• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tool wear monitoring based on wavelet packet coefficient and hidden Markov model*

    2014-07-31 20:21:52YingQIUFengyunXIE
    機(jī)床與液壓 2014年2期
    關(guān)鍵詞:馬爾科夫波包識(shí)別率

    Ying QIU, Feng-yun XIE

    School of Mechanical and Electronical Engineering, East China Jiaotong University, Nanchang 330013, China

    Tool wear monitoring based on wavelet packet coefficient and hidden Markov model*

    Ying QIU, Feng-yun XIE?

    SchoolofMechanicalandElectronicalEngineering,EastChinaJiaotongUniversity,Nanchang330013,China

    In order to prevent tool failures during the automation machining process, the tool wear monitoring becomes very important. However, the state recognition of the tool wear is not an easy task. In this paper, an approach based on wavelet packet coefficient and hidden Markov model (HMM) for tool wear monitoring is proposed. The root mean square (RMS) of the wavelet packet coefficients at different scales are taken as the feature observations vector. The approach of HMM pattern recognition is used to recognize the states of tool wear. The experimental results have shown that the proposed method has a good recognition performance.

    Tool wear, Wavelet packet coefficient, Hidden Markov model, Root mean square

    Tool wear monitoring is crucial in order to prevent tool failures during the automation machining process. However, the on-line tool wear monitoring is not an easy task due to the complexity of the process. For many years, lots of scholars have studied tool wear monitoring by various methods. There are important contributions presented for condition monitoring, for instance, on-line tool monitoring by using Artificial intelligence was presented by Vallejo[1], a method of state recognitions based on wavelet and hidden Markov model (HMM) was presented by Xie[2]. On-line condition monitoring based on empirical mode decomposition and neural network was proposed by Xie[3]. A prediction tool wear in machining processes based on ANN was proposed by Haber et al[4]. A new hybrid technique for cutting tool wear monitoring, which fuses a physical process model with an artificial neural networks (ANN) model, is proposed for turning by Sick[5]. However, ANN in tool wear monitoring requires a lot of empirical data for the learning algorithm. Otherwise, it will reduce the recognition rate of the tool wear.

    In this paper, an approach based on wavelet packet coefficient and HMM for tool wear monitoring is proposed. In order to monitor the tool wear states in machining process, the dynamometer is used for data acquisition. The wavelet packet decomposition is adopted for data processing. The root mean square (RMS) of the wavelet packet coefficients at different scales are taken as the feature observations vector. The HMM is used to recognize the states of tool wear. The results show that the proposed method has a relatively high recognition rate.

    1.Introduction

    1.1.Wavelet packet analysis

    Wavelet packet decomposes the lower as well as the higher frequency bands and leads to a balanced binary tree structure. Wavelet Packet could be defined as:

    (1)

    Where,hl-2kandgl-2kare called as orthogonal mirror filter, the function seriesW(2-jt-k) is called as orthogonal wavelet packet.

    Wavelet packet function is defined as

    (2)

    Where,Nis the set of positive integers andZis the set of integers;nis the oscillation parameter;jandkare the frequency localization parameters and the time localization parameter, respectively.

    The first two wavelet packet functions are defined as:

    (3)

    The basic wavelet functionΨ(t) is defined as:

    (4)

    Where,a,b∈L2(R) (square-integrable space),a≠0. Parameterais called as scale parameter, which is related to the frequency. Parameterbis called as position parameter, which determines the time-domain or space-domain information in the transformed results.

    The diagram of this algorithm is shown in Figure 1, where,AandDare the wavelet packet coefficients[6].

    Figure 1. Wavelet packet decomposition tree at level 3

    When sampling frequency 2fsis adopted, the different frequency bands range by three layers of wavelet packet decomposition could be shown in Table 1.

    The decomposition coefficients of a signalf(t) into Wavelet Packet are computed by applying the low-pass and high-pass filters iteratively. The decomposition coefficients are defined as:

    (5) Table 1. Different frequency bands range

    1.2.Hidden Markov model

    HMM is an extension of Markov chains. Unlike Markov chains, HMM is doubly stochastic process, i.e., not only is the transition from one state to another state stochastic, but the output symbol generated at each state is also stochastic. Thus the model can only be observed through another set of stochastic processes. The actual sequences of states are not directly observable but are “hidden” from observer. A HMM are illustrated in Figure 2.

