王文林,劉 波,韓睿明,范 婤,王國祥,*
(1. 南京師范大學(xué)地理科學(xué)學(xué)院,江蘇省環(huán)境演變與生態(tài)建設(shè)重點(diǎn)實(shí)驗(yàn)室, 南京 210023;2. 環(huán)境保護(hù)部 南京環(huán)境科學(xué)研究所, 南京 210042; 3.南通大學(xué)地理科學(xué)學(xué)院, 南通 226007)
沉水植物莖葉微界面及其對(duì)水體氮循環(huán)影響研究進(jìn)展
王文林1,2,劉 波1,3,韓睿明1,范 婤1,王國祥1,*
(1. 南京師范大學(xué)地理科學(xué)學(xué)院,江蘇省環(huán)境演變與生態(tài)建設(shè)重點(diǎn)實(shí)驗(yàn)室, 南京 210023;2. 環(huán)境保護(hù)部 南京環(huán)境科學(xué)研究所, 南京 210042; 3.南通大學(xué)地理科學(xué)學(xué)院, 南通 226007)
沉水植物莖葉表面常富集了水中各類物質(zhì),包括有機(jī)質(zhì)、泥沙、菌膠團(tuán)、藻類、微生物等,形成厚度不等的附著層,形成特殊的莖葉微界面,其具有特殊的氧化-還原異質(zhì)環(huán)境,并能為氮素循環(huán)細(xì)菌提供有機(jī)質(zhì),是水中氨化、反硝化及厭氧氨氧化等脫氮行為的重要基礎(chǔ),因此,了解沉水植物莖葉微界面組分、微環(huán)境變化特征及其對(duì)氮循環(huán)的調(diào)控作用,對(duì)于正確認(rèn)識(shí)和利用沉水植物的生態(tài)調(diào)控功能、改善水環(huán)境質(zhì)量具有十分重要的意義?;诖?,就沉水植物莖葉微界面物質(zhì)組成、微環(huán)境特征及其對(duì)水體氮循環(huán)影響研究現(xiàn)狀進(jìn)行了歸納總結(jié),并對(duì)今后的研究方向進(jìn)行了簡要展望。
沉水植物; 莖葉微界面; 物質(zhì)組成;微環(huán)境特征;水體氮循環(huán)
地球表面與近地表存在著許多固、液和氣相之間的微界面[1],微界面存在相互分異又密切聯(lián)系的氧化-還原異質(zhì)環(huán)境,其對(duì)土壤及水體氮素循環(huán)具有十分重要的影響[2- 3],就水生生態(tài)系統(tǒng)而言主要存在3個(gè)微界面[4]:水-沉積物、生物-沉積物(根際圈)、生物-水(如水生植物體表與水之間)。
水-沉積物微界面研究已經(jīng)取得了長足進(jìn)展,微界面內(nèi)溶解氧(DO)、氧化還原電位(Eh)、酸堿度(pH)等剖面梯度變化的定量測(cè)定研究屢見報(bào)道[5-10]。研究表明,在水-沉積物界面,DO、Eh 及 pH 等因子時(shí)空變化較大,物質(zhì)的遷移轉(zhuǎn)化過程活躍,尤其是反硝化作用十分劇烈[11- 12]。而生物-沉積物界面主要集中于根際圈研究,張福鎖等[13]指出根際概念最早系Hiltner于1904年提出,1989年Reddy[14]發(fā)現(xiàn)濕地植物根系附近的富氧-厭氧微環(huán)境控制了根-沉積物界面的硝化-反硝化過程,提出了根-沉積物界面的硝化-反硝化理論,并用同位素技術(shù)測(cè)定了水稻(Oryza.sativaL.)、梭魚草(PontederiacordataL.)、燈芯草(JuncuseffususLinn.)的根際氮遷移轉(zhuǎn)化過程,從而證實(shí)了這一理論,將根際研究從農(nóng)作物拓展到濕地植物。由此影響氮素循環(huán)的濕地植物根際微界面環(huán)境也日益受到關(guān)注,已有研究結(jié)果表明根際微界面 DO、Eh 及 pH 值分布不僅受光照、光合作用強(qiáng)度[15- 16]等因素影響,存在明顯的晝夜時(shí)間序列差異;還受植物生長階段的影響,存在明顯的季節(jié)性時(shí)間分布差異[17- 18]。
生物-水微界面廣泛存在于水體中各種生物表面,而在淺水湖泊生態(tài)系統(tǒng)中,沉水植物與水的關(guān)系最為密切,占據(jù)著湖泊生態(tài)系統(tǒng)的關(guān)鍵界面,對(duì)湖泊生產(chǎn)力及生物地球化學(xué)循環(huán)具有重要的影響[19]。位于水面以下的沉水植物莖葉表面常富集了水中各類物質(zhì),包括有機(jī)質(zhì)、泥沙、菌膠團(tuán)、藻類、微生物等,形成厚度不等的附著層[20],形成了特殊的莖葉微界面[21]。莖葉微界面的出現(xiàn)不僅直接阻抑了植物莖葉與水之間的氣體交換[22],而且其內(nèi)富集的有機(jī)質(zhì)分解耗氧[23- 24]容易導(dǎo)致莖葉表面成為耗氧厭氧區(qū)域。一些研究已經(jīng)證實(shí),沉水植物莖葉表面 DO 和 pH 值等因子的時(shí)空分布差異比較明顯[25- 26],表明莖葉表面亦存在富氧-厭氧交替出現(xiàn)的氧化-還原微環(huán)境,同時(shí)還可為氮素循環(huán)細(xì)菌提供有機(jī)質(zhì)[27- 29]。因此,了解沉水植物莖葉微界面環(huán)境變化特征及其對(duì)氮循環(huán)的調(diào)控作用,對(duì)于正確認(rèn)識(shí)和利用沉水植物的生態(tài)調(diào)控功能、改善水環(huán)境質(zhì)量具有十分重要的意義?;诖耍疚木统了参锴o葉微界面物質(zhì)組成、微環(huán)境特征及其對(duì)水體氮循環(huán)影響研究現(xiàn)狀進(jìn)行了歸納總結(jié),并對(duì)今后的研究方向進(jìn)行了展望。
