• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Based Machinery Condition Prediction Based on Support Vector Machine Model with Wavelet Transform

    2014-08-12 02:31:02LIUShujie劉淑杰LUHuitian陸惠天LIChaoHUYawei胡婭維ZHANGHongchao張洪潮

    LIU Shu-jie(劉淑杰), LU Hui-tian(陸惠天), LI Chao(李 超), HU Ya-wei(胡婭維), ZHANG Hong-chao(張洪潮),3,

    1 School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China 2 Department of Construction & Operations Management, South Dakota State University, Brookings SD 57007, USA 3 Department of Industrial Engineering, Texas Tech University, Lubbock TX79409, USA 4 Offshore Oil Engineering Co., Ltd., Tianjin 300450, China

    Based Machinery Condition Prediction Based on Support Vector Machine Model with Wavelet Transform

    LIU Shu-jie(劉淑杰)1*, LU Hui-tian(陸惠天)2, LI Chao(李 超)1,4, HU Ya-wei(胡婭維)1, ZHANG Hong-chao(張洪潮)1,3,

    1SchoolofMechanicalEngineering,DalianUniversityofTechnology,Dalian116024,China2DepartmentofConstruction&OperationsManagement,SouthDakotaStateUniversity,BrookingsSD57007,USA3DepartmentofIndustrialEngineering,TexasTechUniversity,LubbockTX79409,USA4OffshoreOilEngineeringCo.,Ltd.,Tianjin300450,China

    Soft failure of mechanical equipment makes its performance drop gradually, which occupies a large proportion and has certain regularity. The performance can be evaluated and predicted through early state monitoring and data analysis. The vibration signal was modeled from the double row bearing, and wavelet transform and support vector machine model (WT-SVM model) was constructed and trained for bearing degradation process prediction. Besides Hazen plotting position relationships was applied to describing the degradation trend distribution and a 95% confidence level based ont-distribution was given. The single SVM model and neural network (NN) approach were also investigated as a comparison. Results indicate that the WT-SVM model outperforms the NN and single SVM models, and is feasible and effective in machinery condition prediction.

    supportvectormachine(SVM);wavelettransform(WT);vibrationintensity;probabilisticforecasting

    Introduction

    Condition trend prediction aims at soft failure of mechanical equipment. A soft failure is defined as a failure, fault, defect, or error that results in a temporary system stoppage; such a system stoppage can be returned to a successful system performance state by system hardware reset, software performance reset, gradual return to equilibrium, or a non-repair maintenance action[1]. Soft failure is due to performance degradation of certain components in the long term, which causes performance parameter to exceed the allowable value, eventually. This kind of fault occupies a large proportion and has certain regularity. It can be evaluated and predicted through early condition monitoring and data analysis. Various operating parameters and signals such as vibration, noise, and temperature in the running process of mechanical equipment, can be seen as a time-based process[2]. We can identify the working condition and predict the future trend of mechanical equipment through this kind of signals.

    Support vector machine (SVM) is a machine learning algorithm proposed in 1990s and based on Vapnik’s statistical learning theory[3]. SVM is not based on traditional empirical risk minimization principle, but Vapnik-Chervonenkis(VC) dimension theory and structural risk minimization principle in statistics[4]. SVM can solve the structural problems of high dimensional model with limited number of samples, and has good predictive performance. The initial SVM is mainly applied in pattern recognition problems. Through research and development of short-term, SVM also makes a good result in regression[5]. SVMs have been used by researchers to solve classification and regression problems. Several research studies demonstrate the good performance of these techniques in the forecasting modeling but few can give a probabilistic forecasting.

    In 1970s, French geophysicist Jean Morlet proposed the concept of wavelet transform (WT). In 1980s, French scientist Meyer and his colleagues developed the system of wavelet analysis. The main algorithm of WT was proposed by French scientist Stephane Mallat in 1988[6-7]. WT describes a time-series by dividing it into scales (frequency regions). These scales are analyzed by use of a scale dependent wave function travelling along the specific scale time-axis. The WTs thereby give both frequency and time resolutions while the Fourier transform (FT) only gives frequency resolution.