    Figure 2. Hidden Markov model

    2.Experiment and feature extraction

    TheexperimentalsetupusedinthisstudyisillustratedinFigure3.Thecuttingtestsareconductedonfive-axismachiningcenterMikronUCP800Duro.ThethrustforceismeasuredbyaKistler9253823dynamometer.TheforcesignalsareamplifiedbyKistlermultichannelchargeamplifier5070andsimultaneouslyrecordedbyNIPXIe-1802datarecorderwith5kHzsamplingfrequency.ThecollectedsignalsaredisplayedbyCathoderaytubeCRT.Theworkpieceiscontinuouslyprocessedunderdifferentprocessingconditionsuntiltheobviouscuttingtoolwearisobserved.

    Figure 3. Experimental setup for cutting processing

    The tool wear states are classified into three categories: the initial processing status of the tool is named as sharp state (pattern 1), the wear processing status of the tool is named aswearstate (pattern 3), and the status between sharp state and wear state is named asslightwearstate(pattern 2)[8].

    The real-time cutting processing signals under different cutting tool condition are shown in Figure 4. Signal I represents the sharp cutting tool condition. Signal II represents the slight wear cutting tool condition. Signal III represents the wear cutting tool condition. By using the fast Fourier transforms (FFT) processing, the time domain signals are shown in Figure 5. We can see that the time-frequency amplitude is different significantly for these three wear states.

    Figure 4. Dynamometer signals

    Figure 5. The chart of frequency spectrum

    A four-level wavelet packet decomposition is used in this paper. The root mean square (RMS) of the wavelet coefficients at different scales is shown in Figure 6. It could be found that RMS results are significantly different for these three states. The RMS of the wavelet coefficients at different scales are taken as the feature observations vector.

    Figure 6. The RMS of wavelet coefficient in three wear states

    3.Tool wear monitoring

    Flow chart of the tool states recognition based on HMM is shown in Figure 7. It is composed of the wavelet-based feature extraction and the RMS of the wavelet coefficients for HMM input. Each HMM pattern is trained by the RMS from post treatment, and the test sample is recognized by the HMM based classification method. As shown in Table 1, 21 test samples are recognized. The same recognition procedure based on the BP neural network and the recognition results are presented in Table 2.

    Table 2. Pattern classification results of the tool wear

    Figure 7. Flow chart of the tool states recognition

    As shown in Table 2, most samples have been recognized correctly and the accuracy rate of HMM is 20/21=95%, the accuracy rate of HMM is 19/21=90%. The results show that the HMM-based classification has a higher recognition rate than that of ANN.

    4.Conclusion

    Tool wear monitoring in machining process is very important for mechanical manufacturing process. In this paper, an approach based on wavelet packet coefficient and HMM for tool wear monitoring is proposed. Wavelet packet decomposition is used for signal processing. The RMS of the wavelet coefficients is adopted for the input of HMM. According to HMM-based recognition method, tool wear states are recognized. In future works, uncertainty in processing should be regarded in modeling and signal acquisition.

    [1] Vallejo A J,Menéndez R M,Alique J R.On-line cutting tool condition monitoring in machining processes using artificial intelligence[J].Robotics,Automation and Control,2008,143-166.

    [2] XIE F Y.A method of state recognition in machining process based on wavelet and hidden Markov model[J].In Proceedings of the ISMR 2012,2012:639-643.

    [3] XIE F Y.On-line condition monitoring based on empirical mode decomposition and neural network[J].Machine Tool & Hydraulics,2013.

    [4] Haber R E,Alique,A.Intelligent Process Supervision for Predicting Tool Wear in Machining Processes[J].Mechatronics,2003,13:825-849.

    [5] Owsley L M,Atlas L E,Bernard G D.Self-Organizing Feature maps and hidden Markov models for machine-tool monitoring[J].IEEE Transactions on Signals Processing,1997,45:2787-2798.

    [6] Chen H X.Fault degradation assessment of water hydraulic motor by impulse vibration signal with wavelet packet analysis and Kolmogorov-Smirnov test[Z].2008,22:1670-1684.

    [7] Rabiner L R.A tutorial on hidden Markov models and selected applications in speech recognition[J].Proceedings of the IEEE,1989,77:257-286.

    [8] XIE F Y,Hu Y M,Wu B.A generalized interval probability-based optimization method for training generalized hidden Markov model[J].Signal Processing,2014,94(1):319-329.

