• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Quality Consistency Problem of Electromechanical Component due to Manufacturing Uncertainties with a Novel Tolerance Design Method

    2014-08-12 02:30:58DENGJieYEXuerong葉雪榮WANGYingqi王瑛琪ZHAIGuofu翟國富
    關鍵詞:國富

    DENG Jie (鄧 杰), YE Xue-rong (葉雪榮), WANG Ying-qi (王瑛琪), ZHAI Guo-fu (翟國富)

    School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

    Optimization of Quality Consistency Problem of Electromechanical Component due to Manufacturing Uncertainties with a Novel Tolerance Design Method

    DENG Jie (鄧 杰), YE Xue-rong (葉雪榮)*, WANG Ying-qi (王瑛琪), ZHAI Guo-fu (翟國富)

    SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001,China

    The consistency problem caused by uncertainties in manufacturing process is a significant factor influencing the quality of electromechanical components. Currently, there are two approaches for reducing the influence of uncertainties. The first one is to improve the resistance capability of design scheme by using robust parameter design (RPD) method with nonlinear feature of controllable factors. The second one is to control the influence of uncertainties by using robust tolerance design (RTD) method with quality loss function, setting the optimal tolerance with the minimum total product loss as the objective. However, as for the electromechanical component, it is difficult to achieve nonlinear region owing to the restrictions of design parameters. In addition, the establishment of cost function in manufacturing process is also confronted by practical difficulties. In order to solve the quality consistency problem under the influence of manufacturing uncertainties, a novel tolerance design method was proposed for the electromechanical components. Through the experiment design and contribution rate analysis, key factors influencing the quality consistency were determined, and the tolerance allocation scheme was confirmed according to the consistency objective of quality. Then, quality distribution characteristics before and after the consistency optimization were analyzed and verified through the Monte Carlo stochastic simulation. The application result of electromagnetic relay proves the effectiveness of the method proposed in this paper.

    consistency;uncertainty;electromechanicalcomponents;tolerancedesign

    Introduction

    Consistency of components is very important for its application. However, during the manufacturing process, influence of uncertainties on the quality of products exists objectively, and it cannot be prevented and eliminated[1]. As for electromechanical components containing mechanical structures, influence of uncertainties during the parts processing, subgroup assembling, and debugging processing is extremely significant. The manufacturing uncertainties are mainly from 5M1E, including material, machine, method, member, measurement, and environment. It may make the quality characteristics of products deviate from the central value of the theoretical design and fluctuate.

    Currently in the research field of quality engineering and optimization, studies of reducing the impact of uncertainty factors and improving product robustness are roughly divided into two categories. In the first case, the robust parameter design (RPD) method is utilized to improve the resistance of design scheme against uncertainties, which focuses on choosing the levels of controllable factors, based on the nonlinear relationship between input (or parameters) and output (or characteristics)[2]. The traditional RPD method was proposed by Taguchi[3], which included orthogonal experiment design and some novel methods for analyzing the result data. Then scholars put forward kinds of improved methods. One of the most typical was response surface method (RSM), which was proposed by Hunter[4]. The RSM substantially increases the effectiveness of experimental design and data analysis in some applications when solving RPD problems. Others, such as Menberu[5], combined experimental design process with Monte Carlo procedure, which raised the statistical validity and estimation accuracy of RPD method. To overcome the limitations of Taguchi’s S/N ratio analysis, Chen[6]improved the RPD method with stochastic sequential quadratic programming. Chen and Tang[7]joined the sequential algorithms in the RPD process, and verified the optimal solution by the worst case analysis in each cycle of the optimization process, ensuring that the parameter fluctuation in the tolerance range was still satisfied with system constraints.

    In the second case, the optimal tolerance allocation scheme is determined to reduce the influence of fluctuations by the robust tolerance design (RTD) method, with the objective of minimizing the total loss of the product, which is the sum of quality loss and product cost[8]. Many works have established a variety of mathematical models for the product loss function. In earlier studies by Speckhart[9]and Spotts[10], the reduction of manufacturing cost was considered as the main object in the RTD problems. Then, Taguchi[11]brought the quality loss concept into product design and production processes, and established the tolerance design model, making functional performance and fluctuation as the foundation for calculating the product loss[12]. Later, researchers combined performance fluctuations and product cost to establish an integrated loss function[13]. Jeang[14]considered set up cost, quality loss, failure cost, tolerance and mean costs for processes, and made an improvement for Taguchi loss function. Shen and Yu[15]took into account the subsequent risk-based contingent costs, and built an improved non-throw-away mathematical function to describe the product loss.

    Most research subjects of the above two types of quality optimization problems are electronic systems, and the non-linearity features can be fully used to improve the robustness of the system during the parameter design. However, for electromechanical component, normally the boundary dimension is fixed and restricted by limit space. That means the parameter design value cannot take the optimal point of nonlinear effect. In addition, for different objectives, the optimal solution of the parameter value may be different, and there may be conflicts; for instance, the armature length may increase the magnetic efficiency and optimize the operation voltage, but the increase of the length may increase the weight of armature and impact the actuation time. Consequently, for electromechanical component, beyond nonlinear parameter design which can lead to a good anti-interference product, the more important thing is to ensure the quality consistency by tolerance analyzing and allocating.

