• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network

    2014-08-12 02:31:00LIFeiHEPeiWANGXiangtao王向濤ZHENGYafei鄭亞飛GUOYangming郭陽(yáng)明JIXinyu姬昕禹
    關(guān)鍵詞:陽(yáng)明

    LI Fei (李 飛), HE Pei (何 佩), WANG Xiang-tao (王向濤), ZHENG Ya-fei (鄭亞飛), GUO Yang-ming (郭陽(yáng)明), JI Xin-yu (姬昕禹)

    1 School of Management, Northwestern Polytechnical University, Xi’an 710072, China 2 School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

    Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network

    LI Fei (李 飛)1,2*, HE Pei (何 佩)2, WANG Xiang-tao (王向濤)2, ZHENG Ya-fei (鄭亞飛)2, GUO Yang-ming (郭陽(yáng)明)2, JI Xin-yu (姬昕禹)2

    1SchoolofManagement,NorthwesternPolytechnicalUniversity,Xi’an710072,China2SchoolofComputerScience,NorthwesternPolytechnicalUniversity,Xi’an710072,China

    Electronic components’ reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit, a combinatorial optimization diagnosis scheme was proposed with back propagation (BP) neural network (BPNN). The main contributions of this scheme included two parts: (1) the random tolerance samples were added into the nominal training samples to establish new training samples, which were used to train the BP neural network based diagnosis model; (2) the initial weights of the BP neural network were optimized by genetic algorithm (GA) to avoid local minima, and the BP neural network was tuned with Levenberg-Marquardt algorithm (LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability, and effectively promotes analog circuit fault diagnosis performance based on BPNN.

    analogcircuit;faultdiagnosis;backpropagation(BP)neuralnetwork;combinatorialoptimization;tolerance;geneticalgorithm(GA);Levenberg-Marquardtalgorithm(LMA)

    Introduction

    The electronic systems’ reliability has become the key of the normal operation of whole system and the fault diagnosis is attracting more and more attention. Analog circuits play a vital role in ensuring the availability of industrial systems[1-2]. Compared with the digital circuit faults, the analog circuit faults mainly have the following inherent characteristics: discontinuity response, continuous variable element parameters, and element parameter tolerances[3-4], which cause the fault mode too complex to be accurately described, and the fault point is difficult to be located,etc. Therefore, the development of analog circuit fault diagnosis method is slow, and the traditional fault diagnosis theories and methods, such as the fault-dictionary method, the parameter identification method[5], are usually difficult to achieve the desired effect in practice. Now, the analog circuit fault diagnosis theory and methods have become challenging and hot study field[6].

    The development of modern intelligent fault diagnosis technology, such as the neural network (NN) based methods[3, 7-9], provides new approaches in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit, this paper chooses back propagation (BP) neural network (BPNN) as basic diagnosis model, and then proposes a scheme of analog circuit fault diagnosis: (1) new training samples are used to train the BPNN to improve the generalization ability for the actual data; (2) the initial weights of BPNN are optimized by genetic algorithm (GA) to avoid local minima; (3) the BPNN is finely tuned with Levenberg-Marquardt algorithm (LMA) method in the local solution space to look for the optimum solution or approximate optimal solutions. In this way, the BPNN model for analog circuit diagnosis has better learning speed and generalization capability.

    1 A Brief Review of Related Works

    1.1 The basic principle of BPNN

    BPNN has been widely used in practice and is regarded as the core part of forward neural network. It is a kind of learning algorithm for error correction built on the basis of gradient descent method, which organically combines positive spread of the input signal with back-propagation of error signal[10]. A typical BPNN generally is composed of three layers: the input layer, the output layer, and one (or several) hidden layer(s). The topology structure is shown in Fig.1.

    Fig.1 The topology of BPNN

    In Fig.1,xi,i=1, 2, …,nis the input values of BP neural network, whileyj,j=1, 2, …,mis the output values,nis the input node number,qis the hidden layer node number,mis the output node number, andvandware the weights of BPNN. As seen from Fig.1, BPNN is a nonlinear function, with the input values and output values of network respectively as the independent variable and dependent variable of the function.

    If the selection of input and output is appropriate, the analog circuit fault can be transformed into the mapping relations between the input and output, and then the BPNN, with sufficiently training, can be used to analog circuit fault diagnosis.

    1.2 GA

    GA is a randomized search technique that is based on ideas from the natural biological evolution[11]. GA will typically have five parts: (1) a representation of a guess called a chromosome; (2) an initial pool of chromosomes; (3) a fitness function; (4) a selection function; (5) a crossover operator and a mutation operator. A chromosome can be a binary string or a more elaborate data structure. The initial pool of chromosomes can be randomly produced or manually created. The fitness function measures the suitability of a chromosome to meet a specified objective. The selection function decides which chromosomes will participate in the evolution stage of the genetic algorithm made up by the crossover and mutation operators. The crossover operator exchanges genes from two chromosomes and creates two new chromosomes. The mutation operator changes a gene in a chromosome and creates one new chromosome.