    基于小波包系數(shù)與隱馬爾科夫模型的刀具磨損監(jiān)測(cè)*

    邱 英,謝鋒云?

    華東交通大學(xué) 機(jī)電學(xué)院, 南昌 330013

    在機(jī)械自動(dòng)化加工中,為了防止刀具損壞,刀具磨損過程的監(jiān)測(cè)是非常重要的。然而,由于加工過程的復(fù)雜性,對(duì)刀具磨損狀態(tài)的監(jiān)測(cè)十分困難。提出了一個(gè)基于小波包系數(shù)與隱馬爾科夫模型的刀具磨損監(jiān)測(cè)方法。將加工信號(hào)在不同頻帶上小波包系數(shù)的均方根值作為特征觀測(cè)向量,即為隱馬爾科夫模型的輸入,并用隱馬爾科夫模型模式識(shí)別方法識(shí)別刀具磨損狀態(tài)。實(shí)驗(yàn)結(jié)果顯示,提出的方法對(duì)刀具磨損狀態(tài)具有很高的識(shí)別率。

    刀具磨損;小波包系數(shù);隱馬爾科夫模型;均方根

    TH133;TP391

    2014-01-20

    10.3969/j.issn.1001-3881.2014.12.008

    *Project supported by Jiangxi Province Education Department Science Technology Project (GJJ14365),Jiangxi Province Nature Science Foundation (20132BAB201047,20114BAB206003)