    Besides, during the tolerance design of electronic system, the minimum total product loss can be regarded as the optimization objective since it is easy to estimate the cost of each component. But for electromechanical component, its quality consistency is mainly influenced by processing capability. It is hard to build the relationship of cost and processing parameters.

    In this paper, it aims to establish a set of methods for the quality characteristics analysis and consistency optimization of batch electromechanical component components. At first, the theoretical model of quality consistency design will be established on the basis of robust design theory. The model can be used to determine the vital design parameters that have evident impacts on the output consistency. Meanwhile, the tolerance design scheme also can be worked out with this model. Secondly, an optimization procedure for tolerance design is presented. Finally, application example is conducted with the electromagnetic relay as an example.

    1 Theoretical Model for Quality Consistency Design

    1.1 Consistency optimization objective function

    For the manufacturing process of batch products, the basic elements of the quality distribution model mainly consist of design parameters (input element)X, noise factorZ, and quality feature (output element)Y, as shown in Fig.1. Under the impact of noise element, there may be differences between the outputyjand scheduled target. Therefore, the target of the quality consistency optimization is to lower the influence of noise elementZ(z1,z2, …,zk) on the consistency of quality featureY(y1,y2, …,ym) under the current product design planX(x1,x2, …,xn), thus to guarantee the quality level of the entire batch of products.

    Fig.1 The basic elements of quality distribution model

    Normally, the product manufacturing process with fixed value as the target will comply with the normal distribution, namelyxi~N(μIi,σIi). Besides, since the fluctuation of product quality featuresyjis objective and random, generally it can also be considered to follow the normal distributionN(μOj,σOj). Therefore, the quality distribution model can be transformed as shown in Fig.2.

    Fig.2 The quality distribution model with manufacturing process

    When the practical manufacturing is carried out according to the design scheme, it requires that the fluctuation rangeIX(σI1,σI2, …,σIn) of the design parameterX(x1,x2, …,xn) shall be smaller than the given design toleranceTX(tx1,tx2, …,txn), namely

    σIi≤txi, (i=1, 2, …,n).

    (1)

    (2)

    δjis applied to expressing the improvement output consistency, and then the consistency optimization objective function can be represented as:

    (3)

    1.2 Tolerance allocation objective function

    The improvement of quality output consistency shall be realized by reducing the tolerance of design parameters. When determining new tolerance plan, the influencing significance of design parameterX(x1,x2, …,xn) to the quality featureY(y1,y2, …,ym) shall be considered. And the contribution rate analysis method can be used to carry out the significance analysis.

    Orthogonal experimental design is employed. Three levels of each controllable factorxiwill be set, including the central valuexi0, upper limit and lower limit according to the current toleranceTX(tx1,tx2, …,txn) fluctuations. Appropriate orthogonal table shall be selected according to the number of controllable factors for generating the experiment program.

    (4)

    Contribution rate analysis can be conducted for the experiment resultsy1(y11,y12, …,y1k),y2(y21,y22, …,y2k), …,ym(ym1,ym2, …,ymk) of each quality featureY(y1,y2, …,ym), by using Eqs. (5) - (13).

    (5)

    (j=1, 2, …, m), (i=1, 2, …, n),

    (6)

    whereT1ji,T2jiandT3jiare the sub-sums of the experiment results (yj), corresponding to three levels ofxi.

    (j=1, 2, …, m), (i=1, 2, …, n),

    (7)

    (j=1, 2, …, m), (i=1, 2, …, n),

    (8)

    (9)

    (10)

    whereSjilandSjiqare the monomial fluctuation quadratic sum and quadratic fluctuation quadratic sum of each testing elementxito corresponding quality characteristicyj;Sejis the sum of squared errors ofyj;Vejis the error variance ofyj; andfjis the degree of freedom of the error. If there are items which are smaller thanVejinSjilandSjiq, they shall be included intoVej, andfjshall be added by 1 for each inclusion.

    (j=1, 2, …, m), (i=1, 2, …, n),

    (11)

    (j=1, 2, …, m), (i=1, 2, …, n),

    (12)

    (13)

    whereρjilandρjiqare the monomial contribution rate and quadratic contribution rate of each experiment factorxito the corresponding quality characteristicyj, andρjeis the error contribution rate.

    (j=1, 2, …, m)

    (14)

    Then the tolerances of design parameters can be reallocated by combining Eq. (14) (the significances of design parameters) and Eq. (3) (the consistency optimization objective), as Eq. (15) shows.

    (j=1, 2, …, m)

    (15)

    It should be emphasized that if all the quadratic contribution ratesρjiqof each design parameter are smaller than the error contribution ratesρje, it means that there is linear relationship between the design parameterxiand quality characteristicyj. Then, there may be deviations when conducting tolerance allocation with the above objective function, and it shall be rewritten as Eq. (16), and its correctness will be verified in the case study later.

    (16)

    2 Quality Consistency Optimization Procedure

    Monte Carlo random processes theory can be used for the statistical analysis of the quality distribution. At first,Nvalues of each design parameter, satisfying the normal distribution, will be generated and combined randomly to generateNvirtual samples that can reflect the product distribution characteristics. And the quality output characteristics values ofNsamples can be obtained by input-output relationship model. Then statistical analysis is carried out for the calculation result of each output characteristic, and the mean square error is used for evaluating the consistency of the corresponding design plan. In addition, the qualified product rate under such quality characteristics can be calculated with Simpson method when the qualified threshold values are set.