    In this paper, the SVM approach is exploited for mechanical equipment probabilistic degradation forecasting. Simultaneously, WT, a powerful multi-resolution analysis method, is introduced into the SVM model to reduce the influence of irregular characteristics and simultaneously simplify the complexity of the original signal. The WT-SVM model is applied in a case study to modeling the vibration signal from the double row bearing and expected to more accurately obtain probabilistic forecasting results under a certain confidence level based on plotting position relationships andt-distribution.

    1 Proposed Strategy of Combining SVM with WT

    Various operating parameters and signals such as vibration, noise, and temperature in the running process of mechanical equipment, can be used to identify the working condition and predict the future trend of mechanical equipment. However these characteristic signals are usually the result of the interaction of various factors with irregular characteristics, such as chaos, typing, nonlinear, the data has multi-scale characteristics. WT can decompose a complicated signal into many sub-signals under the wavelet families through dilating and translating the mother wavelet. Each scale can be seen as different “band”. The characteristics of the sequence can be shown more clearly[8-10]. In this paper, the WT is thus introduced into the SVM for modeling. The architecture of the proposed combination model is shown in Fig.1.

    In this combination strategy, with the given scaling function and wavelet function the original data are first decomposed in the different scales by multi-resolution analysis (MRA). The SVM regression method is then constructed to model through the data of each band and identify the actual relationship model between the input and output data. Synthesize the forecasting results of each frequency and the vibration intensity can be obtained. The probabilistic forecasting can be calculated based on plotting position relationships andt-distribution. Note that the preprocessed characteristic data reduce the influence of irregular characteristics and simultaneously simplify the complexity of the original data model[11-12]. Results show that the proposed WT-SVM model can more accurately model and compensate the behavior of the characteristic signals and show better modeling speed and generalization performance than those of SVM model.

    Fig.1 Flow chart of the proposed combination model

    2 Case Study

    The vibration signals used in this paper are provided by the Center for Intelligent Maintenance Systems (IMS), University of Cincinnati[13]. The experimental data sets are generated from bearing run-to-failure tests under constant load conditions on a specially designed test rig. The bearing test rig hosts four test Rexnord ZA-2115 double row bearings on one shaft. The shaft is driven by an AC motor and coupled by rub belts. A radial load of 6000 lbs is added to the shaft and bearing by a spring mechanism. The rotation speed is kept constant at 2000 r/min. A PCB 353B33 high sensitivity quartz ICP accelerometer is installed and data collection is done using a National Instruments LabVIEW program. The data sampling rate is 20 kHz and the data length is 20 480 points. It took a total of 7 d until the bearing fails. At the end, one bearing with serious wrecked was used to verify the performance of the model.

    The vibration intensity is calculated through each of the 10 min sampling data while the sampling interval is kept 10 min, shown in Fig.2. Before the 700th points, the bearing is working at a normal state, so the 780-930 points are used to train the SVM model and the following 50 points are employed for testing.

    Fig.2 Bearing vibration intensity curve

    In WT-SVM model, db5 wavelet is selected as wavelet function, and two layers of wavelet decomposition is conducted getting a low frequency component and two high frequency components. The calibration and the subsequent forecasting work of SVR in this study were performed by resorting to the LIBSVM software package[14]. The LIBSVM software is freeware, and the source codes, written in C++, are open to public. This study has modified the codes for this tool wearing assessment. The radial basis function (RBF) kernel is used to construct the SVM model. The error toleranceεis set to 0.01. The grid search method with a cross validation technique[15]was used to derive the SVR model parameters, including the penalty parameterCand the kernel parameterγ. The search range is 2-8-28and the search step is set at 1.0. A three-fold cross validation was used, and the parameters were obtained by the minimum RMSE regarding each-fold cross validation. The model parameters were then determined by averaging the derived three sets of parameters from cross validation, and the root mean square percentage error (RMSE) was simulated through the calibration events. In order to verify the proposed advantage in predict the bearing degradation process, single SVM model and the neural network (NN) model are used to achieve the prediction. Figures 3(a), (b), and (c) are the results of the one-step ahead forecasting performed on WT-SVM, SVM, and NN models respectively. The trend of the bearing running state can be predicted by optimized WT-SVM model effectively and the predicted result with the proposed optimized model is very close to the actual degradation curve.