1.1 微界面物質(zhì)組成特征
曲久輝等對(duì)天然水體中主要顆粒物及其界面特征進(jìn)行了總結(jié)(表1)[4],而理論上沉水植物莖葉微界面均可能含有礦物質(zhì)、金屬氫氧化物、腐殖質(zhì)、纖維素、藻類、微生物、有機(jī)無機(jī)復(fù)合物等物質(zhì),它們?cè)谒w中的物理、化學(xué)和生物學(xué)特性往往是決定微界面體系特征的基本因素。
表1 天然水體中主要顆粒物及其界面特征
目前針對(duì)沉水植物莖葉附著藻類組成已有大量研究,但多從湖泊生態(tài)驅(qū)動(dòng)機(jī)制的角度出發(fā),集中于附著藻類組成及生物量等受沉水植物種類[30- 31]、生長階段[32- 34]、水體營養(yǎng)鹽負(fù)荷[35- 36]等因素影響方面。由文輝等[31]發(fā)現(xiàn)富營養(yǎng)化水體中附著藻類的生物量大小表現(xiàn)為黑藻 (Hydrillaverticillata) > 金魚藻 (CeratophyllumdemersumL.) > 菹草 (Potamogetoncrispus) > 苦草 (Vallisnerianatans) > 馬來眼子菜 (Potamogetonmalaianus);蘇勝齊等[34]對(duì)菹草表面附植生物群落動(dòng)態(tài)變化的研究發(fā)現(xiàn),附生藻類的密度和生物量在菹草不同生長時(shí)期表現(xiàn)為:衰亡期 > 幼苗期 > 成熟期 > 生長期,并且不同葉齡沉水植物上附生藻類的群集時(shí)間也有長短之差,此外,沉水植物莖的不同部位附著藻類的分布也不同[33]。但是,也有學(xué)者認(rèn)為附著藻類的組成與沉水植物關(guān)系不大,主要受水體環(huán)境制約[37- 38],在營養(yǎng)狀態(tài)顯著不同的湖泊中,附生藻類的物種數(shù)呈減少趨勢(shì)而種群密度呈增大趨勢(shì)[39]。
沉水植物莖葉表面同樣也是微生物棲息的良好生境[40],沉水植物莖葉著生微生物也日益受到關(guān)注。K?rner[41]用最大計(jì)數(shù)法分析了沉水植物表面和底泥表面硝化細(xì)菌和反硝化細(xì)菌差異,發(fā)現(xiàn)沉水植物表面硝化細(xì)菌數(shù)量大于底泥,而反硝化細(xì)菌則相反。Coci等[42]運(yùn)用聚合酶鏈?zhǔn)椒磻?yīng)(Polymerase chain reaction,PCR)技術(shù)對(duì)沉水植物表面、底泥表面和水面浮游植物表面的氨氧化細(xì)菌數(shù)量和活性進(jìn)行了對(duì)比分析,發(fā)現(xiàn)沉水植物表面的氨氧化細(xì)菌無論在數(shù)量和活性上與其他兩個(gè)載體上的無明顯差異,并發(fā)現(xiàn)只有水力停留時(shí)間、總氮和總磷與氨氧化細(xì)菌潛在活性相關(guān)。此外,沉水植物附著菌類也存在時(shí)空分布差異。研究表明,葉片的附著菌類密度要小于莖部和葉柄處[43],同一葉片的不同部位菌群密度差異顯著[44]、葉片越老菌群密度越大[44],不同植物之間差異明顯[43- 44]。
綜上,現(xiàn)有沉水植物莖葉微界面物質(zhì)組分研究多集中于生物組分(著生藻類、微生物)特征,鮮見針對(duì)非生物組分特征的相關(guān)報(bào)道。
1.2 微界面形態(tài)結(jié)構(gòu)及物質(zhì)交互作用
沉水植物微界面的形態(tài)結(jié)構(gòu)直接影響光照的傳輸、氣體的交換及物質(zhì)的輸移。光通過附著層到達(dá)植物莖葉表面時(shí)會(huì)發(fā)生衰減,附著層越厚越復(fù)雜光衰減越多;光的衰減在一定條件下會(huì)限制沉水植物的光合作用速率,進(jìn)而影響附著物微界面內(nèi)的氧的時(shí)空分布,最終對(duì)植物生長和水-植物間的物質(zhì)遷移與轉(zhuǎn)化產(chǎn)生重要影響[45- 47];如厚度加大會(huì)增加水與植物表面間物質(zhì)的傳輸距離和物質(zhì)傳遞的阻力[25,48],研究證實(shí)沉水植物葉表附著層會(huì)阻抑游離態(tài)氧氣(O2)、二氧化碳(CO2)和可溶性有機(jī)碳(DOC)等物質(zhì)從水相向植物表面的遷移[48- 49],但其阻抑機(jī)制尚不清楚,這均源于缺乏對(duì)微界面形態(tài)結(jié)構(gòu)的認(rèn)識(shí),而現(xiàn)有研究更多的浮于表象,如有學(xué)者觀察到[50],富營養(yǎng)和貧營養(yǎng)湖泊中的附生藻類群落不僅組成結(jié)構(gòu)有所差異,外部形態(tài)結(jié)構(gòu)也顯著不同,富營養(yǎng)湖泊通常有相對(duì)厚但松散附著、不穩(wěn)定的附著層,而貧營養(yǎng)湖泊的附著層則相對(duì)緊湊而且穩(wěn)定。Jones等[26]通過附著層內(nèi) DO 和 pH 產(chǎn)生波動(dòng)的范圍來表征其厚度,發(fā)現(xiàn)受植物莖葉表面附著物組成、植物種類、生長階段等的影響,厚度從200 μm (大葉藻(Zosteramarina))至2300 μm (宣藻(Scytosiphonlomentaria))不等[25- 26]。