    The robust tolerance design method is taken for optimization of quality fluctuation range. The influencing significance of each design parameter on the quality consistency should be determined, and new tolerance allocation plan can be set according to the consistency optimization objective and manufacturing feasibility.

    Finally, it will check if the improved quality distribution characteristics have satisfied the allowed fluctuations range. The overall procedure is shown in Fig.3.

    Fig.3 The procedure of quality analysis and optimization

    3 Examples

    A balanced-force electromagnetic relay is taken as the research object. Firstly the distribution characteristics of the batch products are analyzed, and then the optimization of consistency is implemented and verified by the method proposed in this paper.

    3.1 Establishment of input-output relationship

    The structure of balanced-force electromagnetic relay is shown in Fig.4. It is divided into electromagnetic system and mechanical system from top to bottom. The electromagnetic relay contains four main output characteristics, namely, pick-up voltage, release voltage, pick-up time, and release time. In order to establish the corresponding relationship between each design parameter and dynamic output characteristics accurately, simulation modeling method is taken.

    Fig.4 Relay structure

    With the central values of design parameters in design plan as an example, the simulation results of static performance are shown in Fig.5, containing the mechanical torque and electromagnetic torque under different coil voltages. Then the dynamic characteristics are calculated based on the static results.

    Fig.5 The static simulation results

    3.2 Quality distribution characteristics analysis

    The mechanical system is chosen in this example as the object to carry out consistency analysis and tolerance allocation optimization, while the parameters of electromagnetic system always keep in the center values.

    The approach of establishing the virtual batch products is to generate 1000 samples randomly according to the normal distribution characteristic in the tolerance range of each design parameter separately. Then 1000 groups of virtual plans are obtained through random combination from each sample. According to preliminary theoretical analysis, nine design parameters in mechanical system can be determined. The central values and tolerance ranges are shown in Table 1.

    Table 1 Central values and tolerance ranges of design parameters in mechanical system

    With the input-output relation model, the corresponding dynamic output characteristics of each virtual plan are calculated. According to the statistical analysis, the quality distribution characteristics of batch products can be obtained.

    According to the performance indexes and requirements, qualified thresholds of four output characteristics are set as follows, pick-up voltage 10-14 (V), release voltage 1.5-3.5 (V), pick-up time 5.5-7.5 (ms), and release time 2-3 (ms).

    Numerical integration is carried out for the samples in qualified thresholds, and the corresponding pass percentage of the four quality characteristics, as well as the total qualified products of the batch (the four indexes are all within the qualified threshold values) can be obtained.

    3.3 Consistency robust design

    The RTD method can quantify the influence of each design parameter on the quality consistency in the form of contribution rate, which can provide sufficient basis for appropriate allocation of tolerance plan.

    3.3.1 Experiment design

    According to the central value, upper limit, and lower limit of tolerance range, three levels are selected for each design parameter in the experiment design, as shown in Table 2.

    According to the relative relationship between mechanical torque and electromagnetic torque in Fig.5, four working points (WP) of interaction are selected as the objectives for the RTD study. Then the test plans are calculated by the input-output model established above.

    Table 2 Experimental factors and levels

    3.3.2 Contribution rate analysis

    The contribution rate analysis is conducted for the testing results, so as to determine, for each design parameter, the significance of influence on the consistency of objectives. The analysis results are shown in Table 3. In which,ρmis the deviation quadratic sum of mean value, and it equals zero in this example.ρAl-ρIlare the monomial fluctuation quadratic sums of each experimental factor.ρAq-ρIqare the quadratic fluctuation quadratic sums of each experimental factor.ρeis the error contribution rate.

    Table 3 Results of contribution rate analysis

    3.3.3 Tolerance allocation

    The quadratic contribution rate analysis results of design parameters are all 0, suggesting that the input-output characteristics of the mechanical system are in linear relation. In order to verify the correctness of the improved objective function proposed in this paper, tolerance allocation and quality characteristics verification will be implemented, using the traditional objective function and the improved one respectively. With the improvement of quality consistency by 50% to 60% as the optimization goal, the tolerances of design parameters are reallocated combining the actual process capability, which is shown in Table 4.

    Table 4 Tolerance allocation plan with traditional function

    According to the tolerance allocation objective function, the improvement of quality consistency can be calculated theoretically. And the results are 54.57%, 57.29%, 57.19%, and 54.15% respectively for the four objectives.

    3.3.4 Quality characteristics verification

    The quality distribution characteristics of the tolerance allocation plan are analyzed, as shown in Fig.6 and Table 5.

    (a)

    (b)

    (c)

    (d)

    It can be seen from the quality verification results that the consistency improvement degree of the tolerance allocation, which is determined through the traditional objective function, fails to reach the optimization goal, and there is still a huge gap. In the following part, the tolerance allocation is conducted with the improved objective function.

    Table 5 The improvement of consistency (standard deviation) with traditional objective function

    3.3.5 Verification of improved objective function

    The tolerance allocation is executed using the improved objective function, as shown in Table 6. Through the theoretical calculation, the consistency improvements of four objectives are 55.29%, 59.53%, 59.42%, and 55.45% respectively.