    GA is a parallel and global search technique that emulates natural genetic operators. It offers a new and powerful approach to the optimization problems. And it has found extensive applications in solving global optimization searching problems.

    1.3 LMA

    LMA is the most widely used optimization algorithm. It is a non-linear parameter learning algorithm that converges accurately and quickly[12]. The LMA is a very popular curve-fitting algorithm used to solve generic curve-fitting problems. As for many fitting algorithms, the LMA finds only a local minimum which is not necessarily the global minimum. However, the LMA can be used to validate the proposed mathematical model by finding the values of the parameters involved that best fit the measured data within some acceptable error. The LMA is a popular method of finding the minimum of a function that is a sum of squares of nonlinear functions.

    The LMA shows the most efficient convergence during the BP training process because it acts as a compromise, between the first-order optimization method (steepest-descent method) with stable but slow convergence and the second-order optimization method with opposite characteristics[13].

    2 Combinatorial Optimization Based Analog Circuit Fault Diagnosis

    2.1 Training samples optimization

    The rationality of training sample data selection and representation will influence the fault diagnosis results and the design of neural network extremely. If the BPNN based diagnosis model is relatively optimal, optimizing training samples is one way to improve diagnosis results.

    The extrapolation capability of BPNN is limited and the actual circuit components all have a certain tolerance. The trained BPNN using the nominal value will not get good diagnosis results in practical application. The correct rate of diagnosis will be greatly reduced. Here a new way is proposed to improve the generalization ability of the network from the training sample, which also is the way to improve the diagnosis results. That is to add a random tolerance sample into the training sample. By this way, strong classification ability in analog circuit fault diagnosis due to considering the tolerances of the components is obtained.

    Suppose there is only one fault mode at same time, then the stochastic simulation methods can be utilized, such as Monte Carlo simulation, to collect the training sample of random tolerance of each fault mode. IfMis the number of fault modes, the number of random tolerance samples is according to the times of stochastic simulations. That is to say, ifPijrepresents one of the random tolerance samples of fault modei, the new samples are made up of the nominal input valuePNandPij. In this paper, the following input samples vector will be applied

    (1)

    2.2 Optimization of BPNN via GA and LMA

    2.2.1 Optimization of BPNN via GA

    In this paper, GA is the learning algorithm of BP forward network with fixed network structure. The steps of using GA to optimize the initial weights of neural network are shown as follows.

    Step 1 Determine the network structure and learning rules. Encode each weight value generated randomly by some ways, and then arrange the weights in the network to form a code chain. Here each code chain represents a distribution state of weights, and a set of chains represent a BPNN with different weights.

    Step 2 Calculate the error function corresponding to each code chain. In this way, the necessary fitness function of genetic algorithm will be determined. The smaller has higher fitness value.

    Step 3 Choose several largest fitness functions as the male parent.

    Step 4 Generate the new group using current generation group via the crossover and mutation operator.

    Step 5 Repeat the above steps to make the weights distribution evolution continuously until meeting the training target.

    The key of the above method is to encode the weight values. Here the specific design and implementation are shown as follows.

    (1) Chromosome coding and its description

    Binary coding is natural and direct and can be used by crossover and mutation operator directly. In order to improve the coding accuracy, the longer codes should be used.

    (2) Adaptive function design

    The target of GA search is to get weights with minimum sum of error square which can be calculated according to the generated weights and thresholds, and the fitness function is the reciprocal of the error function described as follows:

    (2)

    (3) Selection operation

    The new ranking selection rule is as follows: the firstnindividuals will be made as two copies, the lastnindividuals are eliminated, and the middleL-2nindividuals are made as one copy.

    (4) Crossover calculation

    Since the real number coding needs to be calculated directly in the problem space, and the two new chromosomes would be generated through the linear combination of the two old chromosomes.

    (5) Mutation calculation

    The non-uniform mutation operator is utilized to implement the mutation calculation according to the real number coding.

    2.2.2 Optimization of BPNN via LMA

    When the LMA optimization is applied to the BPNN, the update formula of BPNN weights and thresholds is shown as follows

    X(k+1)=X(k)-(JTJ+μI-1)JTe,

    (3)

    whereJis the Jacobi matrix of differential error on weight,eis the error vector, andμis a scalar. The amplitude ofμchanges smoothly between the two extremes, that are the Newton Method (whenμ→0) and the Steepest Descent Method (whenμ→∞). With the increasing ofμ,JTJcan be ignored, so the learning process mainly depends on the gradient descent.

    2.3 Analog circuit fault diagnosis

    Set up the analog circuit diagnosis model based on the optimized BPNN via optimized training samples. The diagnosis steps can be described as follows.

