• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A class of piecewise dissipative control of steam generator water level

    2014-08-05 06:46:26WANGJunlingLIFeifeiLIJie

    WANG Jun-ling,LI Fei-fei,LI Jie

    (School of Nuclear Science and Technology,Harbin Engineering University,Harbin 150001,China)

    Steam generator(SG)is one of the most important equipment in a nuclear power plant.The role of a SG is to transfer the energy from the reactor coolant system in the primary side to the secondary side,and to create the steam that will drive the turbines.It is of significance for nuclear reactor normal operation to maintain SG’s safety and reliability.So the SG water level must be regulated in the reasonable range.Its highly non-linearity,strong disturbance and nonminimum phase behaviors make it difficult to design a desirable controller for water level control.At present,PID type controllers are still preponderating in SG water level control[1].With the development of computer technology and control theory,many methodologies,such as model predictive control,adaptive control,neural networks control and fuzzy control,have been applied to the water-level control of SG[2-5].Though the advanced controllers introduced above have provided good performance,the simple control structures and satisfactory control schemes are still very scarce.

    The notion of dissipation introduced by Willems in 1972 is a system theoretic concept that comes from physical reality and considers the energy of the physical system[6].This notion states that the energy increase in the system over a time interval cannot exceed the energy that is supplied to the system during this time-interval.It means that the system loses energy over time and eventually the system must grind to a stop and reach some final stable state.Therefore,dissipation has a strong connection with system stability and it plays an important role in the systems stability analysis and design.Recently,many researchers have studied the theory of dissipation and applied it to the permanent magnet synchronous motors system,the nuclear heating reactor load-following system,and the SG water level control system[7].

    In this paper the problem of quadratic dissipative control for SG water level control system has been taken into account.Firstly,based on simplified model that Irving put forward,the linear parameter varying(LPV)model of SG is built.Secondly,a state feedback dissipative controller(SFDC)with a mixed H∞and positive real performance is designed.Thirdly,a modified control strategy,piecewise dual- controller(PDC)is proposed,which consists of a SFDC and a PID controller.At last,the feasibility of the proposed framework is shown via simulation,and the latter one has better performance than the cascade PID control.

    1 Mathematical model of SG

    A SG is a dynamic complicated system with nonlinear characteristics.Based on the Irving’s SG model and LPV theory,the LPV SG water level control system can be constructed[8]as

    where x(t)=[xT1(t)xT2(t)xT3(t)xT4(t)xT5(t)]Tis the state vector which contains the factors of changing the water level.u(t)denotes control input which means feed water flow in this system.qv(t),which is the exogenous input,denotes the deviation from initial value of steam flow.y(t)is the water level as a measured output.p means percentage of the operational and rated power values,and it determines the values of various system matrices(A(p),B1(p)).The Irving’s model is divided into four regions:5% ~15%,15% ~30%,30% ~50%,50% ~100%.The parameters of the Irving’s model are presented in Table 1.Because the model is assumed to be LPV in each region,so the rest of the working points of the model parameters can be obtained by linear interpolation.

    (p),a22= -τ-12(p),a25= -G2(p)/τ2(p),a33= -2τ-11(p),a35=G3(p),a43= - τ(p)-4π2T-2(p),a55= -1,b11= -G1(p),b12=G2(p)/τ2(p)

    Table1 Parameters of a SG

    2 Dissipative control methodology

    The system(1)is dissipative with respect to the supply rate s(u(t),y(t)),if satisfies:

    with V(x)is a non-negative storage function,s(u(t),y(t))is the supply rate function.From(2),it is concluded that when t>0,V(x(t1))is less than or equal to the sum of the initial time storage energy V(x(t0))and the supply of energy from outside in time- interval[t0,t1].Namely,the system does not produce energy,except the energy dissipation.

    Considering the system(1),the quadratic energy supply function E(qv(t),z(t),T)is given as follows:

    When Q= - I,S=0,R= γ2I,the strict(Q,S,R)dissipation reduces to a H∞norm constraint.

    When,Q=0,S=I,R=0,the strict(Q,S,R)dissipation reduces to strict positive realness.