    Table 6 Tolerance allocation plan with improved function

    The quality characteristics verification is conducted for the tolerance allocation plan, as shown in Fig.7 and Table 7.

    (a)

    (b)

    (c)

    (d)

    OutputcharacteristicsOriginal(σOj)Modified-improved(σ'Oj)Improvementofconsistency/%Pick-upvoltage/V1.88500.791058.04Releasevoltage/V1.07240.426360.25Pick-uptime/ms0.94860.395658.30Releasetime/ms0.44080.201854.22

    According to the results, the consistency improvement degree reaches the goal of quality optimization. Compared the pass percentage of batch products before and after optimization using the improved objective function, the results are shown in Table 8.

    Table 8 The improvement of pass percent of batch products

    4 Conclusions

    (1) In this paper, aiming at the product quality consistency and optimization problem of electromechanical component, a method combining the Monte Carlo analysis and RTD is proposed, which can analyze the quality distribution characteristics of design plan accurately and objectively, and then make consistency optimization. It can form a closed loop during theoretical analysis process, by verifying the validity and rationality of tolerance allocation plan, which will shorten the optimization cycle greatly and prevent the cost waste in the actual process of product.

    (2) An insufficiency is pointed out in the traditional RTD method, when the tolerance allocation objective function is determined. And an improved objective function is put forward, in the case that all the analysis results of quadratic contribution rate are 0, for the supplement of RTD theory.

    (3) By examples, the effectiveness of proposed method is verified in quality analysis and consistency optimization. Meanwhile, the effects of improved objective function are compared with the traditional one.

    (4) In this paper, it aims to establish the entire quality analysis and optimization process exploratory. Every link in the process, such as establishment of virtual samples, analysis and evaluation of quality distribution characteristics, determination of significant design parameters and allocation of tolerance ranges, can be developed for improvement and perfection by new methods.

    [1] Schu?ller G I, Jensen H A. Computational Methods in Optimization Considering Uncertainties-an Overview[J].ComputerMethodsinAppliedMechanicsandEngineering, 2008, 198(1): 2-13.

    [2] Montgomery D C. Stu Hunter’s Contributions to Experimental Design and Quality Engineering[J].QualityEngineering, 2014, 26(1): 5-15.

    [3] Taguchi G. System of Experimental Design[M]. White Plains: Kraus International Publishers, 1987: 154-160.

    [4] Hunter J S. Statistical Design Applied to Product Design[J].JournalofQualityTechnology, 1985, 17(4): 210-221.

    [5] Menberu L. Characterizing Performance Variation of Product Designs[J].QualityEngineering, 2003, 16(1): 105-111.

    [6] Chen S P. Robust Design with Dynamic Characteristics Using Stochastic Sequential Quadratic Programming[J].EngineeringOptimization, 2002, 35(1): 79-89.

    [7] Chen J Q, Tang Y F. Sequential Algorithms for Structural Design Optimization under Tolerance Conditions[J].EngineeringOptimization, 2014, 46(9): 1183-1199.

    [8] Diplaris S C, Sfantsikopoulos M M. Cost-Tolerance Function: a New Approach for Cost Optimum Machining Accuracy[J].InternationalJournalofAdvancedManufacturingTechnology, 2000, 16(1): 32-38.

    [9] Speckhart F H. Calculation of Tolerance based on a Minimum Cost Approach[J].JournalofEngineeringforIndustry, 1972, 94(2): 447-453.

    [10] Spotts M F. Allocation of Tolerances to Minimize Cost of Assembly[J].JournalofEngineeringforIndustry, 1973, 95(3): 762-764.

    [11] Taguchi G. Introduction to Quality Engineering[M]. Michigan: American Supplier Institute, 1996: 48-54.

    [12] Kim Y J, Cho B R. Economic Integration of Design Optimization[J].QualityEngineering, 2000, 12(4): 561-567.

    [13] Wang J S, Zhang Y F, Yu D W. Quality Control Costs in Tolerance Design[J].JournalofTsinghuaUniversity, 2001, 41(4): 69-71.

    [14] Jeang A. An Integrated Determination of Production Quantity, Product and Process Parameters[J].InternationalJournalofSystemsScience:Operations&Logistics, 2014,1(1): 3-17.

    [15] Shen C Y, Yu K T. Optimization of Product Design Based on a Design-Function-Oriented Cost Model: a Strategic Non-throw-Away Perspective[J].JournalofIndustrialandProductionEngineering, 2013, 30(2): 94-104.

