• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid Evaluation for Feed-axis Lubrication Condition Based on Soft Sensor

    2014-08-12 05:39:04ZHOUYuqing周玉清MUYongmin母勇民LIUJianshu劉建書ZHANGYun

    ZHOU Yu-qing (周玉清), MU Yong-min(母勇民), LIU Jian-shu(劉建書),2, ZHANG Yun (章 云)

    1 Xi’an Institute of Modern Control Technology, Xi’an 710069, China 2 Department of Automation, Tsinghua University, Beijing 100084, China 3 School of Mechanical Engineering, Xidian University, Xi’an 710071, China

    Rapid Evaluation for Feed-axis Lubrication Condition Based on Soft Sensor

    ZHOU Yu-qing (周玉清)1,2*, MU Yong-min(母勇民)1, LIU Jian-shu(劉建書)1,2, ZHANG Yun (章 云)3

    1Xi’anInstituteofModernControlTechnology,Xi’an710069,China2DepartmentofAutomation,TsinghuaUniversity,Beijing100084,China3SchoolofMechanicalEngineering,XidianUniversity,Xi’an710071,China

    Stribeck effect is regarded as the most important feed-axis friction characteristics. According to the relationship between friction and lubrication, a rapid technology for feed-axis lubrication condition evaluation of computer numerical control (CNC) machine tools based on soft sensor is proposed. To obtain its state information, the static friction force, Coulomb friction force, and viscous coefficient are used as the key parameters of the soft sensor for tread analysis. Then the various amplitude and velocity triangular wave test curve, and a precise nonlinear model identification method are presented. The results of the experiments analysis show that this method is feasible and reliable for evaluating feed-axis lubrication condition, which lays the foundation for on-line condition monitoring and reliability evaluation for feed-axis lubrication of machine tools.

    machinetoolfeedaxis;softsensor;lubricationcondition;Stribeckeffect;reliability

    Introduction

    Feed-axis lubrication condition has a great influence on the reliability of computer numerical control (CNC) machine tool.The feed-axis mechanical parts will suffer from some problems, such as pitting, corrosion, wear, and crack in the bad lubrication state. As a result, serious Stick-slip phenomenon will be produced under low-speed and heavy-load condition[1]. And the bad lubrication state may lead to the part oscillations of feed-axis control system. Besides, it will result in motion error or accident standing, and shortens life expectancy[2]. Therefore, it is necessary to investigate on rapid technology for feed-axis lubrication condition evaluation of machine tool, and then estimate the lubrication state of the mechanical parts correctly[3-7].

    To solve the above-mentioned problems, the information of lubrication state should be known in advance. Now, some sensors such as vibration, temperature, acoustic emission (AE), and oil sample have been used to obtain the lubrication state information[8]. These methods can work accurately based on the technology of Ferro graphic analysis, spectra analysis, physical and chemical properties of oil samples, magnetic Cypriot technology, image processing,etc. However, they still possess such inherent limitations as high cost, inconvenience mounted, and high bandwidth. Thus, it is not proper to be used as the lubrication state observation method of machine tool feed axis. Soft sensor has been widely used in industry fields[9]. And Stribeck effect is regarded as the important friction characteristics of feed axis. According to its relationship between the friction and lubrication, Coulomb friction force and viscous coefficient can be used as the key parameters of the soft sensor for tread analysis. Besides, these key parameters can be identified by the information coming from the built in-sensors such as motor current hall sensors and encoder[10]. And it is simple, and no extra sensors are needed, which facilitates online monitoring of feed-axis state through net. As a result, a kind of rapid technology for feed-axis lubrication condition evaluation of CNC machine tool based on soft sensor is proposed in this text.

    1 Test Principle

    1.1 Stribeck effect

    Stribeck effect consists of three phases: boundary friction, mixed friction, and viscous friction. According to Stribeck model, the relationship between the friction and velocity in the steady-state movement can be expressed as Eq. (1).

    (1)

    wherev,Fc,Fs,σ, andvsare instantaneous velocity, Coulomb friction, static friction, viscous friction coefficient, and Stribeck boundary velocity, respectively.