    When,Q= - θI,S=(1 - θ),R= θγ2I,θ∈(0,1),the strict(Q,S,R)dissipation represents a mixed H∞and positive real performance.

    Definition 1[9]:Under zero initial condition,when u(t)=0,T >0 ,for some scalar α >0,the system(1)is regarded as strict(Q,S,R)dissipation,if satisfies:

    E(qv(t),z(t),T)≥α〈qv(t),qv(t)〉T

    For the system(1),there exists a state feedback control,

    where K is the controller gain matrix.

    Then,the resulting closed-loop system is described as

    Lemma 1[10]:Let Q,S and R be given matrices with Q and R symmetric.Consider the system(1)subject to:

    there exists a control law(4)such that the resulting closed-loop system(5)is asymptotically stable and strictly(Q,S,R)dissipative if and only if there exist matrices X>0 and Y,satisfying the following linear matrix inequality(LMI):

    moreover,a suitable control law is given by K=YX-1.

    3 Piecewise SFDC design and numerical simulation

    The gain scheduling based on the LPV model is used as follows:①the whole operating range is divided in four regions;②a SFDC is designed for each region;③at any time,qv(t)is used to identify the SG operating power according to Table 1 and the operating range can be judged;④based on the identified region,a proper controller is selected.During solving controller for each region,the coefficient matrices of each integer power are obtained by using linear inter-polation.Then,each of them satisfies Lemma 1.By solving the set of linear matrix inequalities obtained in the Lemma 1,the controller of each region can be gained finally.

    Figure1 Response of water level at 5%power

    Figure2 Response of water level at 15%power

    Figure3 Response of water level at 30%power

    Figure4 Response of water level at 50%power

    Figure5 Response of water level at 100%power

    Specifically,taking region as an example,the power points are chosen as follows:5%,6%,7%,8%,9%,10%,11%,12%,13%,14%and 15%.According to the known coefficient matrices in 5%and 15%power point of Irving’s model,the rest of the model parameters at 9 different power points are obtained by interpolation based on the provided data.Then,making the LMI(6)corresponding to the 11 power points possess a common solution,the controller gain K can be obtained depending on Lemma 1 finally.

    Considering Q= - θI ,S=(1 - θ)I,R= θγ2and setting θ=0.25,the SFDC in four regions can be derived conveniently from solving the four set of LMS.

    Simulations are conducted to assess the controller’s performance.The simulating time is 400 s,steam flow rate produces 30 kg/s step-up at 100 s.The responses of the SG water level with respect to steam flow rate disturbance at 5%,15%,30%and 50%power points are depicted from Figure1 to Figure4.Figsure 5 shows the response of water level with 30 kg/s step-depress in steam flow rate at 100 s at power 100%.Figure6 illustrates the water level response for 5%per minute of rated power ramp-increase starting from 10%to 40%and a ramp-down from 40%to 10%.

    Figure6 water level response to the power ranges linearly from 10%through 40%to 10%.(A)power trajectory(B)corresponding water level responses.

    Figure7 Closed-loop structure using the PDC

    Initially,small steam flow perturbations are introduced about stationary points at the five power points.Figure1~5 show that the SFDC has achieved good rejection performance in the presence of disturbance.The settling time and overshoot of the closedloop system are satisfactory,especially SFDC has short regulating time in low operating region.The supply rate function of SFDC includes disturbance,controlled output,coupling of disturbance and controlled output factors,namely,both phase and gain performance of the system are considered,all above enable the SFDC to provide a more flexible and less conservative design.Thereafter,the operating power produces linear change from 10%to 40%.Figure6 depicts the SFDC can handle a larger power range situation and the overshoot is in the permissible range.

    However,the steady state error is observed in all power levels.This is because the supply rate in Definition 1 is a constant which is greater than 0,videlicet,the influence to controlled output by disturbance can just be limited in a certain range,and it cannot be eliminated.

    4 PDC design and numerical simulation

    In order to eliminate the steady state error in FDC,a PID controller is added to control water level deviation,the PDC system is constituted.The closed-loop structure is demonstrated in Figure7.

    According to the engineering setting method,PID parameters are tuned.The gains of FDC which be used are same with the section 4.

