• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Equipment Maintenance Material Demand Forecasting Based on Gray-Markov Model

    2014-08-12 05:38:42BIKunpeng畢坤鵬ZHANGHongyuan張宏運YANGuohui晏國輝TANGNa

    BI Kun-peng(畢坤鵬), ZHANG Hong-yuan(張宏運), YAN Guo-hui(晏國輝), TANG Na(唐 娜)

    1 Chemical Defense Equipment Department,Institute of NBC Defense of PLA, Beijing 102205, China 2 Biological and Chemical Defense Department, Institute of NBC Defense of PLA, Beijing 102205, China

    Equipment Maintenance Material Demand Forecasting Based on Gray-Markov Model

    BI Kun-peng(畢坤鵬)1*, ZHANG Hong-yuan(張宏運)1, YAN Guo-hui(晏國輝)1, TANG Na(唐 娜)2

    1ChemicalDefenseEquipmentDepartment,InstituteofNBCDefenseofPLA,Beijing102205,China2BiologicalandChemicalDefenseDepartment,InstituteofNBCDefenseofPLA,Beijing102205,China

    Maintenance material reserves must keep an appropriate scale, in order to meet the possible demand of support objectives. According to the sequence of maintenance material consumption, this paper establishes a Gray-Markov forecasting model by combining Gray system theory and Markov model. Few data are needed in the proposed Gray-Markov forecasting model which has high prediction precision by involving small parameters. The performance of Gray-Markov forecasting model was demonstrated using practical application and the model was proved to be a valid and accurate forecasting method. This Gray-Markov forecasting model can provide reference for making material demand plan and determining maintenance material reserves.

    maintenancematerial;gray-Markov;demandforecasting;materialreserves

    Introduction

    The demand quantity of maintenance material is the main proof for making material support plan and determining the reserves. Precise forecasting for maintenance material demand quantity is convenient to establish material support plan and determine material reserves, and can improve material quality and further benefit material support. Currently, equipment maintenance material demand forecasting is mainly dependent on experience and history data, and lacks scientific and exact forecasting methods. The theory of gray system is founded by Professor Deng Julong in 1982, which is a new method for uncertainty problems with few data and deficient information. Forecasting based on Gray model requires few data, which doesn’t require data following typical probability distribution and is fit for short period forecasting with better precision[1]. However, it is not fit for long period forecasting because the model could not calculate random fluctuation trend[2]. Many literatures indicate that different forecasting model has its respective advantages and disadvantages, and these methods are correlative and complementary for each other[3]. Markov forecasting method is a kind of forecasting method which can calculate the probability of occurrence for events with some sequence. Markov model is fit for time sequence forecasting with bigger random fluctuation character, and can macroscopically depict the whole change trend of time sequence[4-5]. The article develops a Gray-Markov forecasting model, which combines gray system theory and Markov theory[6], forecasts material demand based on the maintenance material wastage history data, and provides definite reference for maintenance material reserves.

    1 Forecasting Model Basic Thought

    Making use of gray model posts development change trend of maintenance material history wastage data, make sure state transfer on maintenance material wastage in the future period of time combining Markov forecasting means, and make sure wastage by use of state transfer.

    Idiographic steps are: (1) make use of gray GM(1, 1) model process mimesis on equipment maintenance material history wastage data and compute mimesis error between GM (1, 1) model mimesis value and actual value; (2) process state partition according to Markov forecasting state partition means and acquire warp orderliness of mimesis error; (3) compute state transfer of mimesis error in the future forecasting time and make sure mimesis error size according to state transfer; (4) make Markov amend on mimesis result of GM(1, 1) model combing state partition means.

    2 Gray-Markov Forecasting Model

    2.1 Constitution of GM(1, 1) model

    The parenchyma of constitution GM (1, 1) model is to make an accumulative addition for original data in order to take on definite orderliness, and acquires mimesis curve for system forecasting through constituting differential equation model[7-9]. The process is as follows.