    1.2 Feed-axis lubrication condition evaluation principle

    Stribeck effect is used mainly in the field of high-precision CNC machine tool nonlinear control and seldom to assess the state of lubrication[11-14]. However, some experimental results show that the greater the value of static friction force is, the worse the feed-axis lubrication condition will be, and the bigger the Stick-slip error will be; the smaller the value of viscous friction coefficient is, the better the feed-axis lubrication condition will be, and the few the Stick-slip error will be[15]. Therefore, if Stribeck model parameters are obtained, then the static friction, Coulomb friction, and viscous friction coefficient can be used as the key parameters of the soft sensor (see Eq. (2) and Figs.1 and 2) for trend analysis to reflect feed-axis lubrication condition, which can help the user to make relevant decisions.

    Fig.1 Stribeck model

    Fig.2 Tread analysis of lubrication state

    (2)

    whereσt i,Fcti, andFstiare the measured values at the certain time, respectively.

    2 Parameters Identification of Soft Sensor

    Evidently, parameters identification of the soft sensor is the important step for the tread analysis of feed-axis lubrication state, which is on the basis of the obtained state information.

    2.1 Methods to obtain state information

    Because the feed axis consists of some built-in sensors such as motor encoder, hall current sensors, and grid scale, the state information can be obtained through the special original equipment manufacturer (OEM) soft or the special testing system.

    For the feed-axis control systems including servo amplifiers and servo motor, the mathematical torque can be simplified as follows:

    (3)

    whereT,J, andLare alternating current (AC) servo motor output torque, the total moment of inertia, and the pitch of the ballscrew, respectively. The total disturbance torque is composed of two parts: cutting torqueτcand friction torqueτf.

    T=τf.

    (4)

    As shown in Eq. (4), the feed-axis friction force can be obtained under constant speed and no-load test condition.xis the feedback position by the grid scale or motor encoder. Supposing the sampling period isPand the sampling total number isN, the instantaneous velocity can be expressed as Eq. (5). Similarly, the instantaneous accelerationajis written as Eq.(6).

    (5)

    (6)

    2.2 Parameters identification

    2.2.1 Traditional Stribeck parameters identification

    Traditional Stribeck parameters identification are based on Eq. (4). To separate the parameters, the constant speed and no-load test in short travel must be carried out ranging from 20 to 40 groups. Although the method works well, it is very cumbersome and time-consuming. As a result, it doesn’t meet the requirements of the user in the industry field.

    2.2.2 Rapid parameters identification

    As shown in Eq. (7), if we use the various velocity that changes with the test travel, and record the feed-axis servo motor output torque, the position feedback by motor encoder or grid scale, then calculate the instantaneous velocity and instantaneous acceleration according to Eqs. (5) and Eq. (6) so that the Stribeck parameters can be identified as fast as possible. Although the method is rapid and simple, two key problems must be solved: firstly, the test velocity must be planned reasonably; secondly, there are unknown nonlinear parameters such asFc,Fs,σ,vsandJmust be identified accurately.

    (7)

    (1) Testing route planning

    The used various velocity test curves are triangular wave, square wave, sine, chirp curve, and so on. In this text,the various velocity and amplitude triangular wave test curve as shown in Fig.3 and Eq. (8) is selected, which is easy to program.

    (8)

    wherei=0, 1, 2, …,N-1,P,V,T,Vmax, andγiare the maximum test travel, the maximum test velocity, the sampling period, the maximum feed-axis velocity, and the tune coefficient, respectively.

    Fig.3 Various amplitude and velocity triangular wave test curve

    (2) Nonlinear model identification

    The parameters are obtained by the least square method (LSM). The Eq. (7) can be written as Eq. (9).

    (9)

    Based on the LSM, some equations can be expressed as follows:

    A=B-1H.

    (10)

    In Eq. (10), we can obtain the values of the parameters.

    3 Experiment Research

    3.1 Experimental platform

    The experimental platform isY-axis of a milling machining center named VTM180. For each linear axis, it is driven by a servomotor, a reducer, and a ballscrew, and the pitch of ballscrew is 0.016 m. The using numerical control system is Siemens 840D with closed-loop position control.

    3.2 Experimental analysis

    With a travel of 0.12 m and 8 different velocities, the rapid identification experiments of Stribeck model parameters aboutY-axis were carried out (see Fig.4(c)). To verify the proposed rapid identification method, the traditional identification experiments are also comparatively implemented, and the velocity range -10-+10 m/min is divided into 28 groups (see Table 1). Furthermore, motor output torque and the feedback position by the line scale are collected simultaneously with the sampling frequency 83.33 Hz in rapid or traditional experiments.

