羅白春
【課前思考】
1.研究教材
“分?jǐn)?shù)的基本性質(zhì)”是約分和通分的基礎(chǔ),而約分、通分又是分?jǐn)?shù)四則運(yùn)算的重要基礎(chǔ),因此,理解“分?jǐn)?shù)的基本性質(zhì)”顯得尤為重要。根據(jù)分?jǐn)?shù)與除法的關(guān)系和商不變的性質(zhì),學(xué)生不難推斷出分?jǐn)?shù)也有“商不變”這樣的性質(zhì),因此筆者把學(xué)生的學(xué)習(xí)重點(diǎn)定位在自主建構(gòu)知識(shí)的基礎(chǔ)上,通過核心問題建立了“猜想—驗(yàn)證—應(yīng)用”的學(xué)習(xí)模式。
在教學(xué)實(shí)踐中,筆者先通過故事情境引入該課的學(xué)習(xí)模式,然后通過分?jǐn)?shù)與除法的關(guān)系引導(dǎo)學(xué)生將新舊知識(shí)做溝通,當(dāng)學(xué)生得出分?jǐn)?shù)的分子、分母同時(shí)乘或除以同一個(gè)數(shù)(0除外),分?jǐn)?shù)的大小不變之后,再結(jié)合商不變的性質(zhì)和分?jǐn)?shù)的意義深入理解,把知識(shí)融會(huì)貫通。整個(gè)教學(xué)過程注重讓學(xué)生經(jīng)歷知識(shí)探究的過程,使學(xué)生知道這些知識(shí)是如何被發(fā)現(xiàn)的,結(jié)論是如何獲得的,體現(xiàn)了“方法比知識(shí)更重要”這一教學(xué)價(jià)值觀,構(gòu)建了新的教學(xué)模式。
2.核心問題
問題是課堂的靈魂。在本課的教學(xué)過程中,筆者設(shè)計(jì)了兩個(gè)核心問題貫穿全課:(1)“除法有商不變的性質(zhì),根據(jù)分?jǐn)?shù)與除法的關(guān)系,你能做出怎樣的猜想?”該問題的提出旨在讓學(xué)生有所質(zhì)疑,從而產(chǎn)生驗(yàn)證的需求,引向?qū)嶒?yàn)。(2)“你打算用什么方法驗(yàn)證自己的猜想是否正確?”該問題的提出,旨在引導(dǎo)學(xué)生在驗(yàn)證猜想的過程中明確分?jǐn)?shù)的基本性質(zhì),獲得基本活動(dòng)經(jīng)驗(yàn)的同時(shí)領(lǐng)悟基本的數(shù)學(xué)思想。對于這個(gè)核心問題,筆者將引導(dǎo)學(xué)生對實(shí)驗(yàn)范例進(jìn)行觀察與反思,繼而提出新的問題,培養(yǎng)學(xué)生的問題意識(shí)。
【課堂實(shí)錄】
一、故事引入
師出示英國醫(yī)學(xué)家亞歷山大·弗萊明教授發(fā)現(xiàn)青霉素的故事(略)。
師生共同總結(jié)出:科學(xué)家一般都要經(jīng)歷“猜想—驗(yàn)證—應(yīng)用”的過程來開展工作,數(shù)學(xué)學(xué)習(xí)也要有這樣的過程。
(設(shè)計(jì)意圖:名人故事是學(xué)生比較喜歡的。課堂伊始,通過一個(gè)簡短的小故事讓學(xué)生從中領(lǐng)悟“猜想—驗(yàn)證—應(yīng)用”的科學(xué)研究過程,為學(xué)生的主動(dòng)探究明確了思路。)
二、核心問題,激發(fā)猜想
師:老師手中的信封里有一個(gè)數(shù),不是整數(shù)也不是小數(shù),你猜是一個(gè)什么數(shù)?
生:分?jǐn)?shù)(師出示:)
師:根據(jù)這個(gè)分?jǐn)?shù),你能寫出一個(gè)和它有關(guān)的除法算式嗎?你是怎樣想的?