    Forecasting error, the deviation between model prediction and the real value, exists inevitably because of the effect of uncertain factors. In order to explicitly indicate the respective modeling performance of the three different models, we adopt relative error (RE), mean absolute percentage error (MAE), and RMSE as evaluation criteria in the paper, which are calculated as:

    (1)

    (2)

    (3)

    Figure 4 is the REs of one-step ahead forecasting in WT-SVM, SVM, and NN models respectively. MAE and RMSE values of each model are expressed in Table 1. From Table 1, we can see that the MAE and RMSE of three prediction methods are very different. The MAE and RMSE of the actual and the predicted result are 1.92% and 2.37%, so the proposed method can closely track the changes of trending condition of the bearing. SVM model has a big error in some forecasting points and the prediction error of SVM is larger than the proposed method; after calculation, the prediction error is 8.22% (MAE) and 11.33% (RMSE). The NN model works relatively bad and the prediction error is larger than WT-SVM model and SVM model.

    (a) WT-SVM model

    (b) SVM model

    (c) NN modelFig.3 The one-step ahead forecasting performed

    Fig.4 REs of one-step ahead forecasting in WT-SVM, SVM and NN models

    ModelMAE/%RMSE/%WT-SVM1.922.37SVM8.2211.33NN10.0214.57

    The 95% predicted confidence intervals based on WT-SVM model and SVM model ont-distribution (α=0.05) are expressed in Figs. 5(a) and (b). The confidence interval width of SVM model is larger than that of WT-SVM model. The confidence intervals reasonably present the uncertainty characteristics, because confidence regions enclose most of the data.

    (a) WT-SVM

    (b) SVMFig.5 Forecasting confidence intervals based on t-distribution in WT-SVM and SVM

    This work applied Hazen plotting position relationships to describing the degradation trend distribution oft. Probability distributions can be produced by the proposed probabilistic forecasting model at each time step. Figure 6 presents predictive probability distributions calculated at forecast pointN=40-45 based on WT-SVM model. The probability distribution assigns an exceedance probability to a specific future RMS. We set 0.18 A/g as a threshold for the RMS. When the RMS value exceeds the threshold, we consider the bearing fails. At forecast pointN=40, the probability that the future RMS exceeds 0.18 A/g is 0.0%, while atN=45 forecasting, the exceedance probability is nearly 100%. The possibilities that the RMS value exceeds the threshold at forecast pointN=40-45 are correspondingly [2.41%, 8.62%, 29.31%, 66.55%, 94.13%, 99.66%], and it can be seen that the reliability reduces gradually with increase of forecast step.

    Fig.6 Predictive probability distributions: (a) N=40, (b) N=41, (c) N=42, (d) N=43, (e) N=44, and (f) N=45

    3 Conclusions

    The work presented in this paper demonstrates the application of SVM combined with WT in machinery condition prediction. WT can reduce the influence of irregular characteristics and simultaneously simplify the complexity of the original signal. In the case study, WT-SVM model is constructed and trained for bearing degradation process prediction. The degradation reliability can be properly calculated with probabilistic forecasting results. Hazen plotting position relationships is applied to describing the degradation trend distribution and a 95% confidence level based ont-distribution is given. The case study results show that WT-SVM model outperforms the NN and single SVM model and is more feasible and effective. Applying it into machinery condition prediction, it will be helpful in improving the detection ability of early faults, reducing maintenance, and improving other aspects.

    [1] Chenoweth H B. Soft Failures and Reliability [C]. Reliability and Maintainability Symposium, Los Angeles, CA, USA, 1990: 419-424.

    [2] Christmann A, Steinwart I. Support Vector Machines [M]. New York: Springer, 2008.

    [3] Jardine A K S, Lin D, Banjevic D. A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance [J].MechanicalSystemsandSignalProcessing, 2006, 20(7): 1483-1510.

    [4] Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.

    [5] Furey T S, Cristianini N, Duffy N,etal. Support Vector Machine Classification and Validation of Cancer Tissuesamples Using Microarray Expression Data [J].Bioinformatics, 2000, 16: 906-914.

    [6] Mallat S G. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 1989, 2(7): 674-693.

    [7] Erd?l N, Basbug F. Wavelet Transform Based Adpative Filters: Analysis and New Reswlts [J]. IEEE Tranavtionson Signal Processing, 1996, 44(9): 2163-2171.

    [8] Hu Q, He Z J, Zhang Z S,etal. Fault Diagnosis of Rotating Machinery Based on Improved Wavelet Package Transform and SVMs Ensemble [J].MechanicalSystemsandSignalProcessing, 2007, 21(2): 688-705.