    Step 1 Based on nominal value of each circuit component, collect the testing data via simulation;

    Step 2 Consider the component tolerance, add suitable random tolerance into the testing data, and establish the new training samples;

    Step 3 Design initial BPNN structure and select its parameters;

    Step 4 Use the training sample to train the BPNN with the proposed scheme described in Sections 2.1 and 2.2;

    Step 5 Set up the analog circuit fault diagnosis model and perform diagnosis.

    3 Experimental Simulations and Analysis

    In order to examine the fault diagnosis efficiency of the proposed model, this section performs the following experimental simulation. Here, as shown in Ref.[14], the video amplifying circuit (shown in Fig.2) will be analyzed.

    Fig.2 The video amplifying circuit presented in Ref. [14]

    In Fig.2, there are eleven transistors (Q1-Q11) and eighteen resistors in the circuit. Same as Ref.[14], fourteen transistors fault modes are chosen, shown in Table 1 with F0 -F14. And in Table 1, B represents the base, E represents the emitter, C represents the collector, S represents the short circuit, and O represents open circuit. For example, the fault mode “Q1BES” means the base and emitter of transistor Q1 are short circuit.

    Table 1 Fault modes

    According to the optimal selection method of test points[15], the nodes 4, 10, 12, 15, 21, 22, and 23 are selected to be the test points, and they are represented as V4, V10,etc. so the test vector is a 7 dimensional vector. Establish faults table of each test point under the fault state and normal state. The correspondence between sample data normalized and the faults of each test point are shown in Table 2. These data are the ideal training samples.

    Fifty times stochastic simulations under 5% component tolerance are executed, and select 10 sample data with equal intervals as the random tolerance training sample. The new training samples contain these training samples and the ideal training samples. Here, set the population size as 100, crossover and mutation probabilities as 0.4 and 0.005 respectively, and the max evolutionary generation number is 100. In order to comparatively analyze the experimental results, the BPNN structure is the same as Ref.[14], that is the node number of the input layer, two hidden layer and the output layer are 7, 22, 18, and 15, the activation function is sigmoid function, and the error is less than 0.01. The feature vector and its diagnostic results are shown in Tables 3 and 4, respectively.

    Table 2 The normalized sample data of fault modes

    Table 3 The actual feature vector of Fig.1 (normalized)

    Table 4 The diagnostic results of actual feature vector of Fig.1

    In Table 4, the blank values are 0.0000, * means diagnostic error. If the outputyiis close to 1 and the others of the row equal to 0 approximately, that means diagnostic right to the corresponding state. Figure 3 and Table 4 show that (1) the accuracy of the proposed fault diagnosis model is more than 90%, and it is a better method; (2) with the same precision error, the number of iterations is more than 6 000 in Ref.[14] while the proposed BPNN only needs 374 epochs. Thus, the proposed method in this paper improves the learning speed and the ability of generalization of the network when diagnosing the analog circuit, and the diagnosis results are better.

    4 Conclusions

    This paper discusses a combinatorial optimization scheme of analog circuit fault diagnosis based on BPNN. This method aims at the tolerance of analog circuit components, and a random tolerance sample is added into the nominal training sample to establish new training sample. As a result, this method effectively improves the performance of analog circuit fault diagnosis. Moreover, the GA optimization is adopted to determine the initial weights of BPNN by replacing the random initial weights with a better search space. After that, the optimal solution or approximate optimal solution is obtained by finely tuning the BPNN in the local solution space using LMA. This increases the convergence speed of BPNN. The experimental results show that the proposed scheme has good diagnosis performance in analog circuit fault diagnosis, and it is a valuable method in applications.

    [1] Potamianos P G, Mitronikas E D, Safacas A N. Open-Circuit Fault Diagnosis for Matrix ConverterDrives and Remedial Operation Using Carrier-Based Modulation Methods[J].IEEETransactionsonIndustrialElectronics, 2014, 61(1): 531-545.

    [2] Gritli Y, Zarri L, Rossi C,etal. Advanced Diagnosis of Electrical Faults in Wound-rotor Induction Machines[J].IEEETransactionsonIndustrialElectronics, 2013, 60(9): 4012-4024.

    [3] Du X, Tang D Q, Yang Y Z. The Development of Analog Circuit Fault Diagnosis Technology [J].MeasurementandControlTechnology, 2003, 22(7): 1-3.

    [4] Guo F Q. Analog Circuit Fault Diagnosis Based on Fuzzy Neural Network [J].JournalofShaanxiUniversityofTechnology:NaturalSciences, 2009, 25(4): 20-25. (in Chinese)

    [5] Han B R, Wu H Y, Huang G. Researches of Analog Circuit Fault Diagnosis Based on Wavelet Neural Network [J].ElectronicsQuality, 2009(10): 34-36. (in Chinese)

    [6] Guo Y M, Wang X T, Liu C.etal. Electronic System Fault Diagnosis with Optimized Multi-kernel SVM by Improved CPSO [J].MaintenanceandReliability, 2014, 16(1): 85-91.