生:1÷4,我是根據(jù)分?jǐn)?shù)與除法的關(guān)系想到的。
師:看著這個(gè)1÷4的算式,你能說出一道與它的商相等的除法算式嗎?你是怎樣想的?
學(xué)生說出一系列與1÷4結(jié)果相等的除法算式:2÷8、4÷16、8÷32。
師:你是怎樣想到這些算式的?
生:根據(jù)商不變的性質(zhì)找到的。
師提出核心問題:分?jǐn)?shù)與除法有這樣的關(guān)系,除法又有商不變的性質(zhì),由此你有怎樣的猜想?
學(xué)生獨(dú)立思考后總結(jié)猜想:分?jǐn)?shù)的分子和分母同時(shí)乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
教師追問:為什么這里也要強(qiáng)調(diào)0除外。
生:因?yàn)槌龜?shù)不能是0,而且分母也不能是0。
(設(shè)計(jì)意圖:蘇霍姆林斯基說過:“在人的心靈深處,總有一種根深蒂固的需要,這就是希望自己是一個(gè)發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界里這種需要尤其強(qiáng)烈。”在學(xué)生根據(jù)分?jǐn)?shù)與除法的關(guān)系想到=1÷4后,又根據(jù)商不變的性質(zhì)想到一系列商相等的除法算式。這時(shí)教師通過核心問題引領(lǐng)學(xué)生初步猜想出分?jǐn)?shù)的相關(guān)特征。這樣,既滿足了學(xué)生的探索欲望,又培養(yǎng)了學(xué)生主動(dòng)探索知識(shí)的能力,同時(shí)讓學(xué)生感受到“比較”“變與不變”等數(shù)學(xué)思想方法。)
三、核心問題,引導(dǎo)驗(yàn)證
師提出第二個(gè)核心問題:你打算用什么方法驗(yàn)證自己的猜想是否正確?大家可以利用老師為大家提供的材料盒里的材料進(jìn)行驗(yàn)證。
第一小組出示實(shí)驗(yàn)報(bào)告并匯報(bào):
我們將前面的除法算式分別用分?jǐn)?shù)表示商,因?yàn)?÷4=2÷8=4÷16=8÷32,所以===,的分子、分母分別乘2、4、8就得到了、、。所以我們的猜想成立。
第二小組出示實(shí)驗(yàn)報(bào)告并匯報(bào):
我們用手中的正方形根據(jù)分?jǐn)?shù)的意義來驗(yàn)證我們的猜想。對折正方形,將其中一份涂色,得到,繼續(xù)對折,還能得到與相等的、、。這些分?jǐn)?shù)的分子、分母是這樣變化的(出示課本61頁例題2的填空,如下)。
所以我們的猜想是正確的。
師小結(jié):這個(gè)結(jié)論是分?jǐn)?shù)中的一個(gè)重要性質(zhì),叫作分?jǐn)?shù)的基本性質(zhì)。
板書課題:分?jǐn)?shù)的基本性質(zhì)。
(設(shè)計(jì)意圖:學(xué)生通過對“===”的探究,初步歸納概括出的分?jǐn)?shù)的基本性質(zhì),是否具有正確性和普遍性有待于進(jìn)一步的驗(yàn)證,教師通過提問適時(shí)引導(dǎo)學(xué)生進(jìn)行舉例,全方位、多角度地證明了結(jié)論的正確性和普遍性,進(jìn)一步鞏固加深學(xué)生對分?jǐn)?shù)基本性質(zhì)的理解和掌握,培養(yǎng)了學(xué)生科學(xué)的學(xué)習(xí)方法、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,提高了學(xué)生自主探究的學(xué)習(xí)能力。)
四、思考與運(yùn)用
師:我們經(jīng)過猜想、驗(yàn)證了分?jǐn)?shù)的基本性質(zhì),下面我們就來應(yīng)用。你能說說一個(gè)分?jǐn)?shù)和它相等的分?jǐn)?shù)有多少個(gè)?