    [9] He H B, Starzyk J A. A Self-organizing Learning Array System for Power Quality Classification Based on Wavelet Transform [J].IEEETransactionsonPowerDelivery, 2005, 21(1): 286-295.

    [10] Millet-Roig J, Ventura-Galiano R, Chorro-Gasco F J,etal. Support Vector Machine for Arrhythmia Discrimination with Wavelet Transform-Based Feature Selection [C]. Computers in Cardiology, Cambridge, MA, USA, 2000: 407-410.

    [11] Zhang L, Zhou W D, Jiao L C. Wavelet Support Vector Machine [J].IEEETransactionsonSystems,ManandCybernetics—PartB:Cybernetics, 2004, 34(1): 34-39.

    [12] Tong S, Koller D. Support Vector Machine Active Learning with Applications to Text Classification [J].TheJournalofMachineLearningResearch, 2002, 2: 45-66.

    [13] Lee J, Qiu H, Yu G,etal. NASA Ames Prognostics Data Repository, Rexnord Technical Services: Bearing DataSet [DB/OL]. (2012) [2014]. http://ti.arc.nasa.gov/project/prognostic-data-repository.

    [14] Chang C C, Lin C J. LIBSVM: a Library for Support Vector Machines [CP/OL]. (2001)[2014]. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf.

    [15] Hsu C W, Chang C C, Lin C J. A Practical Guide to Support Vector Classification [R]. Department of Computer Science and Information Engineering, National Taiwan University, Taipei, China, 2003.

    National Natural Science Foundation of China (No. 51205043); the Special Fundamental Research Funds for Central Universities of China (No. DUT14QY21)

    1672-5220(2014)06-0831-04

    Received date: 2014-08-08

    * Correspondence should be addressed to LIU Shu-jie, E-mail: liushujie@dlut.edu.cn