    To test if the proposed control system achieves good anti-jamming capability and set-point tracking,the steam flow rate is chosen as 30 kg/s stepup at 20 s,and the set point for the water level increases from 0 to 100 mm at 500 s.The performances of the PDC and the cascade PID controller at 5%,15%,30%and 50%power level are given in Figure8 ~11.In Figure.12,a step-depress(30 kg/s)in the steam flow rate occurs at 20 s,and the set-point of the water level suddenly depresses from 0 to 100 mm at 500 s at power 100%.

    From Figure8 to 12,both the PDC and the cascade PID controller can guarantee the globally stability of the water level control system.Compared with the cascade PID,the PDC has a smaller overshoot and a little worse setting time when steam flow rate is disturbed as the five pictures demonstrated.On the other hand,the PDC has smaller overshoot except in the 5%operating power level,while the regulating time of PDC is close to the cascade PID’s in all power levels as setpoint changes.Through the above analysis,it can be concluded that the proposed PDC has better performance than the cascade PID.Besides,the biggest advantage of the PDC is that the oscillation frequency caused by the transient response is reduced effectively.Moreover,the problem of steady state error can be eliminated.This is due to adding an integral action.

    Figure8 Response of water level at 5%power

    Figure9 Response of water level at 15%power

    Figure10 Response of water level at 30%power

    Figure11 Response of water level at 50%power

    Figure12 Response of water level at 100%power

    The mean of the squared error(MSE)index is an efficient and feasible measurement in performance assessment.In this paper,for comparison the performance of the PDC with the previous proposed controllers-ACNFC and Auto-PID,MSE is used[11-12].The values of MSE for three controllers are given in Table 2.

    Table2 MSE performance index

    The performance index of the PDC is better than the Auto-PID in all power regions.Compared with ACNFC,the PDC has better performance at 5%,15%,30%and 50%power points and similar performance at 100%power point.

    5 Conclusions

    For nuclear power plants,the water level control is one of the key technologies for ensuring economic viability and safety.In this paper,a SFDC has been proposed and applied to the nuclear SG water level control system.And then,a PDC based on SFDC and PID controller is designed and compared with the cascade PID controller.The computer simulation results demonstrate the effectiveness of the two proposed controllers in all power levels.In comparison with the cascade PID controller,PDC shows a improvement in water set point tracking and an increased ability in anti-jamming.In particular,the PDC can efficiently decrease the oscillation frequency caused by the steam flow rate disturbance.

    [1]GANG Z,WEI P,DAFA Z.Analysis of water level control methods for nuclear steam generator[J].Atomic Energy Science and Technology,2004,38:20-21.

    [2]W WEI,JUNLING W,WEISHI H.Piecewise H∞control for water level of steam generator[J].Nuclear Power Engineering,2009,30(5):105-109.

    [3]ELIASIA H,DAVILUA H,MENHAJ M B.Adaptive fuzzy model based predictive control of nuclear steam generators[J].Nuclear Engineering and Design,2007,237(6):668-676.

    [4]M G N A,Auto-tuned PID controller using a model predictive control method for the steam generator water level[J].IEEE Transations on Nuclear Science,2001,48(5):1664-1671.

    [5]MUNASINGHE S R,KIM M S,LEE J J.Adaptive neurofuzzy controller to regulate UTSG water level in nuclear plants[J].IEEE Transations on Nuclear Science,2005,52(1):421 -429.

    [6]WILLEMS J C.Dissipative dynamical systems PartⅡ:Linear systems with quadratic supply rates[J].Archive for Rational Mechanics and Analysis,1972,45(5):352 -393.

    [7]JUN Q.Research on PMSM control with dissipation Hamilton system[D].Hangzhou:Zhejiang University,2009.

    [8]IRVING E,MIOSSEC C,TASSART J.Toward efficient full automatic operation of the PWR steam generator with water level adaptive control[C]//Proceedings of the International Conference on Boiler Dynamics and Control in Nuclear Power Stations,Bournemouth,U.K.,1979:309-329.

    [9]BROGLIATO B,LOZANO R,B MASCHKE,et al.Egeland,Dissipative Systems Analysis and Control:Theory and Applications[C]//London:Springer Verlag,2nd edition.2007:193 -200.