生:無數(shù)個(gè)。
師:一個(gè)自然數(shù)能寫出與它相等的自然數(shù)嗎?
生:不能。
師:這就是分?jǐn)?shù)與自然數(shù)的不同。
師:本節(jié)課我們是怎樣發(fā)現(xiàn)分?jǐn)?shù)的基本性質(zhì)的?
生:我們是通過分?jǐn)?shù)與除法的關(guān)系猜想出來的,然后再用舉例、折一折的方法驗(yàn)證我們的猜想是正確的。
課后思考:分?jǐn)?shù)的基本性質(zhì)在生活和數(shù)學(xué)中有哪些應(yīng)用?
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生回顧所學(xué)知識(shí)和基本技能,反思學(xué)習(xí)過程,不僅交流了知識(shí)技能方面的收獲,還著重讓學(xué)生談?wù)剬W(xué)習(xí)方法、情感態(tài)度方面的收獲,有助于學(xué)生內(nèi)化、優(yōu)化認(rèn)知結(jié)構(gòu),感悟探究方法和數(shù)學(xué)思想,體驗(yàn)主動(dòng)探究獲取知識(shí)的愉悅,增強(qiáng)學(xué)習(xí)的動(dòng)力和信心。)
(江蘇省南京市溧水區(qū)和鳳小學(xué) 211200)endprint
【課前思考】
1.研究教材
“分?jǐn)?shù)的基本性質(zhì)”是約分和通分的基礎(chǔ),而約分、通分又是分?jǐn)?shù)四則運(yùn)算的重要基礎(chǔ),因此,理解“分?jǐn)?shù)的基本性質(zhì)”顯得尤為重要。根據(jù)分?jǐn)?shù)與除法的關(guān)系和商不變的性質(zhì),學(xué)生不難推斷出分?jǐn)?shù)也有“商不變”這樣的性質(zhì),因此筆者把學(xué)生的學(xué)習(xí)重點(diǎn)定位在自主建構(gòu)知識(shí)的基礎(chǔ)上,通過核心問題建立了“猜想—驗(yàn)證—應(yīng)用”的學(xué)習(xí)模式。
在教學(xué)實(shí)踐中,筆者先通過故事情境引入該課的學(xué)習(xí)模式,然后通過分?jǐn)?shù)與除法的關(guān)系引導(dǎo)學(xué)生將新舊知識(shí)做溝通,當(dāng)學(xué)生得出分?jǐn)?shù)的分子、分母同時(shí)乘或除以同一個(gè)數(shù)(0除外),分?jǐn)?shù)的大小不變之后,再結(jié)合商不變的性質(zhì)和分?jǐn)?shù)的意義深入理解,把知識(shí)融會(huì)貫通。整個(gè)教學(xué)過程注重讓學(xué)生經(jīng)歷知識(shí)探究的過程,使學(xué)生知道這些知識(shí)是如何被發(fā)現(xiàn)的,結(jié)論是如何獲得的,體現(xiàn)了“方法比知識(shí)更重要”這一教學(xué)價(jià)值觀,構(gòu)建了新的教學(xué)模式。
2.核心問題
問題是課堂的靈魂。在本課的教學(xué)過程中,筆者設(shè)計(jì)了兩個(gè)核心問題貫穿全課:(1)“除法有商不變的性質(zhì),根據(jù)分?jǐn)?shù)與除法的關(guān)系,你能做出怎樣的猜想?”該問題的提出旨在讓學(xué)生有所質(zhì)疑,從而產(chǎn)生驗(yàn)證的需求,引向?qū)嶒?yàn)。(2)“你打算用什么方法驗(yàn)證自己的猜想是否正確?”該問題的提出,旨在引導(dǎo)學(xué)生在驗(yàn)證猜想的過程中明確分?jǐn)?shù)的基本性質(zhì),獲得基本活動(dòng)經(jīng)驗(yàn)的同時(shí)領(lǐng)悟基本的數(shù)學(xué)思想。對于這個(gè)核心問題,筆者將引導(dǎo)學(xué)生對實(shí)驗(yàn)范例進(jìn)行觀察與反思,繼而提出新的問題,培養(yǎng)學(xué)生的問題意識(shí)。
【課堂實(shí)錄】
一、故事引入
師出示英國醫(yī)學(xué)家亞歷山大·弗萊明教授發(fā)現(xiàn)青霉素的故事(略)。
師生共同總結(jié)出:科學(xué)家一般都要經(jīng)歷“猜想—驗(yàn)證—應(yīng)用”的過程來開展工作,數(shù)學(xué)學(xué)習(xí)也要有這樣的過程。
(設(shè)計(jì)意圖:名人故事是學(xué)生比較喜歡的。課堂伊始,通過一個(gè)簡短的小故事讓學(xué)生從中領(lǐng)悟“猜想—驗(yàn)證—應(yīng)用”的科學(xué)研究過程,為學(xué)生的主動(dòng)探究明確了思路。)
二、核心問題,激發(fā)猜想
師:老師手中的信封里有一個(gè)數(shù),不是整數(shù)也不是小數(shù),你猜是一個(gè)什么數(shù)?