    CLC number: TH17 Document code: A

    性色av乱码一区二区三区2| 国产 一区 欧美 日韩| 在线国产一区二区在线| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 国产亚洲av高清不卡| 亚洲国产看品久久| 亚洲av免费在线观看| 欧美成人性av电影在线观看| e午夜精品久久久久久久| 男女那种视频在线观看| 熟女电影av网| 亚洲激情在线av| 国产成人精品无人区| 在线免费观看不下载黄p国产 | a级毛片a级免费在线| 亚洲色图 男人天堂 中文字幕| www.熟女人妻精品国产| 成人国产综合亚洲| 国产主播在线观看一区二区| 亚洲av熟女| 亚洲一区高清亚洲精品| 香蕉久久夜色| 欧美av亚洲av综合av国产av| 亚洲aⅴ乱码一区二区在线播放| 国产69精品久久久久777片 | 十八禁人妻一区二区| 日韩欧美在线二视频| 亚洲最大成人中文| 热99在线观看视频| 18禁裸乳无遮挡免费网站照片| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品影院| 99热只有精品国产| 亚洲五月婷婷丁香| 国产精品电影一区二区三区| www.自偷自拍.com| 叶爱在线成人免费视频播放| 国产69精品久久久久777片 | 99在线视频只有这里精品首页| 国产aⅴ精品一区二区三区波| 国产精品1区2区在线观看.| 无遮挡黄片免费观看| 舔av片在线| 国产成人av教育| 国产av麻豆久久久久久久| 国产一级毛片七仙女欲春2| 亚洲,欧美精品.| 亚洲五月婷婷丁香| 99久久精品一区二区三区| av在线蜜桃| 亚洲18禁久久av| 久久性视频一级片| 美女被艹到高潮喷水动态| 999精品在线视频| 欧美黑人欧美精品刺激| 熟女人妻精品中文字幕| 国产午夜精品论理片| 亚洲真实伦在线观看| 淫秽高清视频在线观看| e午夜精品久久久久久久| 国产午夜精品论理片| 亚洲自拍偷在线| 国内毛片毛片毛片毛片毛片| 国产激情久久老熟女| 手机成人av网站| avwww免费| 日日干狠狠操夜夜爽| 99久久综合精品五月天人人| 三级男女做爰猛烈吃奶摸视频| 男女做爰动态图高潮gif福利片| 99久久无色码亚洲精品果冻| 国产aⅴ精品一区二区三区波| 熟女电影av网| 成人特级av手机在线观看| 午夜激情欧美在线| 国产毛片a区久久久久| 成人三级黄色视频| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区 | 日韩欧美免费精品| 色尼玛亚洲综合影院| 免费av不卡在线播放| 久久久成人免费电影| 高清毛片免费观看视频网站| 色尼玛亚洲综合影院| 九九在线视频观看精品| 久久久久久久午夜电影| 精品久久蜜臀av无| 国产亚洲av高清不卡| 88av欧美| 国产69精品久久久久777片 | 99热6这里只有精品| 韩国av一区二区三区四区| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 亚洲人成网站高清观看| www.自偷自拍.com| 啪啪无遮挡十八禁网站| 亚洲欧美日韩高清在线视频| 国产男靠女视频免费网站| 在线观看美女被高潮喷水网站 | 男女之事视频高清在线观看| 校园春色视频在线观看| 国内精品美女久久久久久| 成年女人永久免费观看视频| 99热6这里只有精品| 国产精品99久久久久久久久| 国产精品一及| 热99re8久久精品国产| netflix在线观看网站| 村上凉子中文字幕在线| 18美女黄网站色大片免费观看| 欧美大码av| 欧美日韩黄片免| 国产三级黄色录像| 蜜桃久久精品国产亚洲av| 日本成人三级电影网站| 90打野战视频偷拍视频| www国产在线视频色| 白带黄色成豆腐渣| 99在线人妻在线中文字幕| x7x7x7水蜜桃| 免费av不卡在线播放| 中文字幕人妻丝袜一区二区| 国产69精品久久久久777片 | av片东京热男人的天堂| 九九在线视频观看精品| or卡值多少钱| 天堂影院成人在线观看| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| 国产人伦9x9x在线观看| 亚洲av成人不卡在线观看播放网| 99久久无色码亚洲精品果冻| 精品一区二区三区av网在线观看| 最好的美女福利视频网| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区| 午夜福利在线在线| 欧美日韩中文字幕国产精品一区二区三区| 色综合欧美亚洲国产小说| 小说图片视频综合网站| 综合色av麻豆| 丰满人妻熟妇乱又伦精品不卡| 午夜福利在线观看免费完整高清在 | 九九在线视频观看精品| 国产精品九九99| 色视频www国产| 曰老女人黄片| 日韩三级视频一区二区三区| 人妻久久中文字幕网| 小说图片视频综合网站| 极品教师在线免费播放| 欧美另类亚洲清纯唯美| 日韩免费av在线播放| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 村上凉子中文字幕在线| 久久午夜亚洲精品久久| 搞女人的毛片| 天堂动漫精品| 色视频www国产| 国产精品1区2区在线观看.