    The parameters are separated using the proposed rapid identification method in Section 2. Based on the feedback position, motor output torque and sampling frequency, the instantaneous velocity (see Fig.4(b)), the instantaneous acceleration (see Fig.4(c)) and torque (see Fig.4(d)) are obtained, respectively. According to Eqs. (9) and (10), the static frictionFs, Coulomb frictionFcand viscous friction coefficientσare identified. AndFs=Fc=4.45 N·m,σ=19.08 N·s. Furthermore, as shown in Fig.4(d), the calculated torque has been obtained, and the calculated torque using Eq.(7) matches well with the measured motor output torque, which shows the effectiveness of the proposed identification method.

    Figure 4(e) shows the Stribeck friction curves ofY-axis on the basis of the rapid and traditional identification methods (see Table 1). For the result of traditional experiments, it describes clearly three friction phases, whereHS(-10--1.12 m/min) andFG(+1.12-+10 m/min) are the vicious frictions,SF(-1.12-+ 1.12 m/min) is the mixed and boundary friction. But the mixed friction phaseSCandEFare too small to be seen, the reason lies in that hydrostatic slide is used as the feed axis in this machine tool. From the results of rapid experiments, since the phases of the planned velocities are few, only the boundary friction (pointsEandD) and the viscous friction (GEandHD) can be observed. However, the identified Stribeck curves through rapid and traditional experiments are very similar, which shows that it is feasible and effective to use the proposed rapid identification method to separate the parameters.

    Table 1 Velocities and measured motor output torque in traditional identification experiments

    (a) Measured travel

    (b) Instantaneous velocity

    (c) Instantaneous acceleration

    (d) Measured torque and calculated torque

    (e) Identified curves

    (f) Evaluation for Y-axis lubrication conditionFig.4 Key parameters identification of Stribeck effect and evaluation for Y-axis lubrication Condition

    To effectively track the dynamic variation of the lubrication state of theY-axis, the tests were performed for every certain space of time, and the lubrication trend is analyzed based on the two main parameters static friction torque and viscous friction coefficient, by which the early lubrication fault can be found. Figure 4(f) shows the measurement result for a machine tool carried out for every week in about three months. It can be seen that the static friction torque varies between 4.01-5.13 N·m and the viscous friction coefficient changes between 16.73-24.36 N·s, and both variations are little, which implies that the lubrication states are stable during this time.

    4 Conclusions

    Based on the theoretical and experimental analysis, a new rapid evaluation method for the feed system lubrication state of CNC machine tool is investigated, and the following conclusions are made.

    (1) The proposed method is simple, and no extra sensors are needed, which facilitates online monitoring of the machine tool state through net. The feasibility and the effectiveness of the proposed approach have been verified by experiments.

    (2) The rapid evaluation results of lubrication state are greatly influenced by the velocity and the displacement, that is, the evaluation result is more accurate if the travel is shorter and the velocity is adjusted more precisely.

    [1] Yeh S S, Sun J T. Friction Modeling and Compensation for Feed Drive Motions of CNC Milling Machines[J].JournaloftheChineseSocietyofMechanicalEngineers, 2012, 33(1): 33-49.

    [2] Yang Z J, Chen C H, Li G F,etal. Research on Reliablity Analysis for Machine Tools [C]. 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), Dalian, China, 2013: 173-177.

    [3] Munzinger C, Fleischer J, Broos A,etal. Development and Implementation of Smart Maintenance Activities for Machine Tools [J].CIRPJournalofManufacturingScienceandTechnology, 2009, 1(4): 237-246.

    [4] Huo F, Poo A N. Precision Contouring Control of Machine Tools[J].InternationalJournalofAdvancedManufacturingTechnology, 2013, 64(1/2/3/4): 319-333.

    [5] Tsutsumi M, Tone S, Kato N,etal. Enhancement of Geometric Accuracy of Five-Axis Machining Centers Based on Identification and Compensation of Geometric Deviations[J].InternationalJournalofMachineToolsandManufacture, 2013, 68(5): 11-20.

    [6] Law M, Altintas Y, Phani A S. Rapid Evaluation and Optimization of Machine Tools with Position-Dependent Stability[J].InternationalJournalofMachineToolsandManufacture, 2013, 68(5): 81-90.