此外,由于微界面中存在多種性質(zhì)和尺寸的顆粒物,其物理、化學(xué)或生物學(xué)等特性不同,因而也存在復(fù)雜的相互間的交互作用,其中不同性質(zhì)顆粒物之間的碰撞、聚集、沉積、分解是最基本的交互作用過程[4, 51]。這一過程不僅依賴于顆粒物的大小、密度、緊密程度和強(qiáng)度等物理特性,而且與其表面化學(xué)性質(zhì)有關(guān)[52]。目前尚未見有針對(duì)沉水植物莖葉微界面物質(zhì)交互作用的相關(guān)報(bào)道。
由于沉水植物莖葉微界面厚度往往不足幾毫米[25- 26],其內(nèi)部環(huán)境因子定量測(cè)定比較困難,隨著微電極技術(shù)的發(fā)展,原位測(cè)定沉水植物莖葉微界面環(huán)境因子的微時(shí)空分布,真實(shí)反映莖葉微界面環(huán)境特征成為可能。已有沉水植物莖葉微界面環(huán)境因子研究主要針對(duì) DO 和 pH 等。
2.1 微界面DO分布特征
沉水植物葉表面的溶解氧存在顯著的時(shí)空分布特征。Sand-Jensen等[25]運(yùn)用微電極技術(shù)對(duì)菹草、車前草(Littorellauniflora)、大葉藻、宣藻4種沉水植物葉表微界面 DO 變化進(jìn)行了測(cè)定,發(fā)現(xiàn)越接近植物葉表 DO 濃度越高,且隨著光照強(qiáng)度增強(qiáng)而升高,葉表微界面 DO 的空間分布差異明顯;在白天,植物表面產(chǎn)生富氧環(huán)境,而夜間即使水體 DO 達(dá)到飽狀態(tài),葉表附著層內(nèi)也會(huì)出現(xiàn)高度厭氧的環(huán)境,故葉表微界面存在晝夜交替的富氧-厭氧環(huán)境;研究還發(fā)現(xiàn)菹草葉表 DO 對(duì)光照響應(yīng)速率還存在季節(jié)性差異,8月份快于6月份。另外,在相同的光照強(qiáng)度變化范圍內(nèi),不同宿主植物微界面內(nèi) DO 變化幅度不同,菹草快于車前草,光合能力強(qiáng)的宿主植物變化幅度大,說明不同沉水植物葉表微界面 DO 變化程度受宿主植物自身的光合特性影響較大,可能是導(dǎo)致不同沉水植物分布區(qū)域水體 DO 的時(shí)空異質(zhì)性的重要原因。在后續(xù)研究中,Sand-Jensen等[22]發(fā)現(xiàn)在微界面內(nèi)光合作用強(qiáng)度有兩個(gè)峰值,一個(gè)在微界面頂部,主要受附著藻類影響,一個(gè)出現(xiàn)在葉表,主要受葉片光合作用影響。
現(xiàn)有研究對(duì)附著生物與沉水植物形成的微界面中 DO 變化及機(jī)理做了一定的探討,認(rèn)為微界面內(nèi) DO 的變化主要是附著生物與宿主植物的光合作用共同決定的,微界面內(nèi)物質(zhì)的傳輸方式和速率與上覆水體的差異是形成 DO 特殊剖面的主要原因,但是附著層內(nèi)的著生藻類和沉水植物的光合與呼吸作用對(duì)微界面氧變化的貢獻(xiàn)還難于甄別。且上述研究都集中在水質(zhì)相對(duì)較好的水體中,認(rèn)為附著生物大部分是自養(yǎng)生物[25- 26],光合作用產(chǎn)生的O2多數(shù)被呼吸作用消耗,而在富營養(yǎng)化水體中氮、磷等營養(yǎng)物質(zhì)豐富,有機(jī)質(zhì)含量也較高,那么在沉水植物表面的附著生物量也會(huì)較高,有機(jī)質(zhì)等耗氧物質(zhì)會(huì)出現(xiàn)富集[29],耗氧物質(zhì)的富集勢(shì)必對(duì)微界面的 DO 變化產(chǎn)生影響,必將重塑 DO 的剖面分布規(guī)律和時(shí)間變化規(guī)律。目前關(guān)于富營養(yǎng)化水體中沉水植物莖葉微界面的 DO 研究還未見報(bào)道。
2.2 微界面pH值分布特征
沉水植物莖葉微界面內(nèi)pH要高于周圍水體的 pH 值[25- 26]。Sand-Jensen等[25]發(fā)現(xiàn)沉水植物莖葉微界面的 pH 值要高于周圍水體的 pH 值,差值隨附著層厚度增大而增加。Eaton[26]將人造葉片與伊樂藻(Elodeanuttallii)在實(shí)驗(yàn)室共同培養(yǎng),利用微電極技術(shù)研究分析了人造葉片附著層的 pH 值空間分布,發(fā)現(xiàn)自微界面外側(cè)向內(nèi)至葉表 pH 值逐漸升高,在葉表處達(dá)到最高,且附著層越厚,pH 值增加越多,但是,他們并未實(shí)際測(cè)定沉水植物伊樂藻葉表微界面 pH 值的變化。根據(jù)模擬實(shí)驗(yàn)結(jié)果,認(rèn)為附著生物光合作用及附著層對(duì)游離態(tài) CO2的阻抑是導(dǎo)致 pH 值垂直分布差異的主要原因。此外,Jones等[26]還發(fā)現(xiàn)近葉表處 pH 值有所下降,但對(duì)下降的原因并沒有做深入研究?,F(xiàn)有研究僅對(duì)沉水植物莖葉微界面內(nèi) pH 值的空間分別作了簡要探討,尚未有針對(duì)pH的時(shí)間變化報(bào)道。