生:分?jǐn)?shù)(師出示:)
師:根據(jù)這個(gè)分?jǐn)?shù),你能寫出一個(gè)和它有關(guān)的除法算式嗎?你是怎樣想的?
生:1÷4,我是根據(jù)分?jǐn)?shù)與除法的關(guān)系想到的。
師:看著這個(gè)1÷4的算式,你能說出一道與它的商相等的除法算式嗎?你是怎樣想的?
學(xué)生說出一系列與1÷4結(jié)果相等的除法算式:2÷8、4÷16、8÷32。
師:你是怎樣想到這些算式的?
生:根據(jù)商不變的性質(zhì)找到的。
師提出核心問題:分?jǐn)?shù)與除法有這樣的關(guān)系,除法又有商不變的性質(zhì),由此你有怎樣的猜想?
學(xué)生獨(dú)立思考后總結(jié)猜想:分?jǐn)?shù)的分子和分母同時(shí)乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
教師追問:為什么這里也要強(qiáng)調(diào)0除外。
生:因?yàn)槌龜?shù)不能是0,而且分母也不能是0。
(設(shè)計(jì)意圖:蘇霍姆林斯基說過:“在人的心靈深處,總有一種根深蒂固的需要,這就是希望自己是一個(gè)發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界里這種需要尤其強(qiáng)烈?!痹趯W(xué)生根據(jù)分?jǐn)?shù)與除法的關(guān)系想到=1÷4后,又根據(jù)商不變的性質(zhì)想到一系列商相等的除法算式。這時(shí)教師通過核心問題引領(lǐng)學(xué)生初步猜想出分?jǐn)?shù)的相關(guān)特征。這樣,既滿足了學(xué)生的探索欲望,又培養(yǎng)了學(xué)生主動(dòng)探索知識(shí)的能力,同時(shí)讓學(xué)生感受到“比較”“變與不變”等數(shù)學(xué)思想方法。)
三、核心問題,引導(dǎo)驗(yàn)證
師提出第二個(gè)核心問題:你打算用什么方法驗(yàn)證自己的猜想是否正確?大家可以利用老師為大家提供的材料盒里的材料進(jìn)行驗(yàn)證。
第一小組出示實(shí)驗(yàn)報(bào)告并匯報(bào):
我們將前面的除法算式分別用分?jǐn)?shù)表示商,因?yàn)?÷4=2÷8=4÷16=8÷32,所以===,的分子、分母分別乘2、4、8就得到了、、。所以我們的猜想成立。
第二小組出示實(shí)驗(yàn)報(bào)告并匯報(bào):
我們用手中的正方形根據(jù)分?jǐn)?shù)的意義來驗(yàn)證我們的猜想。對折正方形,將其中一份涂色,得到,繼續(xù)對折,還能得到與相等的、、。這些分?jǐn)?shù)的分子、分母是這樣變化的(出示課本61頁例題2的填空,如下)。
所以我們的猜想是正確的。
師小結(jié):這個(gè)結(jié)論是分?jǐn)?shù)中的一個(gè)重要性質(zhì),叫作分?jǐn)?shù)的基本性質(zhì)。
板書課題:分?jǐn)?shù)的基本性質(zhì)。