    [7] Verl A, Frey S, Heinze T. Double Nut Ball Screw with Improved Operating Characteristics[J].CIRPAnnals—ManufacturingTechnology, 2014, 63(1): 361-364.

    [8] Ebersbach S, Peng Z, Kessissoglou N J. The Investigation of the Condition and Faults of a Spur Gearbox Using Vibration and Wear Debris Analysis Techniques[J].Wear, 2006, 260(1/2): 16-24.

    [9] Reda S, Cochran R J, Nowroz A N. Improved Thermal Tracking for Processors Using Hard and Soft Sensor Allocation Techniques [J].IEEETransationsonComputers, 2011, 60(6): 841-851.

    [10] Zhou Y Q, Tao T, Mei X S,etal. Feed-Axis Gearbox Condition Monitoring Using Built-in Position Sensors and EEMD Method [J].RoboticsandComputer-IntegratedManufacturing, 2011, 179(4): 785-793.

    [11] Huang S N, Tan K K. Intelligent Fusion Modeling and Compensation Using Neural Network Approximations [J].IEEETransactionsonIndustrialElectronics, 2012, 59(8): 3342-3349.

    [12] Zhou Y, Peng F Y, Wang G X. A Study on the Dynamic Characteristics of the Drive at Center of Gravity (DCG) fFeed Drives[J].TheInternationalJournalofAdvancedManufacturingTechnology, 2013, 66(1/2/3/4): 325-336.

    [13] Hanifzadegan M, Nagamune R. Switching Gain-Scheduled Control Design for Flexible Ball-Screw Drives[J].JournalofDynamicSystems,Measurement,andControl, 2013, 136(1): 71-75

    [14] Gordon D J, Erkorkmaz K. Accurate Control of Ball Screw Drives Using Pole-Placement Vibration Damping and a Novel Trajectory Prefilter[J].PrecisionEngineering, 2013, 37(2): 308-322.

    [15] Mei X S, Tsutsumi M, Tao T,etal. Study on the Compensation of Error by Stick-Slip for High-Precision Table [J].InternationalJournalofMachineToolsandManufacture, 2004, 44(5): 503-510.

    Foundation item: National Natural Science Foundation of China (No. 51305324)

    1672-5220(2014)06-0843-04

    Receiveddate: 2014-08-08

    * Correspondence should be addressed to ZHOU Yu-qing E-mail: zhouyuqing66@aliyun.com