    [7] Boukra T, Lebaroud A, Clerc G. Statistical and Neural-network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation [J].IEEETransactionsonIndustrialElectronics, 2013. 60(9): 4034-4042.

    [8] Toma S, Capocchi L, Capolino G A. Wound-Rotor Induction Generator Inter-Turn Short-Circuits Diagnosis Using a New Digital Neural Network [J].IEEETransactionsonIndustrialElectronics, 2013, 60(9): 4043-4052.

    [9] Kumar A, Singh A P. Neural Network Based Fault Diagnosis in Analog Electronic Circuit Using Polynomial Curve Fitting [J].InternationalJournalofComputerApplications, 2013, 61(6): 28-34.

    [10] Hagras H. Embedding Computational Intelligence in Pervasive Spaces [J].IEEEPervasiveComputing, 2007, 6(3): 85-89.

    [11] Holland J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence [M]. Oxford, England: U Michigan Press, 1975.

    [12] Shawash J, Selviah D R. Real-time Nonlinear Parameter Estimation Using the Levenberg-Marquardt Algorithm on Field Programmable Gate Arrays [J].IEEETransactionsonIndustrialElectronics, 2013, 60(1): 170-176.

    [13] Hagan M T, Menhaj M B. Training Feed-forward Networks with the Marquardt Algorithm [J].IEEETransactionsonNeuralNetworks, 1994, 5(6): 989-993.

    [14] He Y G, Liang G C.The Method of BP Neural Network for Analog Circuit Fault Diagnosis [J].JournalofHunanUniversity:NaturalSciences, 2003, 30(5): 35-39. (in Chinese)

    [15] Yang S Y. Fault Diagnosis and Reliability Design of Analog Systems [M]. Beijing, China: Tsinghua University Press, 1993. (in Chinese)

    National Natural Science Foundation of China (No. 61371024); Aviation Science Fund of China (No. 2013ZD53051); Aerospace Technology Support Fund of China; the Industry-Academy-Research Project of AVIC, China (No. cxy2013XGD14); the Open Research Project of Guangdong Key Laboratory of Popular High Performance Computers/Shenzhen Key Laboratory of Service Computing and Applications, China