    [10]XIE S,XIE L,DE SOUZA C E.Robust dissipative control for linear systems with dissipative uncertainty[J].International Journal of Control,1998,70(2):169 -191.

    [11]FAKHRAZARI A,M BOROUSHAKI.Adaptive critic-based neurofuzzy controller for the steam generator water level[J].IEEE Transactions on Nucelar Science,2008,55(3):1678-1685.

    [12]PARLOS A G,RAIS O T.Nonlinear control of u-tube steam generators via H∞control[J].Control Engineering Practice,2000,8(8):921-936.

    国产激情偷乱视频一区二区| 99久久无色码亚洲精品果冻| 国产亚洲欧美在线一区二区| 精品一区二区免费观看| 午夜免费成人在线视频| 国产午夜福利久久久久久| 国产精品一区二区三区四区免费观看 | 欧美最黄视频在线播放免费| 国产色婷婷99| 午夜免费男女啪啪视频观看 | 不卡一级毛片| 精品不卡国产一区二区三区| 在线观看66精品国产| 日本成人三级电影网站| av在线蜜桃| 大型黄色视频在线免费观看| 久久欧美精品欧美久久欧美| 99国产极品粉嫩在线观看| 国产精品影院久久| 国产精品久久久久久亚洲av鲁大| 又粗又爽又猛毛片免费看| 精品人妻偷拍中文字幕| 精品一区二区三区人妻视频| 亚洲 欧美 日韩 在线 免费| 三级男女做爰猛烈吃奶摸视频| 看十八女毛片水多多多| 色5月婷婷丁香| 韩国av一区二区三区四区| 久久久久性生活片| 美女高潮的动态| 成年女人毛片免费观看观看9| 色综合欧美亚洲国产小说| 如何舔出高潮| 蜜桃久久精品国产亚洲av| 日韩欧美在线二视频| 精品99又大又爽又粗少妇毛片 | 亚洲美女搞黄在线观看 | 女生性感内裤真人,穿戴方法视频| 亚洲18禁久久av| 久久久久久国产a免费观看| 国产精品日韩av在线免费观看| 国产三级黄色录像| 69人妻影院| 青草久久国产| 熟女人妻精品中文字幕| 少妇人妻精品综合一区二区 | 国产精品自产拍在线观看55亚洲| а√天堂www在线а√下载| 在线观看午夜福利视频| 在线免费观看不下载黄p国产 | 最新在线观看一区二区三区| 欧美丝袜亚洲另类 | a级毛片免费高清观看在线播放| 深夜精品福利| 99在线人妻在线中文字幕| 久久久久久久午夜电影| 丰满乱子伦码专区| 最近视频中文字幕2019在线8| 一区二区三区四区激情视频 | 国产淫片久久久久久久久 | 国产精品电影一区二区三区| 欧美高清成人免费视频www| 一本综合久久免费| 搞女人的毛片| 亚洲中文字幕日韩| 三级国产精品欧美在线观看| 人人妻,人人澡人人爽秒播| 黄色配什么色好看| 欧美潮喷喷水| 91在线观看av| 91狼人影院| 欧洲精品卡2卡3卡4卡5卡区| 蜜桃亚洲精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产亚洲av嫩草精品影院| 精品人妻熟女av久视频| 欧美丝袜亚洲另类 | 国产精品伦人一区二区| 午夜福利成人在线免费观看| 亚洲男人的天堂狠狠| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美另类亚洲清纯唯美| 色av中文字幕| 尤物成人国产欧美一区二区三区| 十八禁国产超污无遮挡网站| 午夜精品一区二区三区免费看| 欧美潮喷喷水| 欧美乱色亚洲激情| 黄色日韩在线| 亚洲电影在线观看av| 欧美日韩黄片免| 91久久精品电影网| 婷婷精品国产亚洲av在线| 一a级毛片在线观看| 