在水中氮素負(fù)荷不斷加劇的背景下,關(guān)于水生植物對(duì)氮調(diào)控的研究,學(xué)者們更關(guān)心水生植物對(duì)水體氮的去除效果。一般認(rèn)為水生植物的吸收作用、加速顆粒物質(zhì)沉降作用及被人為收割是水生植物除氮的主要途徑[53- 55]。Weisner等[28]發(fā)現(xiàn)沉水植被莖葉附著層具有增強(qiáng)水體反硝化速率的作用,后有研究還發(fā)現(xiàn)在營養(yǎng)物質(zhì)豐富的水體中,有沉水植物區(qū)域的硝化強(qiáng)度要比無沉水植物的區(qū)域高10倍,沉水植物莖葉莖葉附著層的反硝化作用與沉積物的反硝化作用相當(dāng)[53,56],K?rner[41]發(fā)現(xiàn)沉水植物表面有大量的硝化和反硝化細(xì)菌富集。沉水植物莖葉附著層形成的微界面硝化-反硝化作用作為水體中重要的自然脫氮機(jī)制逐漸引起學(xué)者的關(guān)注。
一般認(rèn)為沉水植物與漂浮植物和挺水植物相比,其莖葉微界面為附著生物提供了更大的棲息地,同時(shí)沉水植被的分泌物和殘?bào)w為微生物提供了必要的有機(jī)物質(zhì)[28,57],微界面的光合-呼吸作用為硝化-反硝化細(xì)菌創(chuàng)造了富氧-缺氧條件[28,58]。目前關(guān)于沉水植物莖葉附著層氮素調(diào)控研究主要圍繞在光照、水流、植物生長階段等因素下硝化-反硝化速率方面。研究發(fā)現(xiàn)光合作用產(chǎn)生的 O2是反硝化反應(yīng)的一個(gè)重要抑制因素[42],但有利于硝化反應(yīng)。Eriksson[56]發(fā)現(xiàn)光照條件下 O2和硝酸根離子凈富余,在黑暗條件下凈消耗,說明光照條件下硝化強(qiáng)度明顯高于黑暗條件,而反硝化只在呼吸作用明顯的黑暗條件才出現(xiàn)。但是S?rensen等[59]發(fā)現(xiàn)在白天微界面內(nèi)的反硝化也在進(jìn)行,只是速率比夜間低2—3倍。在流動(dòng)水體中,附著層內(nèi)反硝化反應(yīng)僅在低DO濃度時(shí)發(fā)生,而在靜水條件下即使周圍水體中DO達(dá)到飽和狀態(tài)反硝化反應(yīng)也能進(jìn)行[57],主要是因?yàn)槌了参锛案街飳雍粑饔煤难踺^多造成表面缺氧導(dǎo)致。Palijan[60]等將不同枝齡金魚藻放在同一水體壞境中培養(yǎng),發(fā)現(xiàn)成熟枝段表面的凈硝化活性有了明顯增強(qiáng),認(rèn)為成熟枝段附著生物層生物量較大是促使硝化速率增大的主要原因,由此可以推斷沉水植物的不同生長階段由于自身生理特點(diǎn)和附著生物的差異,會(huì)導(dǎo)致微界面對(duì)氮的調(diào)控能力差異。
上述研究從尺度上看,多基于沉水植物個(gè)體或群落水平,鮮見微界面水平研究;從表征指標(biāo)來看,只是通過周圍水體環(huán)境中的無機(jī)氮的變化來反應(yīng)植被對(duì)氮素調(diào)控的結(jié)果,尚未涉及到直接反映界面過程內(nèi)氮形態(tài)的變化;從調(diào)控機(jī)制研究來看,缺乏微界面內(nèi)微環(huán)境指標(biāo)(DO、pH、Eh 等)的同步測(cè)定,只是通過水體的背景環(huán)境指標(biāo)間接表征。因此,上述研究難以揭示沉水植物莖葉微界面的富氧-厭氧微環(huán)境對(duì)水體氮循環(huán)的調(diào)控機(jī)制。
在富營養(yǎng)化水體中,沉水植物莖、葉表面的微界面是水中氨化、反硝化及厭氧氨氧化等脫氮行為機(jī)制的重要基礎(chǔ),這可能是在一些沉水植物茂盛的水體中,水質(zhì)長期處于清澈優(yōu)質(zhì)狀態(tài),且沉水植物衰亡期并未出現(xiàn)明顯的“二次污染”現(xiàn)象的重要原因之一[61]。沉水植物莖葉微界面組分復(fù)雜,目前研究多側(cè)重于生物組分的特征描述,對(duì)各組分特別是非生物物質(zhì)的作用,尤其是對(duì)莖葉微界面環(huán)境的影響缺乏系統(tǒng)深入研究。沉水植物微界面對(duì)水體氮循環(huán)的調(diào)控,尤其是反硝化脫氮作用是富營養(yǎng)化水體生態(tài)修復(fù)的重要生物化學(xué)過程[41]。目前的研究對(duì)于沉水植物微界面對(duì)水體氮循環(huán)調(diào)控結(jié)果有了初步的認(rèn)識(shí),認(rèn)為沉水植物的微界面的存在可以促進(jìn)水體的硝化-反硝化作用,在一定條件下反硝化速率可觀。但是,并沒有從微界面組成特征及其內(nèi)部環(huán)境因子的角度深入揭示氮素形態(tài)遷移與轉(zhuǎn)化的機(jī)制。
因此,開展針對(duì)沉水植物莖葉微界面組分特征、環(huán)境因子特征及氮形態(tài)轉(zhuǎn)化主要過程的研究,可深入揭示沉水植物對(duì)富營養(yǎng)化水體氮素循環(huán)的調(diào)控機(jī)制,為富營養(yǎng)化水體氮素污染治理提供科學(xué)支撐。此外,針對(duì)污染物在環(huán)境微界面的轉(zhuǎn)移轉(zhuǎn)化機(jī)制與控制原理的研究,不僅要解決系統(tǒng)性問題,還必須解決方法學(xué)問題、過程認(rèn)識(shí)問題和技術(shù)發(fā)展問題[4]。
(1)沉水植物莖葉微界面物質(zhì)組成、結(jié)構(gòu)特征及時(shí)空變化規(guī)律
重點(diǎn)發(fā)展基于原位取樣的質(zhì)譜技術(shù),深入探索不同生長階段沉水植物莖葉微界面物質(zhì)組成及物質(zhì)間化學(xué)反應(yīng)動(dòng)力學(xué)、反應(yīng)速率、物質(zhì)轉(zhuǎn)化通道、物料平衡等問題,通過發(fā)展微界面形貌原位連續(xù)觀測(cè)的顯微技術(shù),實(shí)現(xiàn)對(duì)沉水植物莖葉微界面過程中顯微形貌變化的直接觀察,揭示微界面附著層物質(zhì)的時(shí)空變化規(guī)律及相互作用機(jī)制。