    National Natural Science Foundation of China (No. 51107012); National High-Tech Research and Development Program of China (No. 2009AA04Z110); China Postdoctoral Science Foundation (No. 2011M500057); the Fundamental Research Funds for the Central Universities, China (No. HIT.NSRIF. 2010099)

    1672-5220(2014)06-0731-06

    Received date: 2014-08-08

    * Correspondence should be addressed to YE Xue-rong, E-mail: xuelai1981@163.com

    CLC number: TM581.3 Document code: A

    猜你喜歡
    國富
    基于計算機視覺和XGBoost的蝦體活力檢測
    政清山河秀 國富歲月新
    源流(2022年1期)2022-03-24 00:38:11
    Investigation on pulsed discharge mode in SF6-C2H6 mixtures
    走進綠水青山 聚焦退耕還林
    寧夏畫報(2019年5期)2019-09-19 14:42:26
    國富浩華國際聯(lián)席主席訪問中注協(xié)
    萬有引力重點知識梳理和分析
    新年獻詞
    茶博覽(2017年1期)2017-02-24 08:50:14
    井底之見
    故事會(2015年9期)2015-05-14 15:24:29
    把事看小了,心就大了
    爭做潘國富式員工
    河南電力(2010年10期)2010-04-08 15:35:31
    欧美日本亚洲视频在线播放| 亚洲欧美日韩高清在线视频| 此物有八面人人有两片| 亚洲美女搞黄在线观看 | av天堂中文字幕网| 国产精品98久久久久久宅男小说| 最新中文字幕久久久久| 露出奶头的视频| 99热只有精品国产| 国产亚洲av嫩草精品影院| 国产精品美女特级片免费视频播放器| 欧美国产日韩亚洲一区| 熟妇人妻久久中文字幕3abv| 成人国产一区最新在线观看| 在线免费观看的www视频| 少妇猛男粗大的猛烈进出视频 | 亚洲图色成人| 国产黄色小视频在线观看| netflix在线观看网站| 精品久久久久久久久久久久久| 国产精品亚洲美女久久久| 亚洲aⅴ乱码一区二区在线播放| 搡老妇女老女人老熟妇| 国产一区二区三区在线臀色熟女| 国产精品人妻久久久影院| 欧美潮喷喷水| 亚洲av成人精品一区久久| 午夜影院日韩av| 国产精品不卡视频一区二区| 亚洲无线观看免费| 国产 一区 欧美 日韩| 久久精品国产鲁丝片午夜精品 | 日韩一区二区视频免费看| 精品一区二区三区视频在线| 国产不卡一卡二| 在线观看一区二区三区| 亚洲av.av天堂| 国产高潮美女av| 国产精品国产高清国产av| 亚洲在线观看片| 日韩一区二区视频免费看| 日韩欧美国产在线观看| 欧美中文日本在线观看视频| 人妻久久中文字幕网| 久久久国产成人精品二区| 少妇猛男粗大的猛烈进出视频 | 成人毛片a级毛片在线播放| 国产主播在线观看一区二区| 日韩欧美免费精品| 在线免费观看不下载黄p国产 | 日韩欧美三级三区| 一区二区三区免费毛片| 特大巨黑吊av在线直播| 欧美日韩瑟瑟在线播放| 亚洲成人精品中文字幕电影| 九九热线精品视视频播放| 男人和女人高潮做爰伦理| 美女高潮的动态| 啦啦啦观看免费观看视频高清| 婷婷亚洲欧美| 无遮挡黄片免费观看| 村上凉子中文字幕在线| 天天躁日日操中文字幕| 人妻久久中文字幕网| 免费人成在线观看视频色| 国产极品精品免费视频能看的| 亚洲精品日韩av片在线观看| 少妇的逼好多水| 两个人视频免费观看高清| 免费看日本二区| 人人妻人人看人人澡| 网址你懂的国产日韩在线| 国产蜜桃级精品一区二区三区| or卡值多少钱| 中文字幕精品亚洲无线码一区| 亚洲中文日韩欧美视频| 日本黄大片高清| 少妇丰满av| 嫩草影院新地址| 国产成人aa在线观看| 99热这里只有精品一区| 国产精品99久久久久久久久| 精华霜和精华液先用哪个| 国产成人福利小说| 搡老妇女老女人老熟妇| 久久人妻av系列| 看免费成人av毛片| 亚洲精品在线观看二区| 极品教师在线免费播放| 国产视频内射| 亚洲精华国产精华液的使用体验 | 长腿黑丝高跟| 91久久精品国产一区二区成人| 国产麻豆成人av免费视频| 午夜视频国产福利| 国产综合懂色| 美女被艹到高潮喷水动态| 国产免费一级a男人的天堂| 长腿黑丝高跟| 亚洲人与动物交配视频| 亚洲最大成人中文| 日韩中字成人| 一本一本综合久久| 国产色婷婷99| 国产精品亚洲一级av第二区| 久久精品影院6| 一区二区三区免费毛片| 亚洲国产高清在线一区二区三| 