高清日韩中文字幕在线| 18禁在线播放成人免费| 亚洲av熟女| 禁无遮挡网站| 亚洲人成伊人成综合网2020| 日韩欧美在线二视频| 人人妻人人看人人澡| 老司机深夜福利视频在线观看| 少妇高潮的动态图| 亚洲国产高清在线一区二区三| 婷婷精品国产亚洲av在线| 热99在线观看视频| 精品午夜福利在线看| 国产黄a三级三级三级人| 黄色视频,在线免费观看| 欧美成人a在线观看| 久久久久性生活片| 九色国产91popny在线| 色综合婷婷激情| 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一区二区三区不卡| 深夜a级毛片| 国产精品一区二区三区四区久久| 免费看美女性在线毛片视频| 久久亚洲真实| 亚洲国产色片| 国产v大片淫在线免费观看| 亚洲三级黄色毛片| 色5月婷婷丁香| 免费av不卡在线播放| 91午夜精品亚洲一区二区三区 | 国产一区二区在线观看日韩| 波多野结衣高清作品| 岛国在线免费视频观看| 简卡轻食公司| 亚洲人成网站在线播| 国产在线男女| 看十八女毛片水多多多| 成年女人看的毛片在线观看| 国内少妇人妻偷人精品xxx网站| 午夜影院日韩av| 欧美黄色片欧美黄色片| 舔av片在线| a在线观看视频网站| 99久久精品国产亚洲精品| 内地一区二区视频在线| 日本一本二区三区精品| 在线观看舔阴道视频| 在线天堂最新版资源| 午夜福利在线在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲熟妇熟女久久| 女人十人毛片免费观看3o分钟| av女优亚洲男人天堂| 色视频www国产| 久久国产精品人妻蜜桃| 99热精品在线国产| 日本熟妇午夜| 亚洲男人的天堂狠狠| 狠狠狠狠99中文字幕| 久久久精品欧美日韩精品| 欧美黑人欧美精品刺激| 热99在线观看视频| 人人妻人人澡欧美一区二区| 精品不卡国产一区二区三区| 人妻制服诱惑在线中文字幕| 国产亚洲精品av在线| 午夜视频国产福利| 精品久久久久久久久久免费视频| 内地一区二区视频在线| 亚洲一区高清亚洲精品| x7x7x7水蜜桃| 精品久久久久久久久久免费视频| 搡老熟女国产l中国老女人| 国产精品一区二区性色av| 国产高清激情床上av| 我要看日韩黄色一级片| 午夜福利视频1000在线观看| 亚洲精品456在线播放app | 级片在线观看| 特级一级黄色大片| 嫩草影视91久久| 丰满人妻一区二区三区视频av| 日本免费a在线| 无人区码免费观看不卡| 又爽又黄a免费视频| 看片在线看免费视频| 成年版毛片免费区| 波多野结衣高清无吗| 日韩欧美三级三区| 免费搜索国产男女视频| 久久久久性生活片| 国产欧美日韩精品一区二区| 精品久久久久久久人妻蜜臀av| 欧美乱色亚洲激情| 久久久久久九九精品二区国产| 高清日韩中文字幕在线| 一区二区三区四区激情视频 | 国产精品永久免费网站| 日日摸夜夜添夜夜添小说| 精品不卡国产一区二区三区| 日韩欧美精品v在线| 长腿黑丝高跟| 嫩草影院入口| 99久国产av精品| 成人一区二区视频在线观看| 一区二区三区激情视频| 婷婷色综合大香蕉| or卡值多少钱| 国产成人aa在线观看| 又黄又爽又刺激的免费视频.| 一个人看的www免费观看视频| 午夜福利18| 午夜福利免费观看在线| 午夜福利视频1000在线观看| 99久国产av精品| 看片在线看免费视频| 国产免费一级a男人的天堂| 久久中文看片网| 夜夜爽天天搞| 久久草成人影院| 中文字幕高清在线视频| 亚洲电影在线观看av| 久久久成人免费电影| 国产精品久久久久久人妻精品电影| 欧美3d第一页| 午夜视频国产福利| 人妻夜夜爽99麻豆av| 美女高潮喷水抽搐中文字幕| 天天躁日日操中文字幕| 最新在线观看一区二区三区| 可以在线观看毛片的网站| 激情在线观看视频在线高清| 又粗又爽又猛毛片免费看| 亚洲18禁久久av| 欧美xxxx黑人xx丫x性爽| 内地一区二区视频在线| 国产伦在线观看视频一区| 亚洲精品在线观看二区| 