(2)沉水植物莖葉微界面主要環(huán)境因子及其富氧-厭氧微生境的時(shí)空變化特征
重點(diǎn)發(fā)展基于原位測(cè)定的微電極技術(shù),測(cè)定典型沉水植物莖、葉微界面 DO、pH 值、Eh 等環(huán)境因子,分析微界面主要環(huán)境因子的時(shí)空變化特征,探討沉水植物光合作用及呼吸作用強(qiáng)度及組織結(jié)構(gòu)對(duì)莖、葉微界面主要環(huán)境因子的生理周期影響規(guī)律,揭示沉水植物莖葉微界面主要環(huán)境因子的影響機(jī)制。
(3)沉水植物莖葉微界面對(duì)富營養(yǎng)化水體氮素循環(huán)的調(diào)控機(jī)制
重點(diǎn)發(fā)展微量原位取樣技術(shù)、微電極技術(shù)、同位素示蹤技術(shù)等,測(cè)定不同沉水植物、不同生長階段的沉水植物莖葉微界面銨態(tài)氮、硝酸鹽氮、亞硝酸鹽氮、氧化亞氮等指標(biāo),研究微界面組成、結(jié)構(gòu)及主要環(huán)境因子變化對(duì)氨化、硝化及反硝化作用的影響,探討微界面氨化、硝化及反硝化作用的時(shí)空分布特點(diǎn)及驅(qū)動(dòng)機(jī)制,揭示沉水植物微界面對(duì)水體氮循環(huán)的影響及調(diào)控機(jī)制。
[1] Brown G E J, Foster A L, Ostergren J D. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3388- 3395.
[2] Fan C X, Wang C X. Environmental Geochemistry and Eutrophication of Lakes in the Middle and Lower Reaches of Yangtze River. Beijing: Science Press, 2007.
[3] Wu F C, Jin X C, Zhang R Y, Liao H Q, Wang S R, Jiang X, Wang L Y, Guo J Y, Li W, Zhao X L. Effects and significance of organic nitrogen and phosphorous in the lake aquatic environment. Journal Lake Science, 2010, 22(1): 1- 7.
[4] Qu J H, He H, Liu H J. Typical environmental micro-interfaces and its effect on environmental behaviors of pollutants. Acta Scientiae Circumstantiae, 2009, 29(1): 2- 10.
[5] Cai W J, Reimers C E. The development of pH and pCO2microelectrodes for studying the carbonate chemistry of pore waters near the sediment-water interface. Limnology and Oceanography, 1993, 38(8): 762- 773.
[6] David A, Steven E, Clare R. Dissolution of calcite in deep-sea sediments: pH and O2microelectrode results. Geochimica et Cosmochimica Acta, 1989, 53(11): 2831- 2845.
[7] Gundersen J K, J?rgensen B B. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature, 1990, 345(6276): 604- 607.
[8] J?rgensen B B, Marais D J D. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnology and Oceanography, 1990, 35(6): 1343- 1355.
[9] Lansard B, Rabouille C, Massias D. Variability in benthic oxygen fluxes during the winter-spring transition in coastal sediments: an estimation by in situ micro-electrodes and laboratory mini-electrodes. Oceanologica Acta, 2003, 26(3): 269- 279.
[10] Rasmussen H, J?rgensen B B. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Marine Ecology Progress Series, 1992, 81(3): 289- 303.