(設(shè)計(jì)意圖:學(xué)生通過對“===”的探究,初步歸納概括出的分?jǐn)?shù)的基本性質(zhì),是否具有正確性和普遍性有待于進(jìn)一步的驗(yàn)證,教師通過提問適時(shí)引導(dǎo)學(xué)生進(jìn)行舉例,全方位、多角度地證明了結(jié)論的正確性和普遍性,進(jìn)一步鞏固加深學(xué)生對分?jǐn)?shù)基本性質(zhì)的理解和掌握,培養(yǎng)了學(xué)生科學(xué)的學(xué)習(xí)方法、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,提高了學(xué)生自主探究的學(xué)習(xí)能力。)
四、思考與運(yùn)用
師:我們經(jīng)過猜想、驗(yàn)證了分?jǐn)?shù)的基本性質(zhì),下面我們就來應(yīng)用。你能說說一個(gè)分?jǐn)?shù)和它相等的分?jǐn)?shù)有多少個(gè)?
生:無數(shù)個(gè)。
師:一個(gè)自然數(shù)能寫出與它相等的自然數(shù)嗎?
生:不能。
師:這就是分?jǐn)?shù)與自然數(shù)的不同。
師:本節(jié)課我們是怎樣發(fā)現(xiàn)分?jǐn)?shù)的基本性質(zhì)的?
生:我們是通過分?jǐn)?shù)與除法的關(guān)系猜想出來的,然后再用舉例、折一折的方法驗(yàn)證我們的猜想是正確的。
課后思考:分?jǐn)?shù)的基本性質(zhì)在生活和數(shù)學(xué)中有哪些應(yīng)用?
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生回顧所學(xué)知識(shí)和基本技能,反思學(xué)習(xí)過程,不僅交流了知識(shí)技能方面的收獲,還著重讓學(xué)生談?wù)剬W(xué)習(xí)方法、情感態(tài)度方面的收獲,有助于學(xué)生內(nèi)化、優(yōu)化認(rèn)知結(jié)構(gòu),感悟探究方法和數(shù)學(xué)思想,體驗(yàn)主動(dòng)探究獲取知識(shí)的愉悅,增強(qiáng)學(xué)習(xí)的動(dòng)力和信心。)
(江蘇省南京市溧水區(qū)和鳳小學(xué) 211200)endprint
【課前思考】
1.研究教材
“分?jǐn)?shù)的基本性質(zhì)”是約分和通分的基礎(chǔ),而約分、通分又是分?jǐn)?shù)四則運(yùn)算的重要基礎(chǔ),因此,理解“分?jǐn)?shù)的基本性質(zhì)”顯得尤為重要。根據(jù)分?jǐn)?shù)與除法的關(guān)系和商不變的性質(zhì),學(xué)生不難推斷出分?jǐn)?shù)也有“商不變”這樣的性質(zhì),因此筆者把學(xué)生的學(xué)習(xí)重點(diǎn)定位在自主建構(gòu)知識(shí)的基礎(chǔ)上,通過核心問題建立了“猜想—驗(yàn)證—應(yīng)用”的學(xué)習(xí)模式。