国产黄a三级三级三级人| 免费观看的影片在线观看| 亚洲国产精品久久男人天堂| 亚洲最大成人中文| 91午夜精品亚洲一区二区三区 | 少妇的逼好多水| 久久亚洲真实| 亚洲avbb在线观看| 啦啦啦观看免费观看视频高清| 精品不卡国产一区二区三区| 九九久久精品国产亚洲av麻豆| 最近中文字幕高清免费大全6 | 欧美黑人巨大hd| 亚洲av不卡在线观看| 99国产精品一区二区三区| 波多野结衣高清无吗| 欧美一区二区国产精品久久精品| 嫁个100分男人电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 老熟妇乱子伦视频在线观看| 中文字幕人成人乱码亚洲影| 舔av片在线| 很黄的视频免费| 精品久久久久久久人妻蜜臀av| 久久久久久九九精品二区国产| 久久人人爽人人爽人人片va | 脱女人内裤的视频| 三级国产精品欧美在线观看| 亚洲18禁久久av| 男人和女人高潮做爰伦理| 十八禁国产超污无遮挡网站| 夜夜看夜夜爽夜夜摸| 老鸭窝网址在线观看| 欧美中文日本在线观看视频| 看免费av毛片| 欧美高清成人免费视频www| 久久精品人妻少妇| 日韩欧美三级三区| 亚洲精品久久国产高清桃花| 少妇人妻精品综合一区二区 | av女优亚洲男人天堂| 真人做人爱边吃奶动态| 精品久久久久久,| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 好男人电影高清在线观看| 有码 亚洲区| 久久久色成人| 国产高清三级在线| 动漫黄色视频在线观看| 亚洲激情在线av| 亚洲五月婷婷丁香| 狂野欧美白嫩少妇大欣赏| 欧美日韩福利视频一区二区| 日本 av在线| 欧美色欧美亚洲另类二区| 老司机深夜福利视频在线观看| 欧美黑人巨大hd| 免费av毛片视频| 99国产精品一区二区蜜桃av| 亚洲一区高清亚洲精品| 在线播放无遮挡| 精品久久久久久,| 日本免费a在线| 色av中文字幕| 又紧又爽又黄一区二区| av国产免费在线观看| а√天堂www在线а√下载| 无人区码免费观看不卡| 真实男女啪啪啪动态图| 国产高潮美女av| 国产精品精品国产色婷婷| 性欧美人与动物交配| 欧美激情久久久久久爽电影| 男女做爰动态图高潮gif福利片| 男女视频在线观看网站免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜免费成人在线视频| 俄罗斯特黄特色一大片| 中出人妻视频一区二区| 少妇高潮的动态图| 97超视频在线观看视频| 成人性生交大片免费视频hd| 国产激情偷乱视频一区二区| 日韩欧美国产一区二区入口| 淫秽高清视频在线观看| 男人狂女人下面高潮的视频| 激情在线观看视频在线高清| 色吧在线观看| 久9热在线精品视频| 日日摸夜夜添夜夜添小说| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 国产精品久久久久久久久免 | 日韩欧美一区二区三区在线观看| 美女cb高潮喷水在线观看| 丁香六月欧美| 2021天堂中文幕一二区在线观| 69人妻影院| av黄色大香蕉| 在线观看免费视频日本深夜| 五月玫瑰六月丁香| 亚洲人与动物交配视频| 搡老熟女国产l中国老女人| 热99在线观看视频| 男插女下体视频免费在线播放| 丁香六月欧美| 精品人妻视频免费看| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 日本免费一区二区三区高清不卡| 免费大片18禁| www.熟女人妻精品国产| 99久久久亚洲精品蜜臀av| 深爱激情五月婷婷| 亚洲男人的天堂狠狠| 永久网站在线| 亚洲熟妇熟女久久| 无人区码免费观看不卡| 内射极品少妇av片p| 国产伦精品一区二区三区视频9| 欧美成人一区二区免费高清观看| 免费观看精品视频网站| 国产午夜精品久久久久久一区二区三区 | 日日干狠狠操夜夜爽| 又黄又爽又刺激的免费视频.