亚洲精品一区av在线观看| 欧美精品国产亚洲| 干丝袜人妻中文字幕| 日本熟妇午夜| 日韩,欧美,国产一区二区三区 | 99热这里只有是精品50| 女人十人毛片免费观看3o分钟| 99久久中文字幕三级久久日本| 日本 av在线| 欧美区成人在线视频| 男女视频在线观看网站免费| 中文字幕熟女人妻在线| 日本精品一区二区三区蜜桃| 亚洲av二区三区四区| 国产亚洲精品av在线| 亚洲欧美日韩东京热| 国产白丝娇喘喷水9色精品| 国产精品亚洲一级av第二区| 国内精品美女久久久久久| 身体一侧抽搐| 久久久久久九九精品二区国产| 成年女人看的毛片在线观看| 一区二区三区高清视频在线| 国产乱人伦免费视频| 日韩一本色道免费dvd| 欧美+亚洲+日韩+国产| 亚洲内射少妇av| 午夜精品在线福利| 成熟少妇高潮喷水视频| 免费av不卡在线播放| 十八禁网站免费在线| 毛片女人毛片| 日日夜夜操网爽| h日本视频在线播放| 国产91精品成人一区二区三区| 99久久精品国产国产毛片| 亚洲国产精品久久男人天堂| 亚洲,欧美,日韩| 国产精品福利在线免费观看| 变态另类丝袜制服| 久久久国产成人免费| 搡老熟女国产l中国老女人| 国内少妇人妻偷人精品xxx网站| 97超视频在线观看视频| 嫁个100分男人电影在线观看| 精品久久久久久久久久久久久| 国产视频一区二区在线看| 久久精品国产自在天天线| or卡值多少钱| 日韩欧美在线二视频| 欧美+日韩+精品| 日韩精品青青久久久久久| 午夜亚洲福利在线播放| 91精品国产九色| 国产av麻豆久久久久久久| 国产高清不卡午夜福利| 国产蜜桃级精品一区二区三区| 麻豆成人午夜福利视频| 色av中文字幕| 国产熟女欧美一区二区| 国产精品免费一区二区三区在线| 久久久久性生活片| 一个人看视频在线观看www免费| 国产精品久久久久久精品电影| 色播亚洲综合网| 亚洲欧美日韩高清在线视频| 国产女主播在线喷水免费视频网站 | 亚洲精品色激情综合| 国产真实乱freesex| 欧美黑人巨大hd| 久久精品国产99精品国产亚洲性色| 国产在线男女| 欧美激情久久久久久爽电影| 亚洲专区国产一区二区| 在线观看66精品国产| www日本黄色视频网| 亚洲一级一片aⅴ在线观看| 成人特级av手机在线观看| 狠狠狠狠99中文字幕| 亚洲四区av| 老师上课跳d突然被开到最大视频| 午夜精品一区二区三区免费看| 中国美白少妇内射xxxbb| 国产高清不卡午夜福利| 免费在线观看影片大全网站| 97人妻精品一区二区三区麻豆| 国产精品一及| 狂野欧美激情性xxxx在线观看| 国产黄色小视频在线观看| 国产精品嫩草影院av在线观看 | 99久久无色码亚洲精品果冻| 真人一进一出gif抽搐免费| 午夜精品在线福利| 亚洲精品456在线播放app | 99热这里只有是精品50| 午夜视频国产福利| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 97碰自拍视频| 日本与韩国留学比较| 国产人妻一区二区三区在| 人妻久久中文字幕网| 最近最新中文字幕大全电影3| 久久人妻av系列| 亚洲中文字幕一区二区三区有码在线看| 人妻制服诱惑在线中文字幕| 国内精品一区二区在线观看| 黄色配什么色好看| 熟女电影av网| 村上凉子中文字幕在线| 最近视频中文字幕2019在线8| 99精品久久久久人妻精品| 欧美高清性xxxxhd video| 欧洲精品卡2卡3卡4卡5卡区| 熟妇人妻久久中文字幕3abv| 深夜a级毛片| 亚洲18禁久久av| 免费搜索国产男女视频| 精品欧美国产一区二区三| 天堂网av新在线| 日日摸夜夜添夜夜添av毛片 | 欧美日韩黄片免| 国产av不卡久久| 蜜桃久久精品国产亚洲av| 国语自产精品视频在线第100页| 22中文网久久字幕| 亚洲午夜理论影院| 日韩精品有码人妻一区| 草草在线视频免费看| 欧美日本亚洲视频在线播放| 丰满人妻一区二区三区视频av| 乱人视频在线观看| 免费观看的影片在线观看| 成年女人毛片免费观看观看9| 中文在线观看免费www的网站| 欧美日韩黄片免| 久久精品国产清高在天天线| 国产一区二区亚洲精品在线观看| 99久久无色码亚洲精品果冻| 婷婷丁香在线五月| 亚洲色图av天堂| 日本色播在线视频| 亚洲人成网站高清观看| 久久久久精品国产欧美久久久| 国产精品99久久久久久久久| h日本视频在线播放| 婷婷精品国产亚洲av在线| 国产亚洲91精品色在线| 亚洲熟妇熟女久久| 午夜激情欧美在线| 欧洲精品卡2卡3卡4卡5卡区| 国产毛片a区久久久久| 日韩,欧美,国产一区二区三区 | 欧美在线一区亚洲| 欧美成人性av电影在线观看| 男人和女人高潮做爰伦理| 日韩欧美国产在线观看| 老司机深夜福利视频在线观看| 亚洲国产高清在线一区二区三| 九九久久精品国产亚洲av麻豆| 一夜夜www| 国产成人a区在线观看| 中文字幕av成人在线电影| 九色成人免费人妻av| 国产熟女欧美一区二区| 成人综合一区亚洲| av专区在线播放| 欧美精品啪啪一区二区三区| 国产免费一级a男人的天堂| 热99在线观看视频| 偷拍熟女少妇极品色| 久久午夜亚洲精品久久| 别揉我奶头 