    1672-5220(2014)06-0774-05

    Received date: 2014-08-08

    * Correspondence should be addressed to LI Fei, E-mail: lifei@nwpu.edu.cn

    CLC number: TN46 Document code: A

    猜你喜歡
    陽(yáng)明
    高中生物錯(cuò)題集建立的實(shí)踐研究
    A Randomized Controlled Clinical Trial on Efficacy and Safety of Electroacupuncture on Oral Oxycodone Hydrochloride Prolonged-Release Tablets Related Constipation
    中醫(yī)名言拾粹
    陽(yáng)明公園暢想——紀(jì)念王陽(yáng)明置縣平和500年
    紅土地(2018年11期)2018-12-19 05:11:04
    杲杲冬日陽(yáng)明暖好時(shí)光
    話劇《陽(yáng)明三夜》劇照
    --(第一夜 新婚之夜)
    影劇新作(2017年3期)2017-11-14 02:42:52
    陽(yáng)明海運(yùn)股份有限公司船期表
    羅陽(yáng)明:大瑤山里的年輕博士
    金色年華(2016年7期)2016-02-28 01:39:02
    勵(lì)精圖治 領(lǐng)翔高飛——記孝感市審計(jì)局黨組書記、局長(zhǎng)陽(yáng)明軍
    陽(yáng)明海運(yùn)股份有限公司船期表
    久久av网站| 亚洲av综合色区一区| 国产免费一区二区三区四区乱码| 亚洲伊人久久精品综合| 国产精品成人在线| 国产又色又爽无遮挡免| 亚洲第一av免费看| 搡老岳熟女国产| 欧美在线黄色| 国产又爽黄色视频| 日韩 欧美 亚洲 中文字幕| 成年av动漫网址| 性色av一级| 一级黄片播放器| 免费在线观看视频国产中文字幕亚洲 | 婷婷色麻豆天堂久久| 丝袜人妻中文字幕| 亚洲欧美成人综合另类久久久| 亚洲熟女精品中文字幕| 十分钟在线观看高清视频www| 国产视频首页在线观看| 久久综合国产亚洲精品| 精品国产国语对白av| 美女国产高潮福利片在线看| 18禁动态无遮挡网站| 国产精品蜜桃在线观看| 亚洲国产精品国产精品| 在线精品无人区一区二区三| 国产女主播在线喷水免费视频网站| 国产麻豆69| 色视频在线一区二区三区| 黄色怎么调成土黄色| 亚洲色图综合在线观看| 制服人妻中文乱码| 99久久99久久久精品蜜桃| 日韩 亚洲 欧美在线| 国产片特级美女逼逼视频| 亚洲欧美清纯卡通| 免费看av在线观看网站| 亚洲国产成人一精品久久久| 国产精品久久久久久精品古装| 在线亚洲精品国产二区图片欧美| 亚洲三区欧美一区| 18禁观看日本| 考比视频在线观看| 国产成人精品福利久久| 在线天堂中文资源库| 精品国产一区二区三区久久久樱花| 肉色欧美久久久久久久蜜桃| 99热国产这里只有精品6| 中文字幕色久视频| 男女高潮啪啪啪动态图| 成人国产av品久久久| 欧美日韩成人在线一区二区| 91国产中文字幕| 国产精品无大码| 国产熟女午夜一区二区三区| 日韩一本色道免费dvd| 这个男人来自地球电影免费观看 | 中文字幕高清在线视频| 在现免费观看毛片| 日韩 亚洲 欧美在线| 国产精品久久久久久精品古装| 亚洲精品第二区| av在线老鸭窝| 国产在线免费精品| 日韩熟女老妇一区二区性免费视频| 电影成人av| 两性夫妻黄色片| 99精品久久久久人妻精品| 亚洲欧洲国产日韩| 欧美中文综合在线视频| 黄片播放在线免费| 婷婷色综合www| 国产精品99久久99久久久不卡 | 亚洲色图 男人天堂 中文字幕| 性少妇av在线| 黑人欧美特级aaaaaa片| 高清不卡的av网站| 国产精品一区二区精品视频观看| 欧美成人精品欧美一级黄| 男女午夜视频在线观看| 亚洲欧美色中文字幕在线| 精品一品国产午夜福利视频| 免费在线观看完整版高清| 国产伦人伦偷精品视频| 亚洲伊人久久精品综合| 精品少妇内射三级| 免费看av在线观看网站| 精品国产一区二区三区四区第35| 国产又色又爽无遮挡免| 美女高潮到喷水免费观看| 一级,二级,三级黄色视频| 欧美日韩成人在线一区二区| 免费在线观看黄色视频的| 男女国产视频网站| 亚洲精品久久午夜乱码| 一级毛片我不卡| 国产一区有黄有色的免费视频| 色婷婷久久久亚洲欧美| 国产黄色视频一区二区在线观看| 久久久久久人人人人人| 美女中出高潮动态图| av有码第一页| 1024视频免费在线观看| 日本wwww免费看| 一区二区av电影网| 各种免费的搞黄视频| 伦理电影免费视频| 不卡av一区二区三区| 美女视频免费永久观看网站| 波多野结衣av一区二区av| 少妇被粗大的猛进出69影院| 