    Step 1:data making

    According to original data sequence,

    (1)

    Make once data generating, and get data making sequence,

    (2)

    (3)

    Step 2:data matrix constitution

    Constitute data matrix, namely coefficient matrixBand original data sequence vectorYN:

    (4)

    (5)

    Step 3: calculation parameter

    (6)

    Step 4: constitution gray model

    Calculation differential equation:

    e=2.718.

    (7)

    Step 5:calculation forecasting value

    The forecasting value is:

    (8)

    2.2 Compartmentalization Markov state

    Compartmentalization state is the key step in Markov forecasting. The mimesis errorΔ(i) between mimesis value and actual value is the system object. Generally, when original data quantity is less, subarea should be less so as to increase transfer time between all kinds of states and more impersonally reflect transfer orderliness between all kinds of states. When original data quantity become more, subarea should be more in order to dig more information from history data and increase forecasting precision[10-11]. CompartmentalizingΔ(i) tomstates, any state is:

    (9)

    whereEiis theith state;Δ1(i) andΔ2(i) are respectively the upper and lower limits ofEistate.

    2.3 Calculation state transfer probability matrix

    If current system is the state ofEi, we can calculate relevant probabilities of the system in all kinds of states through calculating state transfer probability matrix. Givenpi jis one step transfer probability of the system fromEistate toEjstate[12-13],

    (10)

    whereMiis the amount inEistate,Mi jis the amount of the system fromEistate toEjstate by one step, and we can achieve one step transfer probability matrixp(1)from state sequenceEi.

    (11)

    Calculate multi-step state transfer probability matrix according to Chapman-Kolmogorov equation.

    (12)

    2.4 Confirming system state transfer

    Selectttimes away from forecasting time, and the transfer steps from near time to far time are respectively 1, 2, …,t. If the system state vector denotesCkinkth time away from forecasting time, then the state transfer probability matrix isp(k), andS(k)denotes state transfer probability matrix byksteps state transfer from the state[14],

    S(k)=Ckp(k)=(p(k1),p(k2), …,p(ki), …,p(km)).

    (13)

    2.5 Forecasting result calculation

    After making sure the system state transfer, we can compute Gray-Markov forecasting value through amending the error of gray mimesis value by use of median value in the subarea of system state[15],

    (14)

    3 Case Analysis

    The paper considers year demand quantity of certain type equipment maintenance material, counter tube, as the research object. The material belongs to electronic component type, whose year wastage history data are less. Given the influences of inhesion attribute and by using intensity, management leveletc. factors, wastage data take on larger undulation character. Gray-Markov forecasting model is suitable for forecassting wastage statistics. According to actual investigation, the actual wastage of certain type of equipment maintenance material from year 2009 to 2013 is shown in Table 1.

    Table 1 Certain type of counter tube year wastage statistics

    3.1 Calculation of gray forecasting value

    Time response equation of gray GM (1, 1) model by calculating is

    4398.6e0.024 3k-4283.6.

    (15)

    Calculate forecasting value,

    (16)

    Forecast demand quantity, namely forecasting value whenk=5,

    (17)

    The maintenance material gray forecasting value and actual value are shown in Fig.1.

    Fig.1 Comparison of the gray forecasting value and actual value

    3.2 Compartmentalization Markov state

    After calculating mimesis errorΔ(i) , we can establish state partition table according to error. The least value is the lower limit, and the largest value is the upper limit. Error range of any corresponding results can be shown in Table 2. Then we can make state partition combine mimesis error, as shown in Table 3.

    Table 2 Certain type equipment materialactual wastage and GM(1,1) mimesis value

    Table 3 Error range and state partition

    3.3 Calculating state transfer probability matrix

    (18)

    According to state transfer probability formula, we can calculate state transfer probability matrices by 2-4 steps state transfer in turn, as follows,

    (19)

    (20)

    (21)

    3.4 Confirming state transfer

    The transfer step of the nearest four years from near time to far time away forecasting time 2014 year is respectively 1, 2, 3, and 4. The system is on the state ofE3in 2013 year. Here system state vector denotesC1=(0 0 1), one step transfer probability from 2013 is:

    S1=C1·p(1)=(0 1 0).