在教學(xué)實(shí)踐中,筆者先通過故事情境引入該課的學(xué)習(xí)模式,然后通過分?jǐn)?shù)與除法的關(guān)系引導(dǎo)學(xué)生將新舊知識(shí)做溝通,當(dāng)學(xué)生得出分?jǐn)?shù)的分子、分母同時(shí)乘或除以同一個(gè)數(shù)(0除外),分?jǐn)?shù)的大小不變之后,再結(jié)合商不變的性質(zhì)和分?jǐn)?shù)的意義深入理解,把知識(shí)融會(huì)貫通。整個(gè)教學(xué)過程注重讓學(xué)生經(jīng)歷知識(shí)探究的過程,使學(xué)生知道這些知識(shí)是如何被發(fā)現(xiàn)的,結(jié)論是如何獲得的,體現(xiàn)了“方法比知識(shí)更重要”這一教學(xué)價(jià)值觀,構(gòu)建了新的教學(xué)模式。
2.核心問題
問題是課堂的靈魂。在本課的教學(xué)過程中,筆者設(shè)計(jì)了兩個(gè)核心問題貫穿全課:(1)“除法有商不變的性質(zhì),根據(jù)分?jǐn)?shù)與除法的關(guān)系,你能做出怎樣的猜想?”該問題的提出旨在讓學(xué)生有所質(zhì)疑,從而產(chǎn)生驗(yàn)證的需求,引向?qū)嶒?yàn)。(2)“你打算用什么方法驗(yàn)證自己的猜想是否正確?”該問題的提出,旨在引導(dǎo)學(xué)生在驗(yàn)證猜想的過程中明確分?jǐn)?shù)的基本性質(zhì),獲得基本活動(dòng)經(jīng)驗(yàn)的同時(shí)領(lǐng)悟基本的數(shù)學(xué)思想。對于這個(gè)核心問題,筆者將引導(dǎo)學(xué)生對實(shí)驗(yàn)范例進(jìn)行觀察與反思,繼而提出新的問題,培養(yǎng)學(xué)生的問題意識(shí)。
【課堂實(shí)錄】
一、故事引入
師出示英國醫(yī)學(xué)家亞歷山大·弗萊明教授發(fā)現(xiàn)青霉素的故事(略)。
師生共同總結(jié)出:科學(xué)家一般都要經(jīng)歷“猜想—驗(yàn)證—應(yīng)用”的過程來開展工作,數(shù)學(xué)學(xué)習(xí)也要有這樣的過程。
(設(shè)計(jì)意圖:名人故事是學(xué)生比較喜歡的。課堂伊始,通過一個(gè)簡短的小故事讓學(xué)生從中領(lǐng)悟“猜想—驗(yàn)證—應(yīng)用”的科學(xué)研究過程,為學(xué)生的主動(dòng)探究明確了思路。)
二、核心問題,激發(fā)猜想
師:老師手中的信封里有一個(gè)數(shù),不是整數(shù)也不是小數(shù),你猜是一個(gè)什么數(shù)?
生:分?jǐn)?shù)(師出示:)
師:根據(jù)這個(gè)分?jǐn)?shù),你能寫出一個(gè)和它有關(guān)的除法算式嗎?你是怎樣想的?
生:1÷4,我是根據(jù)分?jǐn)?shù)與除法的關(guān)系想到的。
師:看著這個(gè)1÷4的算式,你能說出一道與它的商相等的除法算式嗎?你是怎樣想的?
學(xué)生說出一系列與1÷4結(jié)果相等的除法算式:2÷8、4÷16、8÷32。
師:你是怎樣想到這些算式的?
生:根據(jù)商不變的性質(zhì)找到的。
師提出核心問題:分?jǐn)?shù)與除法有這樣的關(guān)系,除法又有商不變的性質(zhì),由此你有怎樣的猜想?