    ? Feng-yun XIE, PhD. E-mail: xiefyun@163.com

    猜你喜歡
    馬爾科夫波包識(shí)別率
    基于疊加馬爾科夫鏈的邊坡位移預(yù)測(cè)研究
    基于改進(jìn)的灰色-馬爾科夫模型在風(fēng)機(jī)沉降中的應(yīng)用
    基于類圖像處理與向量化的大數(shù)據(jù)腳本攻擊智能檢測(cè)
    基于真耳分析的助聽器配戴者言語(yǔ)可懂度指數(shù)與言語(yǔ)識(shí)別率的關(guān)系
    基于小波包Tsallis熵和RVM的模擬電路故障診斷
    提升高速公路MTC二次抓拍車牌識(shí)別率方案研究
    高速公路機(jī)電日常維護(hù)中車牌識(shí)別率分析系統(tǒng)的應(yīng)用
    基于小波包變換的電力系統(tǒng)諧波分析
    馬爾科夫鏈在教學(xué)評(píng)價(jià)中的應(yīng)用
    小波包理論與圖像小波包分解
    色吧在线观看| 亚洲精品自拍成人| kizo精华| 国产成人精品一,二区| 精品亚洲乱码少妇综合久久| 久久99热6这里只有精品| 干丝袜人妻中文字幕| 亚洲不卡免费看| 秋霞伦理黄片| 成人免费观看视频高清| 成年女人看的毛片在线观看| 自拍偷自拍亚洲精品老妇| 日韩大片免费观看网站| 久久6这里有精品| 在线观看美女被高潮喷水网站| 婷婷色综合www| 美女高潮的动态| 国产色婷婷99| 不卡视频在线观看欧美| 国产爱豆传媒在线观看| 五月玫瑰六月丁香| av国产久精品久网站免费入址| 在线观看一区二区三区| 一级毛片电影观看| 插阴视频在线观看视频| 亚洲久久久久久中文字幕| 欧美97在线视频| 少妇高潮的动态图| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 成人无遮挡网站| 人妻系列 视频| 高清在线视频一区二区三区| 久久鲁丝午夜福利片| 男的添女的下面高潮视频| 男女下面进入的视频免费午夜| 亚州av有码| 免费观看性生交大片5| 国产 精品1| videos熟女内射| 精品少妇黑人巨大在线播放| 1000部很黄的大片| 22中文网久久字幕| 少妇的逼好多水| 好男人视频免费观看在线| 国产亚洲一区二区精品| 亚洲人成网站在线观看播放| 永久网站在线| 七月丁香在线播放| videossex国产| 一级av片app| 欧美变态另类bdsm刘玥| 精品熟女少妇av免费看| 一级毛片 在线播放| 欧美日韩精品成人综合77777| 日本色播在线视频| 一边亲一边摸免费视频| 视频中文字幕在线观看| 下体分泌物呈黄色| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 亚洲天堂av无毛| 777米奇影视久久| 免费观看性生交大片5| 精品久久久久久久末码| 久久久色成人| 亚洲va在线va天堂va国产| 视频中文字幕在线观看| 亚洲欧洲日产国产| 久久ye,这里只有精品| a级毛片免费高清观看在线播放| 亚洲av福利一区| 少妇的逼好多水| 又大又黄又爽视频免费| 精品一区二区免费观看| 一本色道久久久久久精品综合| 免费不卡的大黄色大毛片视频在线观看| 2018国产大陆天天弄谢| 色视频在线一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 免费大片18禁| 精品久久久精品久久久| 中文字幕亚洲精品专区| 国产精品不卡视频一区二区| 亚洲欧美一区二区三区黑人 | 国产精品伦人一区二区| 又黄又爽又刺激的免费视频.| 成人午夜精彩视频在线观看| 国产成人精品福利久久| 午夜福利网站1000一区二区三区| 亚洲欧美日韩无卡精品| 日韩三级伦理在线观看| 一级毛片久久久久久久久女| 国产亚洲精品久久久com| 热re99久久精品国产66热6| 亚洲人成网站高清观看| 国产毛片在线视频| 大话2 男鬼变身卡| 少妇人妻一区二区三区视频| av一本久久久久| 2021少妇久久久久久久久久久| 亚洲国产精品国产精品| 国产成人freesex在线| 欧美xxⅹ黑人| 男女啪啪激烈高潮av片| 日韩伦理黄色片| 欧美另类一区| 欧美xxxx黑人xx丫x性爽| av女优亚洲男人天堂| 青春草国产在线视频| 久久久久性生活片| 久久精品国产亚洲网站| 欧美成人精品欧美一级黄| 午夜老司机福利剧场| 久久久久网色| 亚洲精品成人av观看孕妇| 午夜精品国产一区二区电影 | 国产乱来视频区| 亚洲久久久久久中文字幕| 蜜桃久久精品国产亚洲av| 十八禁网站网址无遮挡 | 中文字幕久久专区| 午夜福利网站1000一区二区三区| 成人特级av手机在线观看| 好男人在线观看高清免费视频| 国产久久久一区二区三区| 午夜免费男女啪啪视频观看| 身体一侧抽搐| 亚洲久久久久久中文字幕| 人妻 亚洲 视频| 日本与韩国留学比较| 亚洲精品久久午夜乱码| 中文字幕免费在线视频6| 