[11] Gardner W S, McCarthy M J. Nitrogen dynamics at the sediment-water interface in shallow, sub-tropical Florida Bay: why denitrification efficiency may decrease with increased eutrophication. Biogeochemistry, 2009, 95(2- 3): 185- 198.
[12] Strauss E A, Richardson W B, Cavanaugh J C, Bartsch L A, Kreiling R M, Standorf A J. Variability and regulation of denitrification in an Upper Mississippi River backwater. Journal of the North American Benthological Society, 2006, 25(3): 596- 606.
[13] Zhang F S, Shen J B, Feng G. Rhizosphere Ecology: Processes & Management. Beijing: China Agricultural University Press, 2009: 10- 11.
[14] Reddy K R, Patrick W H, Lindau J A C W. Nitrification-denitrification at the plant Root-sediment interface in wetlands. Limnology and Oceanography, 1989, 34(6): 1004- 1013.
[15] Waters I, Armstrong W, Thompson C J, Setter T L, Adkins S, Gibbs J, Greenway H. Diurnal changes in radial oxygen loss and ethanol metabolism in roots of submerged and non-submerged rice seedlings. New Phytologist, 1989, 113(4): 439- 451.
[16] Connell E L, Colmer T D, Walker D I. Radial oxygen loss from intact roots ofHalophilaovalisas a function of distance behind the root tip and shoot illumination. Aquatic Botany, 1999, 63(3- 4): 219- 228.
[17] Caffrey J M, Kemp W M. Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release inPotamogetonperfoliatusL. andZosteramarinaL.. Aquatic Botany, 1991, 40(2): 109- 128.
[18] Inoue T M, Tsuchiya T. Interspecific differences in radial oxygen loss from the roots of threeTyphaspecies. Limnology, 2008, 9(3): 207- 211.
[19] Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 1986, 26: 341- 370.
[20] Vis C, Hudon C, Carignan R. Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63(5): 1014- 1026.
[21] Stevens C L, Hurd C L. Boundary-layers around bladed aquatic macrophytes. Hydrobiologia, 1997, 346(1): 119- 128.
[22] Sand-Jensen K, Revsbech N P. Photosynthesis and light adaptation in epiphyte-macrophyte associations measured by oxygen microelectrodes. Limnology and Oceanography, 1987, 32(2): 452- 457.
[23] McCormick P V, O′Dell M B, Shuford R B E, Backusa J G, Kennedyb W C. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany, 2001, 71(2): 119- 139.
[24] Pietro K C, Chimney M J, Steinman A D. Phosphorus removal by the Ceratophyllum/periphyton complex in a south Florida (USA) freshwater marsh. Ecological Engineering, 2006, 27(4): 290- 300.
[25] Sand-Jensen K, Revsbech N P, Barker J?rgensen B. Microprofiles of oxygen in epiphyte communities on submerged macrophytes. Marine Biology, 1985, 89(1): 55- 62.
[26] Jones J I, Eaton J W, Hardwick K. The influence of periphyton on boundary layer conditions: a pH microelectrode investigation. Aquatic Botany, 2000, 67(3): 191- 206.
[27] Liboriussen L, Jeppesen E. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology, 2006, 51(1): 95- 109.
[28] Weisner S E B, Eriksson P G, Granéli W, Leonardson L. Influence of macrophytes on nitrate removal in wetlands. Ambio, 1994, 23(6): 363- 366.
[29] Qin B Q, Song Y Z, Gao G. The function of periphyton during the transition between algal and macrophytic types in shallow eutrophic lake. Science in China Ser. C Life Sciences, 2006, 36(3): 283- 288.
[30] Pip E, Robinson G. A comparison of algal periphyton composition on eleven species of submerged macrophytes. Hydrobiological Bulletin, 1984, 18(2): 109- 118.
[31] You W H. The species composition and quantitative features of the periphytic algae communities in Dianshan Lake. Environmental Science, 1999, 20(5): 59- 62.
[32] Br?nmark C. Interactions between epiphytes, macrophytes and freshwater snails: A review. Journal of Molluscan Studies, 1989, 55(2): 299- 311.
[33] Morin J O N, Kimball K D. Relationship of macrophyte-mediated changes in the water column to periphyton composition and abundance. Freshwater Biology, 1983, 13(5): 403- 414.
[34] Su S Q, Shen A L, Yao W Z. Species composition and quantitative features of perphytic algae communities onPotamogetoncrispus. Journal of Southwest Agricultural University, 2002, 24(3): 255- 258.
[35] Chen C, Yin D, Yu B, Zhu H. Effect of epiphytic algae on photosynthetic function ofPotamogetoncrispus. Journal of Freshwater Ecology, 2007, 22(3): 411- 420.
[36] Lin H J, Dai X X, Shao K T, Su H M, Lo W T, Hsieh H L, Fang L S, Hung J J. Trophic structure and functioning in a eutrophic and poorly flushed lagoon in southwestern Taiwan. Marine Environmental Research, 2006, 62(1): 61- 82.
[37] Blindow I. The composition and density of epiphyton on several species of submerged macrophytes: The neutral substrate hypothesis tested. Aquatic Botany, 1987, 29(2): 157- 168.
[38] Cejudo-Figueiras C,lvarez-Blanco I, Bécares E, Saúl B. Epiphytic diatoms and water quality in shallow lakes: the neutral substrate hypothesis revisited. Marine and Freshwater Research, 2010, 61(12): 1457- 1467.
[39] Yuan X F, Shi Y H, Wang X R. Temporal and spatial distributions of periphytic algae in Taihu Lake. Journal of Agro-Environment Science, 2006, 25(4): 1035- 1040.