    CLC number: TP182 Document code: A

    久久这里只有精品19| 性高湖久久久久久久久免费观看| 最近中文字幕2019免费版| 国产精品成人在线| 青青草视频在线视频观看| 在线 av 中文字幕| 久久狼人影院| 免费观看av网站的网址| 日韩伦理黄色片| 国产免费又黄又爽又色| 国产女主播在线喷水免费视频网站| 日本wwww免费看| 成人漫画全彩无遮挡| 国产免费一区二区三区四区乱码| 人人妻人人添人人爽欧美一区卜| 欧美日韩视频精品一区| 一区二区三区精品91| 亚洲欧美一区二区三区黑人 | 日韩av免费高清视频| 亚洲欧洲国产日韩| 亚洲美女视频黄频| 午夜激情久久久久久久| www.精华液| 国产成人av激情在线播放| 久久久久久久精品精品| 亚洲内射少妇av| 一级毛片电影观看| 校园人妻丝袜中文字幕| 色婷婷久久久亚洲欧美| 婷婷成人精品国产| 日韩 亚洲 欧美在线| 婷婷色av中文字幕| 精品国产一区二区三区四区第35| 国产一区二区三区综合在线观看| 肉色欧美久久久久久久蜜桃| 91午夜精品亚洲一区二区三区| 最黄视频免费看| 一级毛片 在线播放| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 伦精品一区二区三区| 最新的欧美精品一区二区| 亚洲精品国产一区二区精华液| 老司机亚洲免费影院| 免费黄频网站在线观看国产| 天天操日日干夜夜撸| 国产一区亚洲一区在线观看| 超碰成人久久| 久久这里有精品视频免费| 国产成人精品无人区| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 男女下面插进去视频免费观看| 亚洲国产欧美在线一区| 男人爽女人下面视频在线观看| 在线观看一区二区三区激情| 黄色一级大片看看| 久久精品国产亚洲av高清一级| 成年av动漫网址| 午夜日韩欧美国产| 观看美女的网站| 亚洲国产欧美网| 九色亚洲精品在线播放| 亚洲精品中文字幕在线视频| 丁香六月天网| 久久av网站| 国产精品av久久久久免费| 1024视频免费在线观看| 国产麻豆69| 国产精品欧美亚洲77777| 亚洲成国产人片在线观看| 欧美精品国产亚洲| 视频区图区小说| 麻豆av在线久日| 黄色 视频免费看| 妹子高潮喷水视频| 狠狠精品人妻久久久久久综合| 一级爰片在线观看| 桃花免费在线播放| 国产精品三级大全| 丝袜美足系列| 在线免费观看不下载黄p国产| 日日啪夜夜爽| 国产伦理片在线播放av一区| 免费观看在线日韩| 最新中文字幕久久久久| 欧美少妇被猛烈插入视频| 嫩草影院入口| 一级爰片在线观看| av网站免费在线观看视频| 久久久精品94久久精品| 久热久热在线精品观看| 香蕉丝袜av| 国产一区亚洲一区在线观看| 欧美日韩精品网址| 不卡视频在线观看欧美| 成人国产av品久久久| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频| 国产成人aa在线观看| 国产不卡av网站在线观看| 成人手机av| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美| 免费观看av网站的网址| 9色porny在线观看| 国产在线一区二区三区精| 成年美女黄网站色视频大全免费| 搡老乐熟女国产| 999精品在线视频| 女性生殖器流出的白浆| 高清av免费在线| 亚洲欧美一区二区三区国产| 成年人免费黄色播放视频| 久久这里只有精品19| av不卡在线播放| 久久婷婷青草| 欧美日韩精品成人综合77777| 嫩草影院入口| 在线观看一区二区三区激情| 老汉色av国产亚洲站长工具| av在线app专区| 国产免费一区二区三区四区乱码| 最近的中文字幕免费完整| 成年av动漫网址| 国产不卡av网站在线观看| 国产成人精品久久久久久| 免费人妻精品一区二区三区视频| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕最新亚洲高清| 久久久久网色| av在线app专区| 黄色一级大片看看| 国产黄频视频在线观看| 国产激情久久老熟女| 亚洲国产最新在线播放| 女的被弄到高潮叫床怎么办| 18+在线观看网站| 国产福利在线免费观看视频| av片东京热男人的天堂| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 免费黄色在线免费观看| 国产免费现黄频在线看| 国产片内射在线| 久久久久久久大尺度免费视频| 欧美日韩综合久久久久久| 亚洲av福利一区| 亚洲精品第二区| 91精品三级在线观看| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 