| av中文乱码字幕在线| 老鸭窝网址在线观看| 国产精品一区二区免费欧美| 三级国产精品欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久99热6这里只有精品| 又紧又爽又黄一区二区| 长腿黑丝高跟| 国产单亲对白刺激| 亚洲av二区三区四区| 欧美精品国产亚洲| 欧美色欧美亚洲另类二区| 国产视频一区二区在线看| 国产精品爽爽va在线观看网站| 日韩欧美在线二视频| 亚洲精品在线观看二区| 性色avwww在线观看| 国产精品不卡视频一区二区 | 亚洲av成人精品一区久久| 久久国产乱子免费精品| 久久九九热精品免费| 日韩国内少妇激情av| 午夜福利免费观看在线| av在线老鸭窝| 少妇人妻一区二区三区视频| 日韩高清综合在线| 中文资源天堂在线| 一a级毛片在线观看| 18禁黄网站禁片午夜丰满| 亚洲经典国产精华液单 | 99热这里只有是精品50| 成人三级黄色视频| 国产中年淑女户外野战色| 国产精品久久久久久久电影| 国产爱豆传媒在线观看| 女人十人毛片免费观看3o分钟| 国产伦精品一区二区三区四那| 国产精品免费一区二区三区在线| 免费看日本二区| 成人毛片a级毛片在线播放| 成人无遮挡网站| 一本综合久久免费| 欧美黑人欧美精品刺激| 国产亚洲欧美98| 熟女电影av网| 舔av片在线| 级片在线观看| 男人舔奶头视频| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添小说| 精品国产三级普通话版| 日韩有码中文字幕| h日本视频在线播放| АⅤ资源中文在线天堂| 极品教师在线视频| 我的老师免费观看完整版| 我要搜黄色片| 亚洲av电影不卡..在线观看| 一区二区三区高清视频在线| 亚洲av一区综合| av在线老鸭窝| 亚洲精品成人久久久久久| 国产欧美日韩一区二区精品| 国产精品99久久久久久久久| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 亚洲中文字幕一区二区三区有码在线看| 露出奶头的视频| 男女那种视频在线观看| 日本与韩国留学比较| 最后的刺客免费高清国语| 91九色精品人成在线观看| 亚洲av美国av| 性欧美人与动物交配| 欧美日韩黄片免| 日韩欧美免费精品| 成人美女网站在线观看视频| 欧美在线黄色| 欧美日韩福利视频一区二区| 精品福利观看| 极品教师在线免费播放| 久久国产精品人妻蜜桃| av中文乱码字幕在线| 能在线免费观看的黄片| 久久国产精品影院| 国产精品女同一区二区软件 | 成人鲁丝片一二三区免费| 一级av片app| 日韩欧美 国产精品| 男女视频在线观看网站免费| 99久久99久久久精品蜜桃| 国产精品久久久久久精品电影| 三级毛片av免费| 日本成人三级电影网站| 我要搜黄色片| 高潮久久久久久久久久久不卡| 一区福利在线观看| 在线观看午夜福利视频| 特级一级黄色大片| 天堂√8在线中文| 精品人妻一区二区三区麻豆 | 亚洲五月天丁香| 91九色精品人成在线观看| 亚洲自偷自拍三级| 欧美成人免费av一区二区三区| 国内少妇人妻偷人精品xxx网站| 毛片一级片免费看久久久久 | 亚洲成人久久爱视频| 在线a可以看的网站| 精品免费久久久久久久清纯| 99久久99久久久精品蜜桃| 深夜精品福利| 亚洲国产精品久久男人天堂| 两个人的视频大全免费| 中国美女看黄片| 欧美日韩瑟瑟在线播放| 欧美一区二区国产精品久久精品| 国产aⅴ精品一区二区三区波| 午夜a级毛片| 又爽又黄无遮挡网站| 特级一级黄色大片| 久久久久久久久大av| 极品教师在线视频| av天堂中文字幕网| 国产一区二区在线av高清观看| 一本精品99久久精品77| 自拍偷自拍亚洲精品老妇| 欧美xxxx性猛交bbbb| 我的老师免费观看完整版| 久久久久国内视频| 好看av亚洲va欧美ⅴa在| АⅤ资源中文在线天堂| 一本精品99久久精品77| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人精品二区| 