| 亚洲av成人av| 一卡2卡三卡四卡精品乱码亚洲| 日韩中文字幕欧美一区二区| 性色av乱码一区二区三区2| 天堂影院成人在线观看| 男人舔奶头视频| 成人午夜高清在线视频| 日日夜夜操网爽| 一级a爱片免费观看的视频| 在线观看午夜福利视频| 在线观看舔阴道视频| av欧美777| 男人和女人高潮做爰伦理| 久久精品国产综合久久久| 色噜噜av男人的天堂激情| 两性夫妻黄色片| 亚洲国产日韩欧美精品在线观看 | 亚洲精华国产精华精| 99热精品在线国产| 国产一区二区在线观看日韩 | 99久久精品国产亚洲精品| 欧美日韩精品网址| 亚洲中文av在线| 精品久久久久久成人av| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线| 桃色一区二区三区在线观看| 99视频精品全部免费 在线 | 日韩中文字幕欧美一区二区| av在线天堂中文字幕| 高清在线国产一区| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 免费看光身美女| 五月玫瑰六月丁香| 亚洲avbb在线观看| 国产男靠女视频免费网站| 免费看十八禁软件| 又黄又粗又硬又大视频| 日韩三级视频一区二区三区| 天堂影院成人在线观看| 免费看a级黄色片| 久久久久九九精品影院| 在线十欧美十亚洲十日本专区| 亚洲精品色激情综合| 又爽又黄无遮挡网站| 一区二区三区激情视频| 91在线精品国自产拍蜜月 | 午夜福利高清视频| 午夜福利在线观看吧| 天堂av国产一区二区熟女人妻| 美女午夜性视频免费| 亚洲欧美日韩高清专用| 99视频精品全部免费 在线 | 99久久久亚洲精品蜜臀av| 观看美女的网站| 真实男女啪啪啪动态图| 日本与韩国留学比较| 午夜免费激情av| 又黄又粗又硬又大视频| 亚洲无线在线观看| 国内精品久久久久精免费| 成人三级黄色视频| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看 | 欧美一级a爱片免费观看看| 搡老岳熟女国产| 在线观看日韩欧美| 亚洲成人免费电影在线观看| 免费人成视频x8x8入口观看| 久久精品亚洲精品国产色婷小说| 免费高清视频大片| 久久午夜综合久久蜜桃| 五月伊人婷婷丁香| 黄色片一级片一级黄色片| av天堂中文字幕网| 午夜亚洲福利在线播放| netflix在线观看网站| 在线免费观看的www视频| 国产成人欧美在线观看| 久久精品人妻少妇| 午夜精品在线福利| 看片在线看免费视频| 此物有八面人人有两片| 成年人黄色毛片网站| 中文字幕久久专区| 色在线成人网| aaaaa片日本免费| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧美一区二区综合| www日本在线高清视频| 亚洲精品国产精品久久久不卡| www.精华液| 国产精品影院久久| 久99久视频精品免费| 一级黄色大片毛片| 亚洲黑人精品在线| 久久精品亚洲精品国产色婷小说| 亚洲狠狠婷婷综合久久图片| 国产激情欧美一区二区| 亚洲av免费在线观看| 校园春色视频在线观看| 美女免费视频网站| 亚洲欧美激情综合另类| 国产高清视频在线播放一区| 亚洲成av人片免费观看| 免费无遮挡裸体视频| a级毛片a级免费在线| 99热这里只有是精品50| 久久精品国产亚洲av香蕉五月| 欧美丝袜亚洲另类 | 狂野欧美激情性xxxx| 国产高潮美女av| 国产精品久久视频播放| 亚洲自偷自拍图片 自拍| 国产一区二区在线av高清观看| 久久伊人香网站| 亚洲欧美日韩无卡精品| xxxwww97欧美| 又粗又爽又猛毛片免费看| 高清毛片免费观看视频网站| 精品不卡国产一区二区三区| 亚洲av熟女| 国产熟女xx| 九色成人免费人妻av| 亚洲天堂国产精品一区在线| 最近在线观看免费完整版| 国语自产精品视频在线第100页| 听说在线观看完整版免费高清| 啦啦啦观看免费观看视频高清| 热99在线观看视频| 国产精品久久电影中文字幕| 一a级毛片在线观看| 两人在一起打扑克的视频| 不卡一级毛片| 俺也久久电影网| 国产精品国产高清国产av| 