欧美人与善性xxx| 日本wwww免费看| 免费日韩欧美在线观看| 久久久久精品人妻al黑| 日本猛色少妇xxxxx猛交久久| 精品国产超薄肉色丝袜足j| 成人亚洲精品一区在线观看| 男女边吃奶边做爰视频| av线在线观看网站| 国产精品国产三级专区第一集| 一二三四中文在线观看免费高清| 久热这里只有精品99| 观看av在线不卡| 婷婷色综合www| 1024香蕉在线观看| 亚洲成国产人片在线观看| 精品少妇一区二区三区视频日本电影 | 亚洲,一卡二卡三卡| 91成人精品电影| 亚洲av中文av极速乱| 黄色毛片三级朝国网站| 欧美变态另类bdsm刘玥| 亚洲av.av天堂| 最近的中文字幕免费完整| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av日韩在线播放| 国产淫语在线视频| 国产在线视频一区二区| 永久免费av网站大全| 大码成人一级视频| 婷婷色综合www| 波多野结衣av一区二区av| 欧美日韩综合久久久久久| 久久久精品国产亚洲av高清涩受| av在线播放精品| 亚洲精品中文字幕在线视频| 人妻一区二区av| 国产精品成人在线| 亚洲av电影在线观看一区二区三区| 日韩 亚洲 欧美在线| 人妻 亚洲 视频| 大话2 男鬼变身卡| 自拍欧美九色日韩亚洲蝌蚪91| 制服人妻中文乱码| 这个男人来自地球电影免费观看 | 午夜免费观看性视频| 天堂中文最新版在线下载| 亚洲国产色片| 亚洲精品一区蜜桃| 波野结衣二区三区在线| 亚洲av成人精品一二三区| 国产免费视频播放在线视频| 中文字幕制服av| 黄色一级大片看看| 看非洲黑人一级黄片| 高清不卡的av网站| 女的被弄到高潮叫床怎么办| 亚洲精品美女久久av网站| 麻豆av在线久日| 男男h啪啪无遮挡| 午夜福利乱码中文字幕| 视频区图区小说| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| xxxhd国产人妻xxx| 亚洲精华国产精华液的使用体验| 国产男人的电影天堂91| 99久久人妻综合| 伊人亚洲综合成人网| 久久 成人 亚洲| 精品人妻在线不人妻| 日韩制服骚丝袜av| 欧美亚洲日本最大视频资源| 亚洲av国产av综合av卡| 美女国产高潮福利片在线看| 国产精品av久久久久免费| 黄片播放在线免费| 国产av一区二区精品久久| 日韩一卡2卡3卡4卡2021年| 人妻系列 视频| 精品国产露脸久久av麻豆| 国产综合精华液| 日本欧美视频一区| 美女国产视频在线观看| 中文字幕制服av| 亚洲激情五月婷婷啪啪| www日本在线高清视频| 精品酒店卫生间| 91久久精品国产一区二区三区| 高清在线视频一区二区三区| 国产精品成人在线| 亚洲精品成人av观看孕妇| 大陆偷拍与自拍| 丰满迷人的少妇在线观看| 亚洲国产毛片av蜜桃av| 国产麻豆69| 性色av一级| 大话2 男鬼变身卡| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 久久综合国产亚洲精品| 考比视频在线观看| 日韩av免费高清视频| 中文字幕制服av| 亚洲人成77777在线视频| 日产精品乱码卡一卡2卡三| www.av在线官网国产| 香蕉国产在线看| 黄片播放在线免费| 亚洲精品在线美女| 国产一区二区三区综合在线观看| 一区二区av电影网| 免费在线观看视频国产中文字幕亚洲 | 国产乱来视频区| 日韩,欧美,国产一区二区三区| 亚洲av成人精品一二三区| 欧美人与性动交α欧美软件| 成年动漫av网址| 大香蕉久久成人网| 国产成人a∨麻豆精品| av在线老鸭窝| 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版| 又黄又粗又硬又大视频| 亚洲经典国产精华液单| 亚洲精品av麻豆狂野| av视频免费观看在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产成人一精品久久久| 一区在线观看完整版| 亚洲欧美日韩另类电影网站| av网站免费在线观看视频| 国产在视频线精品| 成人亚洲欧美一区二区av| 久久青草综合色| 日韩在线高清观看一区二区三区| 国产精品欧美亚洲77777| 少妇精品久久久久久久| 女人精品久久久久毛片| av在线app专区| 又大又黄又爽视频免费| 久久久久久久国产电影| 观看av在线不卡| 国产亚洲一区二区精品| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 成人毛片a级毛片在线播放| 天天躁日日躁夜夜躁夜夜| 看免费成人av毛片| 一区二区三区四区激情视频| 日本黄色日本黄色录像| 