女人久久www免费人成看片| 国产午夜精品久久久久久一区二区三区| 少妇人妻 视频| 免费观看无遮挡的男女| 尤物成人国产欧美一区二区三区| 精品国产一区二区三区久久久樱花 | 亚洲精品视频女| 成人亚洲精品一区在线观看 | 少妇人妻精品综合一区二区| 精品99又大又爽又粗少妇毛片| 成年女人在线观看亚洲视频 | 精品久久国产蜜桃| 丰满少妇做爰视频| tube8黄色片| 全区人妻精品视频| 一边亲一边摸免费视频| 在线 av 中文字幕| 美女被艹到高潮喷水动态| 一个人看视频在线观看www免费| 亚洲欧美精品专区久久| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 欧美+日韩+精品| 亚洲一区二区三区欧美精品 | 亚洲国产av新网站| 亚洲精品aⅴ在线观看| 美女主播在线视频| 搡女人真爽免费视频火全软件| 国产成人精品婷婷| 欧美国产精品一级二级三级 | 少妇的逼好多水| 欧美另类一区| 欧美成人一区二区免费高清观看| 久久韩国三级中文字幕| 国产成人aa在线观看| 99热6这里只有精品| 国产亚洲一区二区精品| 成人美女网站在线观看视频| videos熟女内射| 人人妻人人爽人人添夜夜欢视频 | 成人毛片60女人毛片免费| 22中文网久久字幕| 国产真实伦视频高清在线观看| 校园人妻丝袜中文字幕| 亚洲精品国产av成人精品| 女人被狂操c到高潮| 中文在线观看免费www的网站| 国产毛片a区久久久久| 免费高清在线观看视频在线观看| 一级毛片 在线播放| 青青草视频在线视频观看| 精品午夜福利在线看| 嫩草影院精品99| 综合色av麻豆| 能在线免费看毛片的网站| 国产精品一二三区在线看| 一区二区三区乱码不卡18| 午夜激情福利司机影院| 国产高清三级在线| 亚洲在线观看片| 国产成人a区在线观看| 国产高清有码在线观看视频| 久久久久久久午夜电影| 性色avwww在线观看| 免费看日本二区| 国产精品麻豆人妻色哟哟久久| av天堂中文字幕网| 亚洲精品自拍成人| 少妇人妻久久综合中文| a级毛片免费高清观看在线播放| 亚洲国产精品成人综合色| 免费看av在线观看网站| 国产精品麻豆人妻色哟哟久久| 成年版毛片免费区| 国产亚洲5aaaaa淫片| 搡女人真爽免费视频火全软件| 国产精品爽爽va在线观看网站| 亚洲国产最新在线播放| 97精品久久久久久久久久精品| 亚洲天堂国产精品一区在线| 不卡视频在线观看欧美| 联通29元200g的流量卡| 国产av码专区亚洲av| 中文字幕av成人在线电影| 街头女战士在线观看网站| 久久久精品欧美日韩精品| 国产乱人视频| 在线亚洲精品国产二区图片欧美 | 久久精品久久久久久噜噜老黄| 能在线免费看毛片的网站| 国产精品国产av在线观看| 精品国产三级普通话版| 欧美3d第一页| 久久精品人妻少妇| 男插女下体视频免费在线播放| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 国产在线一区二区三区精| 亚洲一区二区三区欧美精品 | 身体一侧抽搐| 亚洲国产最新在线播放| 国产成人精品福利久久| 少妇裸体淫交视频免费看高清| 欧美一级a爱片免费观看看| 精品久久久久久久久亚洲| 亚洲最大成人手机在线| 成人免费观看视频高清| 超碰av人人做人人爽久久| 精品一区二区三卡| 成人国产av品久久久| 国产高清不卡午夜福利| 久久人人爽av亚洲精品天堂 | 亚洲在久久综合| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久精品性色| 成人亚洲欧美一区二区av| 精品久久久久久久久av| 在线观看人妻少妇| 成人国产麻豆网| 麻豆精品久久久久久蜜桃| 免费av不卡在线播放| 国产精品爽爽va在线观看网站| 丝袜喷水一区| 亚洲熟女精品中文字幕| 国产在视频线精品| 国产成人a区在线观看| 欧美精品一区二区大全| av一本久久久久| 秋霞在线观看毛片| 日韩欧美一区视频在线观看 | 亚洲精品456在线播放app| 欧美激情久久久久久爽电影| 99久久中文字幕三级久久日本| 久久99热6这里只有精品| 在线看a的网站| av卡一久久| 中文资源天堂在线| 亚洲国产欧美在线一区| 乱码一卡2卡4卡精品| 欧美日韩视频精品一区| 国产乱来视频区| 亚洲欧美一区二区三区黑人 | 一级毛片电影观看| 亚洲丝袜综合中文字幕| 大码成人一级视频| 最近最新中文字幕大全电影3| 精华霜和精华液先用哪个| 在线免费观看不下载黄p国产| 免费观看在线日韩| 好男人视频免费观看在线| 内射极品少妇av片p| 一级毛片电影观看| 免费人成在线观看视频色| 日韩欧美精品v在线| 国产美女午夜福利| 久久热精品热| 人妻少妇偷人精品九色| av在线蜜桃| 亚洲高清免费不卡视频| 成人欧美大片| 国产亚洲91精品色在线| 国产大屁股一区二区在线视频| 精品久久久久久久久亚洲| 国产精品国产三级国产专区5o| 1000部很黄的大片| 男插女下体视频免费在线播放| 