免费看美女性在线毛片视频| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 99久久成人亚洲精品观看| 97人妻精品一区二区三区麻豆| 国产成人一区二区三区免费视频网站| 成人特级黄色片久久久久久久| 99国产精品一区二区蜜桃av| 又黄又粗又硬又大视频| 欧美日韩乱码在线| 亚洲无线观看免费| 国产精品av久久久久免费| 日本一本二区三区精品| 最好的美女福利视频网| 中国美女看黄片| 国产高清三级在线| 亚洲 欧美 日韩 在线 免费| 美女高潮喷水抽搐中文字幕| 日本 欧美在线| 日韩欧美国产在线观看| 一区二区三区激情视频| 国产一区二区在线av高清观看| 欧美中文日本在线观看视频| 小说图片视频综合网站| 麻豆国产97在线/欧美| 成人鲁丝片一二三区免费| 亚洲精品一卡2卡三卡4卡5卡| 国产成年人精品一区二区| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 哪里可以看免费的av片| 免费看日本二区| 精品国产超薄肉色丝袜足j| 亚洲九九香蕉| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 18禁黄网站禁片午夜丰满| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 亚洲一区二区三区色噜噜| 丝袜人妻中文字幕| 动漫黄色视频在线观看| 免费看十八禁软件| 亚洲电影在线观看av| 国模一区二区三区四区视频 | 欧美色视频一区免费| 亚洲 欧美 日韩 在线 免费| 真人一进一出gif抽搐免费| 午夜福利在线观看免费完整高清在 | 亚洲激情在线av| www.熟女人妻精品国产| 美女黄网站色视频| 日韩大尺度精品在线看网址| 亚洲av成人av| 99久久精品一区二区三区| 床上黄色一级片| 成人一区二区视频在线观看| 19禁男女啪啪无遮挡网站| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 中文字幕高清在线视频| 国产精品自产拍在线观看55亚洲| 国产成+人综合+亚洲专区| 91av网站免费观看| 国产毛片a区久久久久| 欧美在线一区亚洲| 婷婷亚洲欧美| 18美女黄网站色大片免费观看| 亚洲专区国产一区二区| 亚洲五月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 国产成人av教育| 此物有八面人人有两片| 最新在线观看一区二区三区| 亚洲国产精品999在线| 久久精品国产99精品国产亚洲性色| 国产男靠女视频免费网站| 成年免费大片在线观看| 国产一区二区在线观看日韩 | 免费观看精品视频网站| 九色成人免费人妻av| 国产激情偷乱视频一区二区| 国产一区二区三区在线臀色熟女| 国产精品99久久久久久久久| 欧美在线一区亚洲| 亚洲专区国产一区二区| 亚洲成av人片免费观看| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 美女免费视频网站| 色尼玛亚洲综合影院| 国产精品一及| 免费观看精品视频网站| 精品久久久久久久毛片微露脸| 欧美日本视频| 51午夜福利影视在线观看| 日韩国内少妇激情av| 久久久久久久精品吃奶| av福利片在线观看| 日本一二三区视频观看| 国产爱豆传媒在线观看| 在线看三级毛片| 精品久久久久久,| 国产亚洲欧美98| 精品久久久久久,| 精品日产1卡2卡| 精品国产三级普通话版| 国产精品一区二区免费欧美| 亚洲精品粉嫩美女一区| 搡老熟女国产l中国老女人| 51午夜福利影视在线观看| 国产精品一区二区三区四区免费观看 | 成年人黄色毛片网站| 免费在线观看影片大全网站| x7x7x7水蜜桃| 亚洲国产看品久久| 真实男女啪啪啪动态图| 色综合站精品国产| 一本综合久久免费| 亚洲国产欧美一区二区综合| 欧美日韩黄片免| 国产美女午夜福利| 午夜影院日韩av| 成人亚洲精品av一区二区| 亚洲美女视频黄频| 两个人看的免费小视频| 久久久国产精品麻豆| 久久精品亚洲精品国产色婷小说| 99久久无色码亚洲精品果冻| 国产午夜福利久久久久久| 久99久视频精品免费| 免费看a级黄色片| 人妻久久中文字幕网| 精品国产美女av久久久久小说| 亚洲人成网站高清观看| 露出奶头的视频| 国产伦一二天堂av在线观看| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看 | av天堂中文字幕网| 精品一区二区三区视频在线 | 极品教师在线免费播放| 精品福利观看| 精品欧美国产一区二区三| 又粗又爽又猛毛片免费看| 性欧美人与动物交配| 国产高清激情床上av| 国产综合懂色| 亚洲av日韩精品久久久久久密| 成人永久免费在线观看视频| 欧美黑人巨大hd| 1000部很黄的大片| 美女 人体艺术 gogo| www.