[40] Coci M, Bodelier P L E, Laanbroek H J. Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes. Applied and Environmental Microbiology, 2008, 74(7): 1963- 1971.
[41] K?rner S. Nitrifying and denitrifying bacteria in epiphytic communities of submerged macrophytes in a treated sewage channel. Acta Hydrochimica et Hydrobiologica, 1999, 27(1): 27- 31.
[42] Coci M, Nicol G W, Pilloni G N, Schmid M, Kamst-van Agterveld M P, Bodelier P L E, Laanbroek H J. Quantitative assessment of ammonia-oxidizing bacterial communities in the epiphyton of submerged macrophytes in shallow lakes. Applied and Environmental Microbiology, 2010, 76(6): 1813- 1821.
[43] Rimes C A, Goulder R. Temporal variation in density of epiphytic bacteria on submerged vegetation in a calcareous stream. Letters in Applied Microbiology, 1986, 3(1): 17- 21.
[44] Baker J H, Orr D R. Distribution of epiphytic bacteria on freshwater plants. Journal of Ecology, 1986, 74(1): 155- 165
[45] Black M A, Maberly S C, Spence D H N. Resistances to carbon dioxide fixation in four submerged freshwater macrophytes. New Phytologist, 1981, 89(4): 557- 568.
[46] Madsen T V, Sand-Jensen K. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany, 1991, 41(1- 3): 5- 40.
[47] Smith F A, Walker N A. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2and HCO3-and to isotopic descrimination. New Phytologist, 1980, 86(3): 245- 259.
[48] Sand-Jensen K, Borg D, Jeppesen E. Biomass and oxygen dynamics of the epiphyte community in a Danish lowland stream. Freshwater Biology, 1989, 22(3): 431- 443.
[49] Demarty M, Prairie Y T. In situ dissolved organic carbon (DOC) release by submerged macrophyte-epiphyte communities in southern Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(9): 1522- 1531.
[50] Raeder U, Ruzicka J, Goos C. Characterization of the light attenuation by periphyton in lakes of different trophic state. Limnologica-Ecology and Management of Inland Waters, 2010, 40(1): 40- 46.
[51] Tang H X. Environmental nano-pollutants (ENP) and their micro-interfacial processes on the aquatic particles. Acta Scientiae Circumstantiae, 2003, 23(2): l46- 155.
[52] Liang L, Morgan J J. Chemical aspects of iron oxide coagulation in water, laboratory studies and implications for natural systems. Aquatic Sciences, 1990, 52(1): 32- 55.
[53] Eriksson P G, Weisner S E B. Nitrogen removal in a wastewater reservoir: the importance of denitrification by epiphytic biofilms on submersed vegetation. Journal of Environmental Quality, 1997, 26(3): 905- 910.
[54] Kreiling R, Richardson W B, Cavanaugh J C, Bartsch L A. Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake: the role of rooted aquatic vegetation. Biogeochemistry, 2011, 104(1- 3): 309- 324.
[55] McKellar H N, Tufford D L, Alford M C, Saroprayogi P, Kelley B J, Morris J T. Tidal nitrogen exchanges across a freshwater wetland succession gradient in the upper Cooper River, South Carolina. Estuaries and Coasts, 2007, 30(6): 989- 1006.
[56] Eriksson G P, Weisner S E B. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnology and Oceanography, 1999, 44(8): 1993- 1999.
[57] Eriksson P. Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes. Biogeochemistry, 2001, 55(1): 29- 44.
[58] Toet S, Huibers L H F A, Van Logtestijn R S P, Verhoeven J T A. Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia, 2003, 501(1- 3): 29- 44.
[59] S?rensen J, J?rgensen T, Brandt S. Denitrification in stream epilithon: Seasonal variation in Gelbk and Rabis Bk, Denmark. FEMS Microbiology Letters, 1988, 53(6): 345- 353.
[60] Palijan G, Fuks D, Vidakovic J. Spatial and temporal distribution of net nitrite and nitrate production on submersed macrophyteCeratophyllumDemersumL.. Fresenius Environmental Bulletin, 2009, 18(1): 64- 69.
[61] Ge X G, Wang G X, Li Z G. Effects ofEichhorniacrassipesremains on the organic pollution in urban riverway. Journal of Anhui Agricultural Sciences, 2010, 38(10): 5287- 5288, 5291- 5291.
參考文獻(xiàn):
[2] 范成新, 王春霞. 長江中下游湖泊環(huán)境地球化學(xué)與富營養(yǎng)化. 北京: 科學(xué)出版社, 2007.
[3] 吳豐昌, 金相燦, 張潤宇, 廖海清, 王圣瑞, 姜霞, 王立英, 郭建陽, 黎文, 趙曉麗. 論有機(jī)氮磷在湖泊水環(huán)境中的作用和重要性. 湖泊科學(xué), 2010, 22(1): 1- 7.
[4] 曲久輝, 賀泓, 劉會(huì)娟. 典型環(huán)境微界面及其對(duì)污染物環(huán)境行為的影響. 環(huán)境科學(xué)學(xué)報(bào), 2009, 29(1): 2- 10.
[13] 張福鎖, 申建波, 馮固. 根際生態(tài)學(xué)——過程與調(diào)控. 北京: 中國農(nóng)業(yè)大學(xué)出版社, 2009: 10- 11.
[29] 秦伯強(qiáng), 宋玉芝, 高光. 附著生物在淺水富營養(yǎng)化湖泊藻-草型生態(tài)系統(tǒng)轉(zhuǎn)化過程中的作用. 中國科學(xué)C輯: 生命科學(xué), 2006, 36(3): 283- 288.