国产有黄有色有爽视频| 午夜av观看不卡| 久久影院123| 九色亚洲精品在线播放| 精品一品国产午夜福利视频| 美女脱内裤让男人舔精品视频| 一区二区av电影网| 最近中文字幕高清免费大全6| 国产精品一二三区在线看| 久久久久久人妻| 80岁老熟妇乱子伦牲交| 久久免费观看电影| 99久久精品国产亚洲精品| 久久综合国产亚洲精品| www日本在线高清视频| 亚洲美女搞黄在线观看| 亚洲国产日韩一区二区| 满18在线观看网站| 成人黄色视频免费在线看| 亚洲欧洲精品一区二区精品久久久 | 人人澡人人妻人| 秋霞在线观看毛片| 在线观看一区二区三区激情| 欧美黑人欧美精品刺激| 欧美日本中文国产一区发布| 亚洲av欧美aⅴ国产| 女人精品久久久久毛片| 亚洲情色 制服丝袜| 国产精品熟女久久久久浪| 国产成人欧美| 久热这里只有精品99| 亚洲精品美女久久久久99蜜臀 | 纵有疾风起免费观看全集完整版| 亚洲色图 男人天堂 中文字幕| 日韩av免费高清视频| 亚洲成人手机| 99热全是精品| 日本91视频免费播放| 在线精品无人区一区二区三| 国产精品久久久久久人妻精品电影 | 满18在线观看网站| 在线观看免费午夜福利视频| 国产男女内射视频| 亚洲国产最新在线播放| 亚洲精品成人av观看孕妇| 97在线人人人人妻| 99re6热这里在线精品视频| 日韩人妻精品一区2区三区| 女人精品久久久久毛片| 日日摸夜夜添夜夜爱| 精品少妇一区二区三区视频日本电影 | 国产亚洲精品第一综合不卡| 人妻一区二区av| 免费观看av网站的网址| 最黄视频免费看| 亚洲av电影在线观看一区二区三区| 女性被躁到高潮视频| 国产日韩欧美亚洲二区| 国产免费福利视频在线观看| av在线播放精品| av在线老鸭窝| 精品国产乱码久久久久久小说| 一本大道久久a久久精品| 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 国产 精品1| 日韩,欧美,国产一区二区三区| 国产成人免费观看mmmm| a 毛片基地| 80岁老熟妇乱子伦牲交| 操美女的视频在线观看| 韩国高清视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 久久久久人妻精品一区果冻| 免费黄频网站在线观看国产| 看非洲黑人一级黄片| 99久国产av精品国产电影| 久久久欧美国产精品| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 最近中文字幕2019免费版| 亚洲精品国产色婷婷电影| 亚洲图色成人| 国产黄频视频在线观看| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 中文字幕色久视频| 亚洲美女搞黄在线观看| 视频在线观看一区二区三区| av不卡在线播放| 十八禁网站网址无遮挡| 伦理电影免费视频| 精品国产一区二区三区四区第35| 亚洲国产av影院在线观看| 最近的中文字幕免费完整| 国产成人精品福利久久| 中国国产av一级| 午夜福利视频在线观看免费| 观看av在线不卡| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品电影小说| 欧美激情极品国产一区二区三区| 多毛熟女@视频| 侵犯人妻中文字幕一二三四区| a级片在线免费高清观看视频| 亚洲伊人久久精品综合| 欧美 日韩 精品 国产| 51午夜福利影视在线观看| 午夜影院在线不卡| 亚洲欧美一区二区三区黑人| 黄色毛片三级朝国网站| 国产一卡二卡三卡精品 | 亚洲av综合色区一区| 亚洲欧美一区二区三区黑人| 99九九在线精品视频| 蜜桃在线观看..| 亚洲一级一片aⅴ在线观看| 国产日韩欧美视频二区| av.在线天堂| 久久人人爽av亚洲精品天堂| av视频免费观看在线观看| 亚洲伊人久久精品综合| 婷婷色av中文字幕| 亚洲av中文av极速乱| 日韩欧美精品免费久久| 国产探花极品一区二区| 免费不卡黄色视频| 天天躁日日躁夜夜躁夜夜| 精品亚洲乱码少妇综合久久| videosex国产| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品电影小说| 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 青春草亚洲视频在线观看| 婷婷成人精品国产| 大香蕉久久网| 别揉我奶头~嗯~啊~动态视频 | 亚洲av国产av综合av卡| 国产一区二区 视频在线| 免费日韩欧美在线观看| 宅男免费午夜| 国产黄频视频在线观看| 天美传媒精品一区二区| 精品亚洲乱码少妇综合久久| 久久久久久久久久久久大奶| 国产精品欧美亚洲77777| 欧美日韩av久久| 女人高潮潮喷娇喘18禁视频| 丝袜美腿诱惑在线| 日日撸夜夜添| 激情视频va一区二区三区| 高清黄色对白视频在线免费看| 午夜福利视频精品| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 