    (22)

    In common, calculate state transfer probability by 2-4 steps, and establish transfer probability table, as shown in Table 4.

    Table 4 Transfer probability of mimesis error Δ(i) in 2014

    From Table 4 the largest accumulative probability is 3.6250. So, system state will transfer fromE3toE3.

    3.5 Calculation of forecasting result

    The forecasting wastage of certain type equipment maintenance material is 119.23 according to gray GM (1, 1) model in 2014. The forecasting wastage of certain type equipment maintenance material according to gray-Markov combination forecasting model is:

    123.8153.

    The forecasting integral wastage is 124 pieces.

    3.6 Comparison and analysis about history data forecasting error

    For checking up the forecasting precision of gray-Markov forecasting model, we contrast gray-Markov forecasting value with gray forecasting value, as shown in Table 5.

    Table 5 Error ratio comparison between the actual value and the forecasting value

    GM(1, 1)-forecasting value, GM(1, 1)-Markov forecasting value, and actual value of the certain type equipment maintenance material are shown in Fig.2.

    The average mimesis error is 2.69% only by use of gray GM(1, 1) forecasting model in Table 5. However the average mimesis error is 0.91% by use of gray GM(1, 1)-Markov combination forecasting model. For time sequence forecasting with less history data and larger random undulation character, Table 5 reflects that GM(1, 1)-Markov can increase precision and reliability of forecasting compared with singleness gray forecasting model. Gray-Markov model can satisfy the need of electronic component type maintenance material wastage forecasting.

    Fig.2 Comparison between the gray-Markov forecasting value and the actual value

    4 Conclusions

    A GM(1,1)-Markov combination forecasting model is developed by combining the advantage in trend of gray forecasting and the advantage in integral fluctuation sequence of Markov forecasting, and proved that it has higher forecasting precision compared with single forecasting model. The establishment course of combination forecasting model is simple, which can be implemented through program. At the same time, the model can be improved in real time based on the maintenance material history data variety. The forecasting model can provide an important foundation for scientifically forecasting maintenance material demand quantity and ascertaining material reserves quantity reasonably.

    [1] Liu S F, Xie N F. Gray System Theory and Application [M]. Beijing: Beijing Science Press, 2008: 1-10. (in Chinese)

    [2] H J X, H Z X. Gray Control [M]. Beijing: National Defense Press, 2005: 13-36. (in Chinese)

    [3] Wang T S, Zhang T. Combining Forecasting-Theory, Method and Application [M]. Beijing: Beijing Social Science Document Press, 2008: 30-50. (in Chinese)

    [4] Chen Y H. Combining Forecasting Method Effectiveness Theory and Application [M]. Beijing: Science Press, 2008: 1-15. (in Chinese)

    [5] Zheng X P. Accident Forecasting Theory and Method [M]. Beijing: Tinghua University Press, 2010: 120-180. (in Chinese)

    [6] Tong C S. Introduction to the Theory and Method on Systems Engineering [M]. Beijing: National Defense Press, 2005: 165-166. (in Chinese)

    [7] Zhang W, Deng Y C. Short Term Wind Speed and Wind Electricity Power Forecasting Based on Gray-Markov Chain [J].ElectricPower, 2013, 46(2): 98-102. (in Chinese)

    [8] Cui H, Zhu X M, Teng L. Plough Forecasting Based on Gray-Markov Model in Jinan City [J].LandandResourcesinShandongProvince, 2013, 29(2): 42-45, 89. (in Chinese)

    [9] Liu X G, Zhou B Y. Road Freight Demand Forecast Based on Gray-Markov Relation [J].CentralSouthHighwayShandong, 2013, 38(1): 111-113. (in Chinese)

    [10] Liu W C, Chen T. To-and-fro Pump State Scout and Trend Forecasting Based on Gray-Network [J].JournalofSafetyScienceandTechnology, 2013, 9(1): 79-84. (in Chinese)

    [11] Li C. Combinatorial Forecasting of Logistics Volume of Shanghai Based on Gray Neural Network [J].LogisticsTechnology, 2013, 32(1): 143-146. (in Chinese)