久久精品久久精品一区二区三区| 1024香蕉在线观看| 国产精品三级大全| 人妻 亚洲 视频| 欧美精品国产亚洲| 青春草视频在线免费观看| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 亚洲av男天堂| 国产日韩欧美亚洲二区| 久久久久久伊人网av| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 亚洲成人一二三区av| 日产精品乱码卡一卡2卡三| 97人妻天天添夜夜摸| 久久人妻熟女aⅴ| 午夜91福利影院| 黄色一级大片看看| 午夜福利视频精品| 夫妻性生交免费视频一级片| 国产免费一区二区三区四区乱码| 日韩,欧美,国产一区二区三区| 日韩中文字幕视频在线看片| av不卡在线播放| 91久久精品国产一区二区三区| 成人二区视频| 成年人免费黄色播放视频| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 激情视频va一区二区三区| 欧美日韩综合久久久久久| 国产亚洲最大av| 国产乱人偷精品视频| 欧美+日韩+精品| 中文字幕色久视频| 老汉色∧v一级毛片| 大话2 男鬼变身卡| 日本爱情动作片www.在线观看| 一个人免费看片子| 哪个播放器可以免费观看大片| 国语对白做爰xxxⅹ性视频网站| 国产欧美亚洲国产| 卡戴珊不雅视频在线播放| 十八禁网站网址无遮挡| 91在线精品国自产拍蜜月| 国产精品二区激情视频| 亚洲,一卡二卡三卡| 成年人免费黄色播放视频| 中文精品一卡2卡3卡4更新| 国产无遮挡羞羞视频在线观看| 久久精品亚洲av国产电影网| 高清av免费在线| 美女视频免费永久观看网站| 丝袜人妻中文字幕| 一区二区三区激情视频| 亚洲一码二码三码区别大吗| 精品少妇内射三级| 人人妻人人澡人人爽人人夜夜| 国产成人免费无遮挡视频| 伦理电影大哥的女人| 久久 成人 亚洲| 国产精品.久久久| 午夜福利视频精品| 99国产综合亚洲精品| 精品久久久精品久久久| 久久精品国产亚洲av高清一级| 亚洲av免费高清在线观看| 国产成人精品久久久久久| 色婷婷久久久亚洲欧美| 老鸭窝网址在线观看| 亚洲国产色片| 一级片免费观看大全| 人妻少妇偷人精品九色| 2022亚洲国产成人精品| 蜜桃国产av成人99| 久久精品久久久久久噜噜老黄| 18禁观看日本| 日韩一卡2卡3卡4卡2021年| av在线app专区| 18禁裸乳无遮挡动漫免费视频| 久久久久久久亚洲中文字幕| 可以免费在线观看a视频的电影网站 | 999久久久国产精品视频| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| 色吧在线观看| 日韩精品免费视频一区二区三区| 欧美精品av麻豆av| 国产在线视频一区二区| 亚洲国产欧美网| 精品国产露脸久久av麻豆| 99久久精品国产国产毛片| 亚洲av日韩在线播放| 丝袜脚勾引网站| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 一区二区av电影网| 久久久久久久亚洲中文字幕| 97在线视频观看| 亚洲,欧美精品.| 在线观看美女被高潮喷水网站| 十八禁网站网址无遮挡| 亚洲婷婷狠狠爱综合网| 大陆偷拍与自拍| av不卡在线播放| av网站免费在线观看视频| 亚洲精品第二区| 两性夫妻黄色片| 中文字幕亚洲精品专区| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 激情五月婷婷亚洲| 亚洲精品美女久久久久99蜜臀 | 久久影院123| 人人妻人人爽人人添夜夜欢视频| 国精品久久久久久国模美| 夫妻性生交免费视频一级片| 色婷婷久久久亚洲欧美| 免费高清在线观看视频在线观看| 纯流量卡能插随身wifi吗| 大香蕉久久成人网| 久久久久网色| 人人妻人人爽人人添夜夜欢视频| 国产欧美亚洲国产| 国产精品人妻久久久影院| 999久久久国产精品视频| 久久久久久久久久久久大奶| 久久 成人 亚洲| 欧美激情 高清一区二区三区| 亚洲av福利一区| 国产乱人偷精品视频| 欧美日韩精品成人综合77777| 一边摸一边做爽爽视频免费| 欧美精品一区二区大全| 2021少妇久久久久久久久久久| 国产成人精品在线电影| 啦啦啦中文免费视频观看日本| 蜜桃在线观看..