacrostoma[C]//Natural products for pest management,Anaheim,California,USA:226th ACS National Meeting,2004:37-47.
[42]Qiang S,Wang L,Wei R,et al. Bioassay of the herbicidal activity of AAC-toxin produced byAlternariaalternataisolated fromAgeratinaadenophora[J]. Weed Technology,2010,24(2):197-201.
[43]Evidente A,Capasso R,Cutignano A,et al. Ascaulitoxin,a phytotoxic bis-amino acidN-glucoside fromAscochytacaulina[J]. Phytochemistry,1998,48(7):1131-1137.
[44]Halloin J M,De Zoeten G A,Walker J C. The effects of tentoxin on chlorophyll synthesis and plastid structure in cucumber and cabbage[J]. Plant Physiology,1970,45(3):310-314.
[45]Duke S O,Wickliff J L,Vaughn K C,et al. Tentoxin does not cause chlorosis in greening mung bean leaves by inhibiting photophosphorylation[J]. Physiologia Plantarum,1982,56(4):387-398.
[46]Reimer S,Selman B R. Tentoxin-induced energy-independent adenine nucleotide exchange and ATPase activity with chloroplast coupling factor-1[J]. Journal of Biological Chemistry,1978,253(20):7249-7255.
[47]Vaughn K C,Duke S O. Tentoxin stops the processing of polyphenol oxidase into an active enzyme[J]. Physiologia Plantarum,1984,60(2):257-261.
[48]Duke S O. Tentoxin effects on variable fluorescence and P515 electrochromic absorbance changes in tentoxin-sensitive and-resistant plant species[J]. Plant Science,1993,90(2):119-126.
[49]Avni A,Anderson J D,Holland N,et al. Tentoxin sensitivity of chloroplasts determined by codon 83 of beta subunit of proton-ATPase[J]. Science,1992,257(5074):1245-1247.
[50]Holland N,Evron Y,Jansen M,et al. Involvement of thylakoid overenergization in tentoxin-induced chlorosis inNicotianaspp.[J]. Plant Physiology,1997,114(3):887-892.
[51]Trebst A,Depka B. Polyphenol oxidase and photosynthesis research[J]. Photosynthesis Research,1995,46(1/2):41-44.
[52]Vaughn K C,Lax A R,Duke S O. Polyphenol oxidase:The chloroplast oxidase with no established function[J]. Physiologia Plantarum,1988,72(3):659-665.
[53]Abbas H K,Tanaka T,Duke S O,et al. Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases[J]. Plant Physiology,1994,106(3):1085-1093.
[54]Lincoln J E,Richael C,Overduin B,et al. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(23):15217-15221.
[55]Gechev T S,Gadjev I Z,Hille J. An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants[J]. Cellular and Molecular Life Sciences,2004,61(10):1185-1197.
[56]Tanaka T,Abbas H K,Duke S O. Structure-dependent phytotoxicity of fumonisins and related-compounds in a duckweed bioassay[J]. Phytochemistry,1993,33(4):779-785.
[57]Shi L H,Bielawski J,Mu J Y,et al. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death inArabidopsis[J]. Cell Research,2007,17(12):1030-1040.
[58]Brown M S,Akopiants K,Resceck D M,et al. Biosynthetic origins of the natural product,thiolactomycin:a unique and selective inhibitor of type II dissociated fatty acid synthases[J]. Journal of the American Chemical Society,2003,125(34):10166-10167.
[59]Stierle A,Upadhyay R,Strobel G. Cyperine,a phytotoxin produced byAscochytacypericola,a fungal pathogen ofCyperusrotundus[J]. Phytochemistry,1991,30(7):2191-2192.
[60]Venkatasubbaiah P,Van Dyke C G,Chilton W S. Phytotoxic metabolites ofPhomasorghina,a new foliar pathogen of pokeweed[J]. Mycologia,1992,84(5):715-723.
[61]Weber H A,Gloer J B. Interference competition among natural fungal competitors:an antifungal metabolite from the coprophilous fungusPreussiafleischhakii[J]. Journal of Natural Products,1988,51(5):879-883.
[62]Wolpert T J,Macko V,Acklin W,et al. Structure of victorin C,the major host-selective toxin fromCochliobolusvictoriae[J]. Experientia,1985,41(12):1524-1529.
[63]Gohbara M,Kosuge Y,Yamasaki S,et al. Isolation,structures and biological activities of colletotrichins,phytototoxic substances fromColletotrichumnicotianae[J]. Agricultural and Biological Chemistry,1978,42(5):1037-1043.
[64]Starratt A N. Zinniol:a major metabolite ofAlternariazinniae[J]. Canadian Journal of Chemistry,1968,46(5):767-770.
[65]Cotty P J,Misaghi I J. Zinniol production byAlternariaspecies[J]. Phytopathology,1984,74(7):785-788.
[66]Berestetskii A O,Yuzikhin O S,Katkova A S,et al. Isolation,identification,and characteristics of the phytotoxin produced by the fungusAlternariacirsinoxia[J]. Applied Biochemistry and Microbiology,2010,46(1):75-79.
[67]Sugawara F,Strobel G. Zinniol,a phytotoxin,is produced byPhomamacdonaldii[J]. Plant Science,1986,43(1):19-23.
[68]Daub M E. The fungal photosensitizer cercosporin and its role in plant disease[J].Amer Chem Soc Symp Ser,1987,339:271-280.
[69]Tanaka T,Hanato K,Watanabe M,et al. Isolation,purification and identification of 2,5-anhydro-D-glucitol as a phytotoxin fromFusariumsolanii[J]. Journal of Natural Toxins,1996,5(3):317-329.
[70]Graupner P R,Carr A,Clancy E,et al. The macrocidins:Novel cyclic tetramic acids with herbicidal activity produced byPhomamacrostoma[J]. Journal of Natural Products,2003,66(12):1558-1561.