    [12] Du J L, Wang L, Zhang J F,etal. Application on Vehicle Maintenance Material Demand Forecasting Based on Gray System Theory [J].LogisticsTechnology, 2009, 28(11): 249-251. (in Chinese)

    [13] Liu P, Miao Y J, Zhang J J. Prediction of Gear Life Based on Grey-Markov Model [J].CoalMineMachinery, 2010, 31(9): 51-53. (in Chinese)

    [14] Zhang C, Zhang K S. Forecasting on Railway Freight Volume Based on Gray-Markov Chain Model [J].TechnologyandMethod, 2011, 30(7): 129-133. (in Chinese)

    [15] Li B M. The Armed Police Logistics War Material Demand Forecasting Based on Gray Markov Model [J].JournalofEngineeringUniversityofCAPF, 2013, 29(2): 51-55. (in Chinese)

    Foundation item: Chemical Defense Equipment Maintenance Material Support Methods, Universal Equipment Support Department [2012] No.80, China

    1672-5220(2014)06-0824-03

    Received date: 2014-08-08

    * Correspondence should be addressed to BI Kun-peng, E-mail: ikunpeng@sina.com

    CLC number: E23 Documet code: A

    日本91视频免费播放| 国产一区二区激情短视频 | 亚洲中文字幕日韩| av欧美777| 日韩视频一区二区在线观看| 精品熟女少妇八av免费久了| 黄色a级毛片大全视频| 国产精品久久久久久精品电影小说| 乱人伦中国视频| 成年人免费黄色播放视频| 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频 | 色婷婷久久久亚洲欧美| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲 | 亚洲国产欧美一区二区综合| 各种免费的搞黄视频| 精品国内亚洲2022精品成人 | 国产高清国产精品国产三级| 九色亚洲精品在线播放| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| 亚洲国产中文字幕在线视频| 国产精品1区2区在线观看. | 国产日韩欧美视频二区| 两个人免费观看高清视频| 天堂中文最新版在线下载| 国产一区二区在线观看av| 人人妻人人添人人爽欧美一区卜| 女人被躁到高潮嗷嗷叫费观| 性高湖久久久久久久久免费观看| 后天国语完整版免费观看| 国产人伦9x9x在线观看| 国产精品99久久99久久久不卡| 无遮挡黄片免费观看| 免费高清在线观看日韩| 国产精品亚洲av一区麻豆| 精品卡一卡二卡四卡免费| 国产高清视频在线播放一区 | 人妻人人澡人人爽人人| 国产在线一区二区三区精| 啦啦啦 在线观看视频| 久久九九热精品免费| 伦理电影免费视频| 午夜两性在线视频| 男女午夜视频在线观看| 肉色欧美久久久久久久蜜桃| 丝袜人妻中文字幕| 国产亚洲精品第一综合不卡| 久久国产精品影院| 岛国在线观看网站| 狂野欧美激情性bbbbbb| 国产高清国产精品国产三级| 少妇的丰满在线观看| 最近最新中文字幕大全免费视频| 妹子高潮喷水视频| 日韩中文字幕视频在线看片| 国产精品偷伦视频观看了| 国产亚洲精品久久久久5区| 亚洲成av片中文字幕在线观看| 日韩视频在线欧美| 91成人精品电影| 欧美日韩黄片免| 黄色视频在线播放观看不卡| 九色亚洲精品在线播放| av电影中文网址| 