| 男女边吃奶边做爰视频| 国产精品久久久av美女十八| 日本wwww免费看| 国产欧美日韩一区二区三区在线| 成人手机av| 人妻系列 视频| 亚洲激情五月婷婷啪啪| 欧美日韩av久久| 午夜福利在线观看免费完整高清在| 大片免费播放器 马上看| 天天躁日日躁夜夜躁夜夜| 午夜福利在线免费观看网站| 女性被躁到高潮视频| 亚洲av中文av极速乱| 香蕉精品网在线| 久久久精品国产亚洲av高清涩受| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 岛国毛片在线播放| av不卡在线播放| 亚洲av国产av综合av卡| 18禁观看日本| 午夜激情久久久久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 激情视频va一区二区三区| 国产极品粉嫩免费观看在线| 一级爰片在线观看| 久久影院123| 日韩熟女老妇一区二区性免费视频| 超碰成人久久| 18在线观看网站| 久久久久久久国产电影| 中文精品一卡2卡3卡4更新| 亚洲精品一二三| 国产1区2区3区精品| 在线天堂最新版资源| 国产黄色视频一区二区在线观看| 欧美日韩一级在线毛片| 日本欧美视频一区| 在线观看美女被高潮喷水网站| 夫妻性生交免费视频一级片| 亚洲欧美一区二区三区国产| 久久精品久久久久久噜噜老黄| 国产精品久久久av美女十八| 人人澡人人妻人| 老司机影院毛片| 午夜激情av网站| 欧美日韩精品成人综合77777| 丝袜喷水一区| 亚洲国产精品一区三区| 最近中文字幕2019免费版| 777久久人妻少妇嫩草av网站| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品第一综合不卡| 搡老乐熟女国产| 亚洲成色77777| 777久久人妻少妇嫩草av网站| 观看av在线不卡| 在线观看一区二区三区激情| 在线观看美女被高潮喷水网站| 美女脱内裤让男人舔精品视频| 一二三四在线观看免费中文在| 精品国产乱码久久久久久小说| 丝袜喷水一区| 各种免费的搞黄视频| 在线观看一区二区三区激情| 亚洲人成77777在线视频| 精品国产乱码久久久久久小说| 婷婷成人精品国产| 免费观看a级毛片全部| 亚洲国产欧美日韩在线播放| 国产精品偷伦视频观看了| 97精品久久久久久久久久精品| 老鸭窝网址在线观看| 亚洲欧美中文字幕日韩二区| 人成视频在线观看免费观看| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 一级黄片播放器| 久久99蜜桃精品久久| 国产一级毛片在线| 男人操女人黄网站| 国产欧美日韩一区二区三区在线| 国产国语露脸激情在线看| av线在线观看网站| 99热网站在线观看| 涩涩av久久男人的天堂| 日韩大片免费观看网站| 亚洲第一av免费看| 欧美中文综合在线视频| 国产不卡av网站在线观看| 精品第一国产精品| 欧美人与善性xxx| 91在线精品国自产拍蜜月| 国产在线免费精品| xxxhd国产人妻xxx| 黄色一级大片看看| 99九九在线精品视频| 叶爱在线成人免费视频播放| 在线免费观看不下载黄p国产| 国产一区二区在线观看av| 免费看不卡的av| 国产成人a∨麻豆精品| 日韩av在线免费看完整版不卡| 亚洲av在线观看美女高潮| 91久久精品国产一区二区三区| 久久久久久久久久人人人人人人| 三级国产精品片| 一级毛片 在线播放| 香蕉丝袜av| 久久久精品区二区三区| 国产一区亚洲一区在线观看| 久久鲁丝午夜福利片| 黄色视频在线播放观看不卡| 国产精品秋霞免费鲁丝片| 国产又色又爽无遮挡免| 日韩免费高清中文字幕av| 中文欧美无线码| 久久久久久久亚洲中文字幕| 一区二区三区四区激情视频| 久久久久久久久久久久大奶| 亚洲精品一区蜜桃| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av高清一级| 欧美日韩亚洲高清精品| 最近最新中文字幕免费大全7| 人人妻人人爽人人添夜夜欢视频| 国产精品嫩草影院av在线观看| 久久精品国产自在天天线| 精品人妻在线不人妻| 午夜91福利影院| 两性夫妻黄色片| 久久狼人影院| 午夜日韩欧美国产| 久久精品亚洲av国产电影网| 欧美在线黄色| 男男h啪啪无遮挡| 久久99精品国语久久久| 国产又爽黄色视频| 国产免费视频播放在线视频| 这个男人来自地球电影免费观看 | 高清视频免费观看一区二区| 老司机亚洲免费影院| 日韩中字成人| 免费看不卡的av| 超碰成人久久| 国产黄色免费在线视频| 欧美精品高潮呻吟av久久| 啦啦啦中文免费视频观看日本| 电影成人av| 精品亚洲成国产av| 亚洲 欧美一区二区三区| 麻豆av在线久日| 天天躁狠狠躁夜夜躁狠狠躁| 日日爽夜夜爽网站| 汤姆久久久久久久影院中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 高清不卡的av网站| 国产极品天堂在线| 日韩视频在线欧美| 王馨瑶露胸无遮挡在线观看| 亚洲色图 男人天堂 中文字幕| 秋霞伦理黄片| 一区二区三区乱码不卡18|