自偷自拍.com| 欧美极品一区二区三区四区| 亚洲激情在线av| 窝窝影院91人妻| 久久中文字幕一级| 久久国产精品影院| bbb黄色大片| 亚洲自拍偷在线| 色尼玛亚洲综合影院| 十八禁网站免费在线| 午夜日韩欧美国产| 啪啪无遮挡十八禁网站| 人妻夜夜爽99麻豆av| 国产日本99.免费观看| 欧美日韩瑟瑟在线播放| 国产亚洲av嫩草精品影院| 91字幕亚洲| 精品久久蜜臀av无| 丰满人妻一区二区三区视频av | 熟妇人妻久久中文字幕3abv| 亚洲精华国产精华精| 亚洲成人久久性| xxxwww97欧美| 色综合亚洲欧美另类图片| 欧美最黄视频在线播放免费| 综合色av麻豆| 一个人看的www免费观看视频| 桃红色精品国产亚洲av| 精品人妻1区二区| 国产成人啪精品午夜网站| 88av欧美| 国产午夜精品论理片| 久久精品91无色码中文字幕| 国产高清视频在线播放一区| 欧美一级毛片孕妇| 中文字幕人妻丝袜一区二区| 久久精品亚洲精品国产色婷小说| 国产成人影院久久av| 18禁观看日本| 99热这里只有精品一区 | 久久伊人香网站| 九色成人免费人妻av| 超碰成人久久| 毛片女人毛片| 村上凉子中文字幕在线| 久久午夜综合久久蜜桃| 舔av片在线| 亚洲专区国产一区二区| 午夜激情欧美在线| 久久精品国产亚洲av香蕉五月| 可以在线观看毛片的网站| 午夜亚洲福利在线播放| 成年女人看的毛片在线观看| 99久久精品国产亚洲精品| 日韩欧美一区二区三区在线观看| 中文字幕高清在线视频| 色精品久久人妻99蜜桃| 亚洲av成人不卡在线观看播放网| 国产精品永久免费网站| 露出奶头的视频| 国产精品1区2区在线观看.| 欧美日韩一级在线毛片| 午夜a级毛片| 国产激情欧美一区二区| 91久久精品国产一区二区成人 | 三级男女做爰猛烈吃奶摸视频| 国产美女午夜福利| 久久精品aⅴ一区二区三区四区| 日日夜夜操网爽| 欧美zozozo另类| 色哟哟哟哟哟哟| 久久久久国产一级毛片高清牌| 99精品欧美一区二区三区四区| 国产精品99久久久久久久久| 日韩高清综合在线| 国产av在哪里看| 一本精品99久久精品77| 国内毛片毛片毛片毛片毛片| 精品国产亚洲在线| 亚洲一区高清亚洲精品| 日本精品一区二区三区蜜桃| 国产精品乱码一区二三区的特点| 欧美色视频一区免费| www日本黄色视频网| 免费在线观看日本一区| 国产成人精品久久二区二区91| 麻豆久久精品国产亚洲av| 国产单亲对白刺激| 天堂√8在线中文| 免费看光身美女| 麻豆成人午夜福利视频| 欧美在线黄色| 一级毛片女人18水好多| 欧美成人性av电影在线观看| 久久久久久人人人人人| 亚洲国产中文字幕在线视频| 午夜福利免费观看在线| av天堂中文字幕网| 成年免费大片在线观看| 国产高清视频在线观看网站| 又黄又爽又免费观看的视频| bbb黄色大片| 在线永久观看黄色视频| 在线观看舔阴道视频| 久久性视频一级片| 五月伊人婷婷丁香| 天堂av国产一区二区熟女人妻| 成在线人永久免费视频| 精品国产超薄肉色丝袜足j| 亚洲第一欧美日韩一区二区三区| 国产高清视频在线观看网站| 色老头精品视频在线观看| 女警被强在线播放| 国产精品一及| 免费看光身美女| 精品熟女少妇八av免费久了| 久久99热这里只有精品18| 日韩欧美在线乱码| 男插女下体视频免费在线播放| 午夜影院日韩av| 人妻丰满熟妇av一区二区三区| 欧美成人性av电影在线观看| 大型黄色视频在线免费观看| 精品久久久久久久久久久久久| 国产精品女同一区二区软件 | 女人被狂操c到高潮| 天堂√8在线中文| 国产精品99久久99久久久不卡| 国产日本99.免费观看| 男女床上黄色一级片免费看| 天天一区二区日本电影三级| 女警被强在线播放| 美女黄网站色视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩一级在线毛片| 欧美午夜高清在线| 欧美绝顶高潮抽搐喷水| 亚洲人成电影免费在线| 久久精品国产清高在天天线| 国产成+人综合+亚洲专区| 成人性生交大片免费视频hd| 久久精品国产亚洲av香蕉五月| 搡老熟女国产l中国老女人| 真人一进一出gif抽搐免费| 亚洲美女视频黄频| 久久精品亚洲精品国产色婷小说| 别揉我奶头~嗯~啊~动态视频| 国产高清激情床上av| 香蕉久久夜色| 成人av在线播放网站| 黄色女人牲交| 免费在线观看视频国产中文字幕亚洲| 在线观看免费午夜福利视频| 宅男免费午夜| 亚洲最大成人中文| 99热6这里只有精品| 国产精品一区二区三区四区久久| 国产精品国产高清国产av| xxxwww97欧美|