[31] 由文輝. 淀山湖著生藻類群落結(jié)構(gòu)與數(shù)量特征. 環(huán)境科學(xué), 1999, 20(5): 59- 62.
[34] 蘇勝齊, 沈盎綠, 姚維志. 菹草著生藻類的群落結(jié)構(gòu)與數(shù)量特征初步研究. 西南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2002, 24(3): 255- 258.
[39] 袁信芳, 施華宏, 王曉蓉. 太湖著生藻類的時(shí)空分布特征. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2006, 25(4): 1035- 1040.
[51] 湯鴻霄. 環(huán)境納米污染物與微界面水質(zhì)過程. 環(huán)境科學(xué)學(xué)報(bào), 2003, 23(2): 146- 155.
[61] 葛緒廣, 王國祥, 李振國. 鳳眼蓮殘?bào)w對(duì)城市河道有機(jī)物污染的影響. 安徽農(nóng)業(yè)科學(xué), 2010, 38(10): 5287- 5288, 5291- 5291.
Research advancements and perspectives on leaf and stem micro-interfaces in submerged macrophytes and its effect on water nitrogen cycling
WANG Wenlin1,2, LIU Bo1,3, HAN Ruiming1, FAN Zhou1, WANG Guoxiang1,*
1JiangsuKeyLaboratoryofEnvironmentalChangeandEcologicalConstruction,CollegeofGeographicalScience,NanjingNormalUniversity,Nanjing210023,China2NanjingInstituteofEnvironmentalSciences,MinistryofEnvironmentalProtection,Nanjing210042,China3CollegeofGeographicalScience,NantongUniversity,Nantong226007,China
Various kinds of substances in water, including organic matter, silt, zoogloea, algae, microorganisms etc., often cumulate on the leaf and stem surface in submerged macrophytes. A micro-interface is therefore established which varies in its composition, structure and thickness according to the actual environmental properties. It induces specific heterogeneous oxidation-reduction condition and provides organic material for nitrogen-cycle bacteria thus plays an important role in micro-interfacial processes such as ammonification, denitrification and anammox. The composition of this micro-interface, its responses to micro-environmental changes and functions in regulating nitrogen cycling constitute the fundamental horizon for better understanding the feature of submerged macrophytes in water management and ecological regulation. The present paper summarizes the research advancements on leaf and stem micro-interface in submerged macrophytes and its effect on water nitrogen cycling. The substance composition and micro-environmental property of the micro-interface are identified and reviewed respectively. Perspectives on future research are raised.
Because of the compositional complexity in the leaf and stem micro-interface, recent studies have been mainly focused on the characterization of biotic components for example alga and microbe in submerged macrophytes. Much less information is available concerning the function of a certain component, especially that of the abiotic matters and that their effects on the micro-environmental properties in this micro-interface.
Thanks to the development of microelectrode technique, in situ measurement of micro-environmental factors in the leaf and stem micro-interface and their spatial and temporal changes becomes feasible recently. However, current studies are much centered on the non-eutrophicated freshwater in which the major proportional periphyton is considered as autotrophic and the photosynthesis-sourced oxygen is to be consumed by respiration processes. The actual condition in eutrophicated waters is characterized by the abundance of oxygen-depleting substances and their accumulation on the leaf and stem surface of submerged macrophytes greatly changes the environmental properties in the micro-interface. Reports on the fluctuation of such micro-environmental properties in eutrophicated waters are still largely missing.
The modulation of aquatic nitrogen cycling, specifically the denitrification by microbes in the micro-interface of submerged macrophytes, is the key biogeochemical process in ecological remediation of eutrophicated waters with high level of nitrogen nutrition. It has been proven that the existence of periphytic layers on the leaf and stem of submerge macrophytes could facilitate the aquatic nitrification-denitrification processes. The denitrification efficiency is apparently intensive in certain conditions. Nevertheless, these studies are mainly upon individual submerged plant or at the level of community as maximum, and in most cases estimating the nitrogen modulation according to the overall level of aquatic inorganic nitrogen, rather than the actual substance composition and inner environmental factors of the micro-interface that directly alter the nitrogen transportation and transformation.
To further elucidate the secrets of leaf and stem micro-interface, studies are needed on the spatial and temporal variations in substance composition, structural characteristics and oxic-anoxic micro-inhabitants. The modulation mechanism of this micro-interface on the biogeochemical cycling of nitrogen in eutrophicated waters are fundamentally required.
submerged macrophyte; leaf and stem micro-interface; substantial composition; micro-environmental property; water nitrogen cycling
國家自然科學(xué)基金 (41173078); 科技部國際合作重大項(xiàng)目 (2010DFB33960); 環(huán)保公益性行業(yè)科研專項(xiàng) (201309035); 國家水體污染控制與治理科技重大專項(xiàng) (2012ZX07506-007, 2014ZX0710- 012)
2013- 08- 15;
2014- 06- 06
10.5846/stxb201308152085
*通訊作者Corresponding author.E-mail: wangguoxiang@njnu.edu.cn
王文林,劉波,韓睿明,范婤,王國祥.沉水植物莖葉微界面及其對(duì)水體氮循環(huán)影響研究進(jìn)展.生態(tài)學(xué)報(bào),2014,34(22):6409- 6416.
Wang W L, Liu B, Han R M, Fan Z, Wang G X.Research advancements and perspectives on leaf and stem micro-interfaces in submerged macrophytes and its effect on water nitrogen cycling.Acta Ecologica Sinica,2014,34(22):6409- 6416.