午夜激情av网站| 国产成人系列免费观看| 高清黄色对白视频在线免费看| 最新在线观看一区二区三区| 夜夜骑夜夜射夜夜干| 久久人人97超碰香蕉20202| 91精品三级在线观看| 免费高清在线观看视频在线观看| 制服人妻中文乱码| 国产精品久久久久久精品古装| 久久毛片免费看一区二区三区| 日本a在线网址| 亚洲欧美成人综合另类久久久| 久久国产亚洲av麻豆专区| 飞空精品影院首页| 国产免费现黄频在线看| e午夜精品久久久久久久| 中文字幕高清在线视频| 精品亚洲乱码少妇综合久久| 中文字幕另类日韩欧美亚洲嫩草| av网站在线播放免费| 在线观看舔阴道视频| 三上悠亚av全集在线观看| 老汉色av国产亚洲站长工具| 国产一区二区在线观看av| 丝袜美足系列| av在线老鸭窝| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 亚洲全国av大片| 国产欧美亚洲国产| 免费不卡黄色视频| www日本在线高清视频| 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 久久影院123| 99热全是精品| 亚洲国产日韩一区二区| 老司机午夜十八禁免费视频| 亚洲va日本ⅴa欧美va伊人久久 | 女性被躁到高潮视频| 青春草视频在线免费观看| 日本a在线网址| 午夜激情久久久久久久| 性色av一级| 在线精品无人区一区二区三| 免费在线观看黄色视频的| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 久久精品国产亚洲av高清一级| 熟女少妇亚洲综合色aaa.| av不卡在线播放| 国产xxxxx性猛交| 69av精品久久久久久 | 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 亚洲av国产av综合av卡| av在线播放精品| 亚洲精品国产av蜜桃| 下体分泌物呈黄色| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 日韩一卡2卡3卡4卡2021年| 9191精品国产免费久久| 日韩电影二区| 麻豆国产av国片精品| 看免费av毛片| 亚洲欧美色中文字幕在线| 欧美精品人与动牲交sv欧美| 亚洲情色 制服丝袜| 婷婷成人精品国产| 国产精品av久久久久免费| 18禁裸乳无遮挡动漫免费视频| 超碰成人久久| 亚洲成人国产一区在线观看| 别揉我奶头~嗯~啊~动态视频 | 天天添夜夜摸| 男女国产视频网站| 日韩制服丝袜自拍偷拍| 69av精品久久久久久 | 国产精品一二三区在线看| 久久中文看片网| 欧美日韩视频精品一区| 一区二区三区乱码不卡18| 国产成人系列免费观看| 两性夫妻黄色片| 美女福利国产在线| 欧美97在线视频| 久久天躁狠狠躁夜夜2o2o| 亚洲情色 制服丝袜| 亚洲精品国产av蜜桃| 久久人妻福利社区极品人妻图片| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟女毛片儿| 国产一区二区三区综合在线观看| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 国产区一区二久久| 国产视频一区二区在线看| 十八禁网站网址无遮挡| 国产成人欧美在线观看 | 亚洲欧美清纯卡通| 久久中文看片网| 久久精品久久久久久噜噜老黄| 亚洲国产欧美网| 搡老岳熟女国产| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区久久| 国产免费av片在线观看野外av| 亚洲熟女精品中文字幕| 热99国产精品久久久久久7| 国产av一区二区精品久久| 成人手机av| 91精品伊人久久大香线蕉| 午夜福利视频在线观看免费| 亚洲五月婷婷丁香| 午夜福利影视在线免费观看| 国产91精品成人一区二区三区 | 丁香六月欧美| av视频免费观看在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品熟女久久久久浪| 久久亚洲国产成人精品v| 亚洲人成电影免费在线| 9热在线视频观看99| 精品乱码久久久久久99久播| 在线av久久热| 国产无遮挡羞羞视频在线观看| 亚洲av日韩精品久久久久久密| 国产成人欧美在线观看 | 亚洲一区中文字幕在线| 亚洲精品国产精品久久久不卡| 女人精品久久久久毛片| 丰满饥渴人妻一区二区三| 