劉信東
(宜賓學(xué)院數(shù)學(xué)學(xué)院,四川宜賓644007)
b-度量空間中弱壓縮映射的強(qiáng)收斂定理
劉信東
(宜賓學(xué)院數(shù)學(xué)學(xué)院,四川宜賓644007)
定義了b-度量空間中弱壓縮映射,證明了由Picard迭代生成的序列強(qiáng)收斂到弱壓縮映射的一個(gè)不動(dòng)點(diǎn).改進(jìn)和推廣了Fatma等人的研究結(jié)果.
b-度量空間;弱壓縮映射;Picard迭代;不動(dòng)點(diǎn)
Banach壓縮映射原理自誕生以來,一直受到許多學(xué)者的親睞,他們?yōu)榇烁冻隽舜罅康男难瑢?duì)定理作了各種推廣.最近,F(xiàn)atma[1]將其推廣到錐度量空間中的弱壓縮映射,證明了該映射有不動(dòng)點(diǎn).作為度量空間的推廣,b-度量空間越來越受到學(xué)者的重視,對(duì)度量空間中壓縮映射作了大量的推廣[2-5].
定義1[2]設(shè)X是一個(gè)集合,s≥1是一給定實(shí)數(shù). d:X×X→[)
0,∞是一個(gè)映射,如果對(duì)任意x,y,z∈X,有
(1)d(x,y)=0當(dāng)且僅當(dāng)x=y;
(2)d(x,y)=d(y,x);
(3)d(x,y)≤s[] d(x,z)+d(z,y).成立,則稱(X,d)是一個(gè)b-度量空間.
定義2(X,d)是一b-度量空間,T:X→X是一個(gè)映射.如果存在a∈[0,1),b∈[0,∞),使得對(duì)任意x,y∈X有
成立,則稱T是一個(gè)弱壓縮映射.特別地,當(dāng)b=0時(shí),稱T為壓縮映射.
設(shè)T是一個(gè)弱壓縮映射,本文的目的是考慮Picard迭代:證明該迭代生成的序列{xn}強(qiáng)收斂到T的不動(dòng)點(diǎn).改進(jìn)和推廣了Fatma等的結(jié)論.
定理1設(shè)(X,d)是一個(gè)完備的b-度量空間,T:X→X是一個(gè)弱壓縮映射.如果,則由Picard迭代所生成的序列{xn}是一個(gè)Cauchy列.
證明:對(duì)任意的n≥1,有
因此,對(duì)任意p≥1,有
定理2設(shè)(X,d)是一個(gè)完備的b-度量空間,T:X→X是一個(gè)弱壓縮映射.如果則T有不動(dòng)點(diǎn).
證明:設(shè){xn}是由Picard迭代所生成的序列,由定理1知,{xn}是一個(gè)Cauchy列.由于(X,d)完備,則{xn}收斂.設(shè)xn→z,(n→∞),下證z是T的不動(dòng)點(diǎn).
由于xn→z,(n→∞),則對(duì)任意 ε>0,存在N∈N+,使得n≥N,有于是
由ε的任意性知d(z,Tz)=0,則Tz=z,即z是T的不動(dòng)點(diǎn).
推論 設(shè)(X,d)是一個(gè)完備的b-度量空間,T:X→X是一個(gè)壓縮映射.如果,則T有不動(dòng)點(diǎn).
[1]Fatma A S.Fixed point theorems for weak contractions in cone metric spaces[J].Int Journal of Math Analysis,2010,7(48):2367-2372.
[2]Razani A,Bagherboum M.Convergence and stability of Jungck-type iterative procedures in convex b-metric spaces[J/OL].Fixed Point Theory and Applications 2013,2013:331.http://www.fixedpointtheoryandapplications.com/content/2013/1/331.
[3]Bakhtin I A.The contraction mapping principle in almost metric spaces [J].Funct Anal,Gos Ped Inst Unianowsk 1989,30,26-37.
[4]Czerwik S.Contraction mappings in b-metric spaces[J].Acta Mathematica et Informatica Universitatis Ostraviensis,1993,1:5-11.
[5]Czerwik S.Nonlinear set-valued contraction mappings in b-metric spaces[J].Atti Semin Mat Fis Univ Modena Reggio Emilia,1998,46: 263-276.
【編校:許潔】
A Strong Convergence Theorem for Weak Constractive Mappings in B-Metric Spaces
LIU Xindong
(School of Mathematics,Yibin University,Yibin,Sichuan 644007,China)
In b-metric space,weak constraction was introduced.The sequence generated by picard iterative strongly converge to a fixed point of weak constraction.The result extends and improves the corresponding results announced by Fatma etc.
b-metric space;weak contractive mapping;picard iterative;fixed point
O177.91
A
1671-5365(2014)06-0016-02
2014-01-05修回:2014-01-20
宜賓學(xué)院青年基金資助項(xiàng)目(2007Q22)
劉信東(1975-),男,講師,碩士,研究方向?yàn)榉汉治?/p>
時(shí)間:2014-03-28 17:12
http://www.cnki.net/kcms/detail/51.1630.Z.20140328.1712.003.html