嗯啊视频| 中文字幕高清在线视频| 国产成年人精品一区二区| 午夜精品久久久久久毛片777| 国产亚洲精品综合一区在线观看| 97超视频在线观看视频| 免费看av在线观看网站| 亚洲电影在线观看av| 亚洲av熟女| 九色国产91popny在线| 成人特级黄色片久久久久久久| 免费观看人在逋| 真实男女啪啪啪动态图| 国产蜜桃级精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 中国美白少妇内射xxxbb| 精品久久久久久久久av| 蜜桃亚洲精品一区二区三区| 免费观看在线日韩| 欧美成人一区二区免费高清观看| 欧美+日韩+精品| 婷婷六月久久综合丁香| 国产精品久久久久久久久免| 国产高清视频在线播放一区| 精品欧美国产一区二区三| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 不卡一级毛片| 成年女人永久免费观看视频| 免费一级毛片在线播放高清视频| 99热网站在线观看| 免费黄网站久久成人精品| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区三区| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩av片在线观看| 一本一本综合久久| 不卡一级毛片| 夜夜爽天天搞| 又黄又爽又免费观看的视频| 成年女人永久免费观看视频| 欧美中文日本在线观看视频| 在线观看av片永久免费下载| 亚洲av日韩精品久久久久久密| 联通29元200g的流量卡| 久久婷婷人人爽人人干人人爱| 国产精品美女特级片免费视频播放器| 国产成人a区在线观看| 男女做爰动态图高潮gif福利片| 成人av在线播放网站| 免费av观看视频| 我的女老师完整版在线观看| 午夜激情欧美在线| 欧美+亚洲+日韩+国产| 亚洲精品影视一区二区三区av| 亚洲va日本ⅴa欧美va伊人久久| 在线免费观看的www视频| 在线看三级毛片| 人妻制服诱惑在线中文字幕| 综合色av麻豆| 观看免费一级毛片| 国产精品,欧美在线| 1000部很黄的大片| 欧美3d第一页| 51国产日韩欧美| aaaaa片日本免费| 亚洲精品影视一区二区三区av| 国产欧美日韩精品亚洲av| 午夜a级毛片| 国内揄拍国产精品人妻在线| 国产精品一区二区三区四区久久| 欧美黑人欧美精品刺激| 最近视频中文字幕2019在线8| 国产精品自产拍在线观看55亚洲| 丝袜美腿在线中文| 简卡轻食公司| 久久精品国产99精品国产亚洲性色| 天堂影院成人在线观看| 免费一级毛片在线播放高清视频| 亚洲,欧美,日韩| 国产亚洲精品综合一区在线观看| 国产高清三级在线| 国产在线男女| 99久久九九国产精品国产免费| 看十八女毛片水多多多| 亚洲av成人精品一区久久| 中文资源天堂在线| 亚洲经典国产精华液单| 国产一区二区三区视频了| 日本五十路高清| 婷婷六月久久综合丁香| 变态另类丝袜制服| 日本免费a在线| 99久久精品国产国产毛片| 无人区码免费观看不卡| 国产高清三级在线| 成年女人看的毛片在线观看| 欧美区成人在线视频| 日本黄大片高清| 99久久中文字幕三级久久日本| 在线观看美女被高潮喷水网站| 国产中年淑女户外野战色| 特级一级黄色大片| 精华霜和精华液先用哪个| 一边摸一边抽搐一进一小说| 免费观看精品视频网站| 91午夜精品亚洲一区二区三区 | 亚洲av免费在线观看| 久久久久久大精品| 亚洲五月天丁香| 蜜桃亚洲精品一区二区三区| 欧美另类亚洲清纯唯美| 久久久精品大字幕| 精品不卡国产一区二区三区| 色在线成人网| 国产精品三级大全| 午夜精品在线福利| 亚洲国产精品久久男人天堂| 日日摸夜夜添夜夜添av毛片 | 亚洲精品456在线播放app | 又黄又爽又刺激的免费视频.| 性欧美人与动物交配| 国产精品永久免费网站| netflix在线观看网站| av福利片在线观看| 成人三级黄色视频| 欧美日韩中文字幕国产精品一区二区三区| 最近最新免费中文字幕在线| 91久久精品国产一区二区成人| 丝袜美腿在线中文| 简卡轻食公司| 欧美日韩亚洲国产一区二区在线观看| 十八禁国产超污无遮挡网站| 日韩欧美在线乱码| 亚洲久久久久久中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久亚洲中文字幕| av专区在线播放| 麻豆成人av在线观看| 亚洲真实伦在线观看| 国产亚洲91精品色在线| 免费搜索国产男女视频| 欧美3d第一页| 午夜免费男女啪啪视频观看 | 午夜久久久久精精品| 三级毛片av免费| 国产大屁股一区二区在线视频| 色5月婷婷丁香| 国产爱豆传媒在线观看| 草草在线视频免费看| 亚洲精品国产成人久久av| 成人无遮挡网站| 精品久久久噜噜| h日本视频在线播放| 欧美又色又爽又黄视频| 国产精品,欧美在线| 国产成年人精品一区二区| 美女xxoo啪啪120秒动态图| 色视频www国产| 日韩欧美国产在线观看| 91狼人影院| 日韩中文字幕欧美一区二区| 成年人黄色毛片网站| 欧美日本亚洲视频在线播放| 热99在线观看视频| 欧美一区二区亚洲| 