成人亚洲精品一区在线观看| 国产片内射在线| 纯流量卡能插随身wifi吗| 中文字幕另类日韩欧美亚洲嫩草| 9色porny在线观看| 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 国产免费视频播放在线视频| 国产精品国产av在线观看| 一区在线观看完整版| 高清欧美精品videossex| 丁香六月天网| 亚洲天堂av无毛| 亚洲欧美成人综合另类久久久| 精品国产国语对白av| 久热这里只有精品99| 中文字幕人妻熟女乱码| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 亚洲人成电影免费在线| 亚洲三区欧美一区| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 精品一区二区三卡| 精品一区二区三区四区五区乱码| 另类精品久久| 国产福利在线免费观看视频| 99久久综合免费| 蜜桃在线观看..| 亚洲免费av在线视频| 一边摸一边做爽爽视频免费| 精品免费久久久久久久清纯 | 男人操女人黄网站| 日韩 亚洲 欧美在线| 亚洲中文av在线| 熟女少妇亚洲综合色aaa.| 天天躁夜夜躁狠狠躁躁| 在线观看免费日韩欧美大片| 手机成人av网站| 五月开心婷婷网| 欧美中文综合在线视频| 丁香六月天网| 国产精品秋霞免费鲁丝片| 狂野欧美激情性bbbbbb| 国产福利在线免费观看视频| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频| 国产男女内射视频| 国产野战对白在线观看| 免费在线观看黄色视频的| 国产精品免费视频内射| 成年美女黄网站色视频大全免费| 真人做人爱边吃奶动态| 亚洲男人天堂网一区| 久久久久视频综合| av天堂在线播放| 超色免费av| 国产成+人综合+亚洲专区| 欧美 日韩 精品 国产| 国产有黄有色有爽视频| 91精品国产国语对白视频| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| 亚洲精品国产区一区二| 欧美精品人与动牲交sv欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情极品国产一区二区三区| 正在播放国产对白刺激| 精品人妻1区二区| 国产一区二区三区av在线| 国产精品久久久久久精品电影小说| 欧美日韩中文字幕国产精品一区二区三区 | 如日韩欧美国产精品一区二区三区| 中文字幕精品免费在线观看视频| 国产av一区二区精品久久| 国产色视频综合| 老司机深夜福利视频在线观看 | 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区mp4| 叶爱在线成人免费视频播放| 美女福利国产在线| 高清视频免费观看一区二区| 2018国产大陆天天弄谢| 欧美精品高潮呻吟av久久| 国产成人一区二区三区免费视频网站| 国产高清视频在线播放一区 | 在线亚洲精品国产二区图片欧美| 波多野结衣一区麻豆| 97人妻天天添夜夜摸| 亚洲性夜色夜夜综合| 天堂8中文在线网| 人妻 亚洲 视频| 可以免费在线观看a视频的电影网站| 亚洲全国av大片| 成人手机av| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲色图综合在线观看| 高清视频免费观看一区二区| 黑人欧美特级aaaaaa片| 亚洲视频免费观看视频| 欧美另类一区| 日本欧美视频一区| 少妇的丰满在线观看| 99久久人妻综合| 美女主播在线视频| 久久久久久久大尺度免费视频| 亚洲av国产av综合av卡| 一级黄色大片毛片| 久久精品成人免费网站| 亚洲精品第二区| 欧美在线一区亚洲| 免费在线观看视频国产中文字幕亚洲 | 久久ye,这里只有精品| 午夜影院在线不卡| 一本—道久久a久久精品蜜桃钙片| 日韩制服丝袜自拍偷拍| 精品国产一区二区久久| 亚洲专区中文字幕在线| 日韩有码中文字幕| 少妇粗大呻吟视频| 国产熟女午夜一区二区三区| 国产精品久久久久久精品古装| 又大又爽又粗| 久久国产精品影院| 丝袜人妻中文字幕| 一区二区三区激情视频| 免费高清在线观看视频在线观看| 亚洲熟女毛片儿| 久久免费观看电影| 国产精品1区2区在线观看. | 久久久欧美国产精品| 国产精品免费大片| avwww免费| av网站在线播放免费| 欧美av亚洲av综合av国产av| 