午夜免费成人在线视频| 欧美xxxx性猛交bbbb| 三级国产精品欧美在线观看| 在线观看午夜福利视频| 亚洲av二区三区四区| 日韩av在线大香蕉| 一个人看视频在线观看www免费| 亚洲最大成人av| 小蜜桃在线观看免费完整版高清| 欧美精品国产亚洲| 高潮久久久久久久久久久不卡| 国产私拍福利视频在线观看| 在线播放国产精品三级| 午夜福利欧美成人| 欧美黄色淫秽网站| av天堂在线播放| 午夜激情福利司机影院| 中文字幕av成人在线电影| 好男人在线观看高清免费视频| 亚洲人成网站在线播放欧美日韩| 俺也久久电影网| 免费无遮挡裸体视频| 精品免费久久久久久久清纯| 小蜜桃在线观看免费完整版高清| 变态另类丝袜制服| 免费在线观看日本一区| 日韩欧美三级三区| 精品人妻一区二区三区麻豆 | 国产亚洲av嫩草精品影院| 变态另类成人亚洲欧美熟女| 女人十人毛片免费观看3o分钟| 熟妇人妻久久中文字幕3abv| 一二三四社区在线视频社区8| www.熟女人妻精品国产| 久久精品久久久久久噜噜老黄 | 美女高潮喷水抽搐中文字幕| www.熟女人妻精品国产| 欧美bdsm另类| 久久草成人影院| 亚洲av二区三区四区| 免费观看人在逋| 欧美绝顶高潮抽搐喷水| 我要搜黄色片| 成人永久免费在线观看视频| 日本免费a在线| 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 最近视频中文字幕2019在线8| a级一级毛片免费在线观看| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添小说| 国产国拍精品亚洲av在线观看| 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品电影| 99久久精品热视频| 亚洲成人久久爱视频| 国产高潮美女av| 亚洲最大成人手机在线| 十八禁人妻一区二区| 免费人成视频x8x8入口观看| 久久久久久久久久成人| 制服丝袜大香蕉在线| 日日摸夜夜添夜夜添av毛片 | 国产蜜桃级精品一区二区三区| 高清在线国产一区| 日韩欧美一区二区三区在线观看| 精品日产1卡2卡| 村上凉子中文字幕在线| 欧美丝袜亚洲另类 | 少妇人妻一区二区三区视频| 特大巨黑吊av在线直播| 热99在线观看视频| 级片在线观看| 国产精品一区二区三区四区久久| 啦啦啦观看免费观看视频高清| 国产成人福利小说| 在线国产一区二区在线| 深爱激情五月婷婷| 日韩国内少妇激情av| 天天躁日日操中文字幕| 又黄又爽又免费观看的视频| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 青草久久国产| 动漫黄色视频在线观看| 在现免费观看毛片| 身体一侧抽搐| 午夜精品久久久久久毛片777| 12—13女人毛片做爰片一| 国产精品嫩草影院av在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 3wmmmm亚洲av在线观看| 亚洲av电影不卡..在线观看| 久久国产乱子免费精品| 亚洲第一欧美日韩一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app | 日韩中文字幕欧美一区二区| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费| 男人的好看免费观看在线视频| 国产一级毛片七仙女欲春2| 一本一本综合久久| 色哟哟哟哟哟哟| 国产人妻一区二区三区在| 日本免费一区二区三区高清不卡| 老司机午夜十八禁免费视频| 亚洲精品日韩av片在线观看| 成人亚洲精品av一区二区| 午夜福利欧美成人| 久久久久精品国产欧美久久久| 国产精品av视频在线免费观看| 精品久久久久久久久久久久久| 宅男免费午夜| 高潮久久久久久久久久久不卡| 国产国拍精品亚洲av在线观看| 看黄色毛片网站| 制服丝袜大香蕉在线| 成年版毛片免费区| 日韩欧美精品免费久久 |