學(xué)生獨(dú)立思考后總結(jié)猜想:分?jǐn)?shù)的分子和分母同時(shí)乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
教師追問:為什么這里也要強(qiáng)調(diào)0除外。
生:因?yàn)槌龜?shù)不能是0,而且分母也不能是0。
(設(shè)計(jì)意圖:蘇霍姆林斯基說過:“在人的心靈深處,總有一種根深蒂固的需要,這就是希望自己是一個(gè)發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界里這種需要尤其強(qiáng)烈?!痹趯W(xué)生根據(jù)分?jǐn)?shù)與除法的關(guān)系想到=1÷4后,又根據(jù)商不變的性質(zhì)想到一系列商相等的除法算式。這時(shí)教師通過核心問題引領(lǐng)學(xué)生初步猜想出分?jǐn)?shù)的相關(guān)特征。這樣,既滿足了學(xué)生的探索欲望,又培養(yǎng)了學(xué)生主動(dòng)探索知識(shí)的能力,同時(shí)讓學(xué)生感受到“比較”“變與不變”等數(shù)學(xué)思想方法。)
三、核心問題,引導(dǎo)驗(yàn)證
師提出第二個(gè)核心問題:你打算用什么方法驗(yàn)證自己的猜想是否正確?大家可以利用老師為大家提供的材料盒里的材料進(jìn)行驗(yàn)證。
第一小組出示實(shí)驗(yàn)報(bào)告并匯報(bào):
我們將前面的除法算式分別用分?jǐn)?shù)表示商,因?yàn)?÷4=2÷8=4÷16=8÷32,所以===,的分子、分母分別乘2、4、8就得到了、、。所以我們的猜想成立。
第二小組出示實(shí)驗(yàn)報(bào)告并匯報(bào):
我們用手中的正方形根據(jù)分?jǐn)?shù)的意義來驗(yàn)證我們的猜想。對折正方形,將其中一份涂色,得到,繼續(xù)對折,還能得到與相等的、、。這些分?jǐn)?shù)的分子、分母是這樣變化的(出示課本61頁例題2的填空,如下)。
所以我們的猜想是正確的。
師小結(jié):這個(gè)結(jié)論是分?jǐn)?shù)中的一個(gè)重要性質(zhì),叫作分?jǐn)?shù)的基本性質(zhì)。
板書課題:分?jǐn)?shù)的基本性質(zhì)。
(設(shè)計(jì)意圖:學(xué)生通過對“===”的探究,初步歸納概括出的分?jǐn)?shù)的基本性質(zhì),是否具有正確性和普遍性有待于進(jìn)一步的驗(yàn)證,教師通過提問適時(shí)引導(dǎo)學(xué)生進(jìn)行舉例,全方位、多角度地證明了結(jié)論的正確性和普遍性,進(jìn)一步鞏固加深學(xué)生對分?jǐn)?shù)基本性質(zhì)的理解和掌握,培養(yǎng)了學(xué)生科學(xué)的學(xué)習(xí)方法、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,提高了學(xué)生自主探究的學(xué)習(xí)能力。)
四、思考與運(yùn)用
師:我們經(jīng)過猜想、驗(yàn)證了分?jǐn)?shù)的基本性質(zhì),下面我們就來應(yīng)用。你能說說一個(gè)分?jǐn)?shù)和它相等的分?jǐn)?shù)有多少個(gè)?
生:無數(shù)個(gè)。
師:一個(gè)自然數(shù)能寫出與它相等的自然數(shù)嗎?
生:不能。
師:這就是分?jǐn)?shù)與自然數(shù)的不同。
師:本節(jié)課我們是怎樣發(fā)現(xiàn)分?jǐn)?shù)的基本性質(zhì)的?
生:我們是通過分?jǐn)?shù)與除法的關(guān)系猜想出來的,然后再用舉例、折一折的方法驗(yàn)證我們的猜想是正確的。
課后思考:分?jǐn)?shù)的基本性質(zhì)在生活和數(shù)學(xué)中有哪些應(yīng)用?
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生回顧所學(xué)知識(shí)和基本技能,反思學(xué)習(xí)過程,不僅交流了知識(shí)技能方面的收獲,還著重讓學(xué)生談?wù)剬W(xué)習(xí)方法、情感態(tài)度方面的收獲,有助于學(xué)生內(nèi)化、優(yōu)化認(rèn)知結(jié)構(gòu),感悟探究方法和數(shù)學(xué)思想,體驗(yàn)主動(dòng)探究獲取知識(shí)的愉悅,增強(qiáng)學(xué)習(xí)的動(dòng)力和信心。)
(江蘇省南京市溧水區(qū)和鳳小學(xué) 211200)endprint