亚洲精品乱久久久久久| 丝袜喷水一区| 777米奇影视久久| 日本91视频免费播放| 日韩一卡2卡3卡4卡2021年| 亚洲 国产 在线| 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 国产精品成人在线| 亚洲国产欧美日韩在线播放| 久久久国产成人免费| 动漫黄色视频在线观看| 一区在线观看完整版| 999久久久精品免费观看国产| 午夜福利在线观看吧| 色老头精品视频在线观看| 满18在线观看网站| 国产老妇伦熟女老妇高清| 亚洲七黄色美女视频| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲综合一区二区三区_| 中文字幕av电影在线播放| 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 亚洲,欧美精品.| 搡老乐熟女国产| 亚洲视频免费观看视频| 青青草视频在线视频观看| 国产av一区二区精品久久| 国产精品 欧美亚洲| 精品国产一区二区三区四区第35| 久久久国产一区二区| 天天影视国产精品| 法律面前人人平等表现在哪些方面 | 亚洲色图 男人天堂 中文字幕| 啦啦啦啦在线视频资源| 69精品国产乱码久久久| 久久久久久久大尺度免费视频| 99香蕉大伊视频| 黄色 视频免费看| 制服诱惑二区| 久久久久久久大尺度免费视频| av福利片在线| 日本五十路高清| 国产区一区二久久| 精品国产一区二区三区四区第35| 欧美国产精品一级二级三级| 国产欧美日韩一区二区三 | 国产精品麻豆人妻色哟哟久久| 18禁裸乳无遮挡动漫免费视频| 欧美精品高潮呻吟av久久| 91麻豆av在线| 国产精品国产av在线观看| 国产精品一区二区在线不卡| 美女高潮喷水抽搐中文字幕| 久久青草综合色| av有码第一页| 精品国产国语对白av| 欧美日韩亚洲综合一区二区三区_| 国产成+人综合+亚洲专区| 性色av乱码一区二区三区2| 免费日韩欧美在线观看| 欧美精品一区二区大全| 动漫黄色视频在线观看| 久久久国产成人免费| 日韩免费av在线播放| 非洲黑人性xxxx精品又粗又长| www.自偷自拍.com| 久久精品国产99精品国产亚洲性色| 97人妻精品一区二区三区麻豆| 午夜福利成人在线免费观看| 久久天堂一区二区三区四区| 国产探花在线观看一区二区| 久久久精品欧美日韩精品| 国产午夜精品论理片| 51午夜福利影视在线观看| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 黄色成人免费大全| 真人一进一出gif抽搐免费| 悠悠久久av| 国产成人一区二区三区免费视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 日本三级黄在线观看| 国产91精品成人一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 久久热在线av| 久久婷婷人人爽人人干人人爱| 特大巨黑吊av在线直播| 亚洲片人在线观看| 中文在线观看免费www的网站 | 国产精品亚洲美女久久久| 免费观看人在逋| 欧美精品啪啪一区二区三区| 这个男人来自地球电影免费观看| 妹子高潮喷水视频| 很黄的视频免费| 午夜福利18| 婷婷丁香在线五月| 久久这里只有精品中国| 两个人看的免费小视频| 亚洲无线在线观看| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 一区二区三区激情视频| 国产成人av教育| 国产三级中文精品| 可以免费在线观看a视频的电影网站| 男女下面进入的视频免费午夜| 国内久久婷婷六月综合欲色啪| 88av欧美| 精品高清国产在线一区| 两个人视频免费观看高清| 欧美日韩精品网址| tocl精华| 国产野战对白在线观看| 国产精品 欧美亚洲| 亚洲av美国av| netflix在线观看网站| 两个人视频免费观看高清| 精品不卡国产一区二区三区| 操出白浆在线播放| 精华霜和精华液先用哪个| 精品久久久久久久久久久久久| 一二三四社区在线视频社区8| 久久 成人 亚洲| 极品教师在线免费播放| 亚洲欧美精品综合一区二区三区| 成人手机av| 波多野结衣高清无吗| 国产成人欧美在线观看| 午夜免费观看网址| 波多野结衣巨乳人妻| 亚洲av第一区精品v没综合| 又紧又爽又黄一区二区| 国产熟女午夜一区二区三区| 久久国产乱子伦精品免费另类| 