日韩视频在线欧美| 1024视频免费在线观看| 久久精品国产综合久久久| 91精品三级在线观看| 2018国产大陆天天弄谢| 丝袜喷水一区| 最新在线观看一区二区三区 | 亚洲成人免费av在线播放| 国产精品无大码| 欧美日韩av久久| 欧美激情高清一区二区三区 | 满18在线观看网站| 超碰成人久久| 男女之事视频高清在线观看 | 美女国产高潮福利片在线看| 欧美激情高清一区二区三区 | 纵有疾风起免费观看全集完整版| 免费在线观看视频国产中文字幕亚洲 | 免费日韩欧美在线观看| 久久国产精品大桥未久av| 亚洲精品久久午夜乱码| 99国产精品免费福利视频| 欧美少妇被猛烈插入视频| 亚洲成人免费av在线播放| 久久精品久久久久久噜噜老黄| 日韩中文字幕欧美一区二区 | 中文字幕最新亚洲高清| 国产精品国产av在线观看| 啦啦啦在线观看免费高清www| 十八禁高潮呻吟视频| 哪个播放器可以免费观看大片| 99热全是精品| 午夜日本视频在线| 中文乱码字字幕精品一区二区三区| 欧美日韩综合久久久久久| 啦啦啦在线免费观看视频4| 宅男免费午夜| 欧美另类一区| 伊人久久国产一区二区| 亚洲精品日韩在线中文字幕| 97人妻天天添夜夜摸| 中文字幕人妻丝袜制服| 99九九在线精品视频| 国产成人精品福利久久| 国产成人免费无遮挡视频| 在线精品无人区一区二区三| 色视频在线一区二区三区| 国产一卡二卡三卡精品 | 天天躁狠狠躁夜夜躁狠狠躁| e午夜精品久久久久久久| 亚洲美女搞黄在线观看| 久久这里只有精品19| 中文字幕制服av| 国产黄频视频在线观看| 免费看av在线观看网站| 亚洲av中文av极速乱| 亚洲精品久久午夜乱码| 亚洲成人免费av在线播放| 69精品国产乱码久久久| 久久久久久人人人人人| 日韩精品有码人妻一区| 纯流量卡能插随身wifi吗| 久久性视频一级片| 国产亚洲一区二区精品| 国产精品偷伦视频观看了| 九色亚洲精品在线播放| 亚洲av国产av综合av卡| 亚洲熟女毛片儿| 久久久亚洲精品成人影院| 色婷婷久久久亚洲欧美| 欧美精品人与动牲交sv欧美| 久久久久国产精品人妻一区二区| a级毛片在线看网站| 亚洲欧美中文字幕日韩二区| 欧美精品人与动牲交sv欧美| 国产人伦9x9x在线观看| 国产精品香港三级国产av潘金莲 | 一边摸一边抽搐一进一出视频| 免费观看av网站的网址| 在线 av 中文字幕| 纵有疾风起免费观看全集完整版| 老司机在亚洲福利影院| 一级片免费观看大全| 曰老女人黄片| 午夜日本视频在线| 在线观看www视频免费| 一区二区三区精品91| 一边摸一边做爽爽视频免费| 汤姆久久久久久久影院中文字幕| 一级a爱视频在线免费观看| 热99久久久久精品小说推荐| 亚洲少妇的诱惑av| 久久久久视频综合| 午夜影院在线不卡| 亚洲欧洲日产国产| 80岁老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 亚洲欧美成人精品一区二区| 精品第一国产精品| 久久亚洲国产成人精品v| 丰满乱子伦码专区| 男女无遮挡免费网站观看| xxx大片免费视频| tube8黄色片| 最新在线观看一区二区三区 | 一个人免费看片子| 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 大片免费播放器 马上看| 欧美最新免费一区二区三区| 中文字幕高清在线视频| 欧美激情高清一区二区三区 | 大香蕉久久成人网| 婷婷色av中文字幕| 少妇人妻 视频| 黑人巨大精品欧美一区二区蜜桃| 日韩一卡2卡3卡4卡2021年| 精品人妻一区二区三区麻豆| 国产成人欧美在线观看 | 伊人亚洲综合成人网| 男人爽女人下面视频在线观看| 欧美在线一区亚洲| 久久久久国产精品人妻一区二区| 18在线观看网站| 天堂俺去俺来也www色官网| 街头女战士在线观看网站| 黄色 视频免费看| 最黄视频免费看| 韩国精品一区二区三区| 国产成人欧美在线观看 | 男女边摸边吃奶| 99热全是精品| 亚洲熟女精品中文字幕| 99久久人妻综合| 亚洲国产av新网站| 免费少妇av软件| 中文精品一卡2卡3卡4更新| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 尾随美女入室| 国产免费视频播放在线视频| 色网站视频免费| 热99国产精品久久久久久7| 交换朋友夫妻互换小说| 一级黄片播放器| 国产精品无大码| 国产欧美日韩一区二区三区在线| 操美女的视频在线观看| 久久精品熟女亚洲av麻豆精品| av一本久久久久| 尾随美女入室| 男男h啪啪无遮挡| 成人亚洲欧美一区二区av| 一区二区三区乱码不卡18| 人人妻人人澡人人爽人人夜夜| 精品少妇久久久久久888优播| 亚洲男人天堂网一区| 亚洲情色 制服丝袜| 两个人免费观看高清视频| 国产成人啪精品午夜网站| 成人午夜精彩视频在线观看| 久久久久久久精品精品| 午夜福利免费观看在线| 99久国产av精品国产电影| a级毛片在线看网站| 