在线免费观看不下载黄p国产 | 九九爱精品视频在线观看| 国产在视频线在精品| 亚洲欧美日韩东京热| 日日啪夜夜撸| 国产一区二区亚洲精品在线观看| 97超级碰碰碰精品色视频在线观看| 欧美日韩国产亚洲二区| www日本黄色视频网| 久久这里只有精品中国| 国内揄拍国产精品人妻在线| 男人的好看免费观看在线视频| 欧美极品一区二区三区四区| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美| 国产亚洲av嫩草精品影院| 国产激情偷乱视频一区二区| 亚洲成人久久性| 免费观看人在逋| 久久精品国产鲁丝片午夜精品 | 不卡视频在线观看欧美| 国产精品免费一区二区三区在线| 夜夜爽天天搞| 亚洲成a人片在线一区二区| 可以在线观看毛片的网站| 国产精品久久久久久久电影| 色精品久久人妻99蜜桃| 真人做人爱边吃奶动态| 久久国产乱子免费精品| 俺也久久电影网| 免费一级毛片在线播放高清视频| 欧美精品国产亚洲| 97超级碰碰碰精品色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av日韩精品久久久久久密| 一级av片app| 国产亚洲精品av在线| 久久人人精品亚洲av| 久久亚洲真实| 国产欧美日韩精品一区二区| 国产真实伦视频高清在线观看 | 最近最新中文字幕大全电影3| 国内少妇人妻偷人精品xxx网站| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 日本黄色视频三级网站网址| 麻豆国产97在线/欧美| 欧美另类亚洲清纯唯美| 欧美日韩黄片免| 一个人免费在线观看电影| 少妇的逼好多水| 欧美在线一区亚洲| 两人在一起打扑克的视频| 性欧美人与动物交配| 天天一区二区日本电影三级| 亚洲av.av天堂| 久久午夜亚洲精品久久| 99久久精品一区二区三区| 男人舔奶头视频| 国产黄色小视频在线观看| 亚洲国产精品久久男人天堂| 久久久久久九九精品二区国产| 国产精品人妻久久久影院| 午夜激情福利司机影院| 97人妻精品一区二区三区麻豆| 国产精品嫩草影院av在线观看 | 99久久精品国产国产毛片| 国产av麻豆久久久久久久| 国产午夜精品久久久久久一区二区三区 | 亚洲四区av| 国产一级毛片七仙女欲春2| 韩国av在线不卡| 精品人妻1区二区| 免费在线观看成人毛片| 久久热精品热| 亚洲美女搞黄在线观看 | 久久精品国产自在天天线| 精品午夜福利视频在线观看一区| 国产精品无大码| 午夜爱爱视频在线播放| 亚洲自拍偷在线| 蜜桃亚洲精品一区二区三区| av在线观看视频网站免费| 美女cb高潮喷水在线观看| 成人特级黄色片久久久久久久| 午夜福利在线观看吧| 国产精品永久免费网站| 熟女电影av网| 黄片wwwwww| 精品久久久久久久末码| 国产av麻豆久久久久久久| 久久久成人免费电影| 国产精品美女特级片免费视频播放器| 欧美人与善性xxx| 3wmmmm亚洲av在线观看| 日本 欧美在线| 国产在线精品亚洲第一网站| 嫩草影视91久久| 亚洲精华国产精华精| 在线国产一区二区在线| 久久久成人免费电影| 久久99热6这里只有精品| 国产精品久久久久久久电影| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 久久热精品热| 国产日本99.免费观看| 亚洲午夜理论影院| 午夜影院日韩av| 国内精品宾馆在线| 老师上课跳d突然被开到最大视频| 色在线成人网| 国产成人aa在线观看| 免费av不卡在线播放| 久久久久久大精品| 久久人妻av系列| 国产午夜精品久久久久久一区二区三区 | 久久精品国产亚洲av涩爱 | 真实男女啪啪啪动态图| 天堂动漫精品| 日日摸夜夜添夜夜添小说| 免费搜索国产男女视频| 久久香蕉精品热| 男人和女人高潮做爰伦理| 小说图片视频综合网站| 1024手机看黄色片| 悠悠久久av| 一区二区三区四区激情视频 | 精品久久久久久久久av| 国产精品一区二区免费欧美| av视频在线观看入口| 99久久九九国产精品国产免费| 最近最新免费中文字幕在线| 又黄又爽又免费观看的视频| 最近在线观看免费完整版| 两个人的视频大全免费| 97热精品久久久久久| 欧美三级亚洲精品| 好男人在线观看高清免费视频| 午夜影院日韩av| 日韩欧美在线二视频| 男女下面进入的视频免费午夜| 波多野结衣巨乳人妻| 校园人妻丝袜中文字幕| 搞女人的毛片| a级毛片a级免费在线| 欧美激情国产日韩精品一区| 亚洲国产精品成人综合色| 看片在线看免费视频| 哪里可以看免费的av片| 色5月婷婷丁香| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 真人一进一出gif抽搐免费| 色噜噜av男人的天堂激情| 亚洲午夜理论影院| 久久午夜亚洲精品久久| 熟女电影av网| 久久99热6这里只有精品| 国产亚洲精品综合一区在线观看| 日韩欧美三级三区| 国产久久久一区二区三区| 在线观看一区二区三区| 欧美潮喷喷水| 精品久久久久久久末码| 神马国产精品三级电影在线观看| 亚洲欧美激情综合另类|