日本在线视频免费播放| 十八禁网站免费在线| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看 | 看黄色毛片网站| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 在线观看www视频免费| 亚洲欧美日韩东京热| 香蕉丝袜av| 日本三级黄在线观看| 日韩欧美一区二区三区在线观看| 久久伊人香网站| 亚洲精品久久成人aⅴ小说| 老司机午夜福利在线观看视频| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 日韩欧美 国产精品| 1024手机看黄色片| 国产亚洲精品一区二区www| av在线天堂中文字幕| 91在线观看av| 亚洲性夜色夜夜综合| 最近最新中文字幕大全电影3| 国产高清激情床上av| 精品久久久久久久久久久久久| 国产精品一及| 99热这里只有精品一区 | 国产精品一区二区三区四区免费观看 | 亚洲五月婷婷丁香| 亚洲一区中文字幕在线| 欧美日韩乱码在线| 老熟妇乱子伦视频在线观看| 最近视频中文字幕2019在线8| 亚洲精品国产一区二区精华液| 18禁黄网站禁片免费观看直播| 99精品久久久久人妻精品| 曰老女人黄片| 一夜夜www| 亚洲专区字幕在线| 久久久久久国产a免费观看| 成人一区二区视频在线观看| 久久精品综合一区二区三区| 波多野结衣巨乳人妻| 亚洲性夜色夜夜综合| 超碰成人久久| 一个人观看的视频www高清免费观看 | 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 后天国语完整版免费观看| 亚洲精品中文字幕在线视频| 亚洲人与动物交配视频| 成人国产一区最新在线观看| 99在线视频只有这里精品首页| 成人av一区二区三区在线看| 久久久国产成人免费| 精品国产超薄肉色丝袜足j| 这个男人来自地球电影免费观看| www日本在线高清视频| 免费人成视频x8x8入口观看| netflix在线观看网站| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 国产欧美日韩精品亚洲av| 91老司机精品| 天堂动漫精品| 中文字幕久久专区| 免费高清视频大片| 日日摸夜夜添夜夜添小说| 一个人免费在线观看的高清视频| 夜夜躁狠狠躁天天躁| 99热只有精品国产| 性欧美人与动物交配| 久久精品人妻少妇| 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 成人手机av| 国产午夜福利久久久久久| 在线观看午夜福利视频| 国产乱人伦免费视频| 亚洲一码二码三码区别大吗| 看黄色毛片网站| 久久香蕉国产精品| 怎么达到女性高潮| 国产精品,欧美在线| 国产成人啪精品午夜网站| 99re在线观看精品视频| 久久草成人影院| 亚洲成人中文字幕在线播放| 欧美极品一区二区三区四区| 欧美午夜高清在线| 久久久久久久久免费视频了| 琪琪午夜伦伦电影理论片6080| 国产伦一二天堂av在线观看| 成人午夜高清在线视频| 黄色成人免费大全| 国产精华一区二区三区| 999精品在线视频| 在线看三级毛片| 午夜影院日韩av| 亚洲欧美精品综合久久99| 国产主播在线观看一区二区| 两个人看的免费小视频| 亚洲精品美女久久av网站| 免费观看精品视频网站| 久久中文字幕人妻熟女| 天天一区二区日本电影三级| 日韩av在线大香蕉| 一区二区三区激情视频| 黄色片一级片一级黄色片| 午夜福利18| 国产成人av教育| 日韩欧美国产一区二区入口| x7x7x7水蜜桃| 国产野战对白在线观看| 国产97色在线日韩免费| 亚洲成人精品中文字幕电影| 久久这里只有精品19| 亚洲专区中文字幕在线| bbb黄色大片| 日本五十路高清| 老司机午夜十八禁免费视频| 久久久久亚洲av毛片大全| 久久久久性生活片| 2021天堂中文幕一二区在线观| 欧美3d第一页| 巨乳人妻的诱惑在线观看| 午夜福利成人在线免费观看| 国产精品香港三级国产av潘金莲| 成人三级做爰电影| 97人妻精品一区二区三区麻豆| 免费看日本二区| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷丁香在线五月| 草草在线视频免费看| 亚洲av电影不卡..在线观看| 亚洲精品久久成人aⅴ小说| 日本在线视频免费播放| 91麻豆精品激情在线观看国产| 制服人妻中文乱码|