建设人人有责人人尽责人人享有的| 亚洲国产成人一精品久久久| 在线观看免费午夜福利视频| 国产亚洲av片在线观看秒播厂| av网站在线播放免费| 亚洲视频免费观看视频| xxxhd国产人妻xxx| 国产熟女欧美一区二区| 一二三四在线观看免费中文在| 青草久久国产| 熟妇人妻不卡中文字幕| 精品午夜福利在线看| 久久婷婷青草| 亚洲精品久久午夜乱码| 国产av码专区亚洲av| 下体分泌物呈黄色| 国产精品成人在线| 嫩草影视91久久| 国产一区亚洲一区在线观看| 成人午夜精彩视频在线观看| 亚洲 欧美一区二区三区| 99精国产麻豆久久婷婷| 国产精品一区二区精品视频观看| 国产熟女午夜一区二区三区| 午夜福利视频在线观看免费| 亚洲精品国产色婷婷电影| 国产一区二区三区综合在线观看| av国产久精品久网站免费入址| 国产成人精品久久二区二区91 | 永久免费av网站大全| 麻豆精品久久久久久蜜桃| 操出白浆在线播放| 国产xxxxx性猛交| 久久影院123| 亚洲av日韩精品久久久久久密 | 韩国高清视频一区二区三区| 久久精品久久久久久噜噜老黄| 天天躁狠狠躁夜夜躁狠狠躁| 搡老乐熟女国产| 亚洲国产日韩一区二区| 欧美 亚洲 国产 日韩一| 丝袜人妻中文字幕| 伊人久久大香线蕉亚洲五| 精品午夜福利在线看| 日韩欧美一区视频在线观看| 大片电影免费在线观看免费| 一区福利在线观看| av在线播放精品| 狠狠婷婷综合久久久久久88av| 欧美日韩精品网址| 中文字幕人妻熟女乱码| 波多野结衣av一区二区av| 国产片内射在线| 国产欧美亚洲国产| 色婷婷久久久亚洲欧美| 国产精品一国产av| 国产精品麻豆人妻色哟哟久久| 国产高清国产精品国产三级| 女人久久www免费人成看片| 五月天丁香电影| 国产黄频视频在线观看| 国产亚洲精品第一综合不卡| 在线观看国产h片| 女人久久www免费人成看片| 五月天丁香电影| 香蕉国产在线看| 亚洲伊人色综图| 免费av中文字幕在线| 久久精品国产亚洲av涩爱| 一本大道久久a久久精品| 汤姆久久久久久久影院中文字幕| 亚洲伊人色综图| 欧美少妇被猛烈插入视频| 黄色一级大片看看| 亚洲欧美中文字幕日韩二区| 在线观看免费午夜福利视频| 日韩精品免费视频一区二区三区| 最近中文字幕高清免费大全6| 天堂中文最新版在线下载| 亚洲欧美激情在线| 桃花免费在线播放| 久久天堂一区二区三区四区| 精品国产国语对白av| 亚洲精品视频女| 日韩制服丝袜自拍偷拍| 亚洲欧洲日产国产| 色94色欧美一区二区| 欧美精品亚洲一区二区| 亚洲av成人精品一二三区| 久久狼人影院| 日日爽夜夜爽网站| 交换朋友夫妻互换小说| 国产爽快片一区二区三区| 午夜久久久在线观看| 国产一区二区激情短视频 | 婷婷色综合www| 亚洲精品,欧美精品| 精品亚洲成国产av| 黄片播放在线免费| 免费女性裸体啪啪无遮挡网站| 啦啦啦啦在线视频资源| 最近最新中文字幕免费大全7| 免费在线观看完整版高清| 最近手机中文字幕大全| 亚洲色图 男人天堂 中文字幕| 伊人久久大香线蕉亚洲五| 夫妻午夜视频| 老司机影院毛片| 欧美成人午夜精品| 免费不卡黄色视频| 一本一本久久a久久精品综合妖精| 人妻人人澡人人爽人人| 青草久久国产| 巨乳人妻的诱惑在线观看| 久久青草综合色| 人成视频在线观看免费观看| 久久久久久久大尺度免费视频| 免费久久久久久久精品成人欧美视频| 国产精品.久久久| 免费黄色在线免费观看| 女人精品久久久久毛片| 国产精品二区激情视频| 老司机亚洲免费影院| 看非洲黑人一级黄片| 午夜免费观看性视频| 91精品国产国语对白视频| 中文天堂在线官网| 亚洲伊人色综图| 9色porny在线观看| 久久99一区二区三区| 久久久久久人人人人人| 一级毛片电影观看| 亚洲成人av在线免费| 精品国产超薄肉色丝袜足j| 在线观看三级黄色| 女性生殖器流出的白浆| 欧美乱码精品一区二区三区| av.在线天堂| 久久精品久久久久久久性| 国产男人的电影天堂91| 国产精品.久久久| 韩国av在线不卡| 一级毛片 在线播放| 男女床上黄色一级片免费看| 美女国产高潮福利片在线看| 国产麻豆69| 国产成人一区二区在线| 在现免费观看毛片| 亚洲欧美成人综合另类久久久| 少妇被粗大的猛进出69影院| 亚洲综合精品二区| 亚洲熟女精品中文字幕| 秋霞伦理黄片| 99久久99久久久精品蜜桃| 亚洲人成电影观看| 国产日韩欧美在线精品| 色视频在线一区二区三区| 久久久久久久久久久久大奶| 国产日韩欧美亚洲二区| 看免费av毛片| 久久免费观看电影| 午夜福利视频在线观看免费| 日日爽夜夜爽网站| 最新的欧美精品一区二区| 免费少妇av软件| 热re99久久国产66热| 91国产中文字幕| avwww免费| 久久精品国产综合久久久| 日本av免费视频播放| 欧美黑人精品巨大| 亚洲精品国产av成人精品| 美女主播在线视频| 国产又色又爽无遮挡免| 欧美国产精品va在线观看不卡| 亚洲欧洲国产日韩| 亚洲,欧美,日韩| 老司机在亚洲福利影院|