成人亚洲精品一区在线观看 | 毛片女人毛片| 日本免费在线观看一区| 精品久久久久久久末码| 欧美最新免费一区二区三区| 美女内射精品一级片tv| 九草在线视频观看| a级毛片免费高清观看在线播放| 国产日韩欧美在线精品| 国产精品久久久久久精品电影| 中文字幕制服av| 亚洲av日韩在线播放| 91精品伊人久久大香线蕉| 国产伦在线观看视频一区| 国产精品久久久久久精品电影| 成年免费大片在线观看| 黄片无遮挡物在线观看| 又爽又黄无遮挡网站| 亚洲精品自拍成人| 秋霞在线观看毛片| 亚洲真实伦在线观看| 国产 精品1| av在线蜜桃| 丰满少妇做爰视频| 色网站视频免费| 99九九线精品视频在线观看视频| 欧美高清成人免费视频www| 亚洲欧洲日产国产| 赤兔流量卡办理| 午夜激情久久久久久久| 亚洲人成网站高清观看| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美3d第一页| 深夜a级毛片| 在线免费观看不下载黄p国产| 交换朋友夫妻互换小说| 国产精品熟女久久久久浪| 久久女婷五月综合色啪小说 | 精品一区二区三卡| 九色成人免费人妻av| 久久精品国产a三级三级三级| 欧美bdsm另类| 亚洲美女搞黄在线观看| 搡女人真爽免费视频火全软件| 国产v大片淫在线免费观看| 国产精品福利在线免费观看| 又爽又黄无遮挡网站| 国产黄频视频在线观看| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 久久久久网色| 国产高潮美女av| 一级毛片我不卡| 亚洲经典国产精华液单| 亚洲色图综合在线观看| 搞女人的毛片| 在线观看三级黄色| 久久精品久久久久久久性| 成人午夜精彩视频在线观看| 性色av一级| 波野结衣二区三区在线| 最新中文字幕久久久久| 久久久国产一区二区| 国产91av在线免费观看| 日韩av在线免费看完整版不卡| 一级毛片久久久久久久久女| 九草在线视频观看| 高清日韩中文字幕在线| 久热久热在线精品观看| 99视频精品全部免费 在线| 日韩成人av中文字幕在线观看| 欧美一级a爱片免费观看看| 国产精品成人在线| 大片免费播放器 马上看| 久久久欧美国产精品| 3wmmmm亚洲av在线观看| 亚洲精品国产av成人精品| 少妇 在线观看| 熟女电影av网| 久久ye,这里只有精品| 中文字幕久久专区| 中国三级夫妇交换| 日韩免费高清中文字幕av| 亚洲在久久综合| 中国三级夫妇交换| 精品99又大又爽又粗少妇毛片| 久久国产乱子免费精品| 熟女人妻精品中文字幕| 肉色欧美久久久久久久蜜桃 | 嫩草影院精品99| 联通29元200g的流量卡| 亚洲国产av新网站| 乱系列少妇在线播放| 在线天堂最新版资源| 卡戴珊不雅视频在线播放| 午夜精品一区二区三区免费看| 亚洲熟女精品中文字幕| 狂野欧美激情性bbbbbb| 老司机影院毛片| 免费观看性生交大片5| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 中文乱码字字幕精品一区二区三区| 色网站视频免费| 午夜福利视频精品| 久久精品国产鲁丝片午夜精品| 免费看a级黄色片| 精品一区二区三区视频在线| 色网站视频免费| 美女内射精品一级片tv| 欧美老熟妇乱子伦牲交| 国产精品久久久久久精品电影| 亚洲,一卡二卡三卡| 国产淫语在线视频| 国产欧美另类精品又又久久亚洲欧美| 午夜精品国产一区二区电影 | 激情 狠狠 欧美| 日韩欧美一区视频在线观看 | 在线观看一区二区三区激情| 久久久久精品久久久久真实原创| 熟女人妻精品中文字幕| 日韩国内少妇激情av| 国产综合精华液| 91狼人影院| 亚洲内射少妇av| 成人亚洲精品av一区二区| 91aial.com中文字幕在线观看| 成年人午夜在线观看视频| 一个人看的www免费观看视频| 我要看日韩黄色一级片| 免费少妇av软件| 精品国产三级普通话版| 亚洲国产色片| 白带黄色成豆腐渣| 亚洲av一区综合| 国产在线男女| 亚州av有码| 国产亚洲av片在线观看秒播厂| 日韩伦理黄色片| 成年免费大片在线观看| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 国产成人freesex在线| 搡老乐熟女国产| 午夜免费观看性视频| 18禁裸乳无遮挡动漫免费视频 | 日本午夜av视频| 日本黄色片子视频| freevideosex欧美| 亚洲国产色片| 午夜福利在线观看免费完整高清在| 在线观看免费高清a一片| 欧美+日韩+精品| 国产精品精品国产色婷婷| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱久久久久久| 97在线人人人人妻| 国内揄拍国产精品人妻在线| 九九爱精品视频在线观看| 爱豆传媒免费全集在线观看| 免费看不卡的av| 日韩成人av中文字幕在线观看| .国产精品久久| 久久久久网色| 精品人妻视频免费看| 精品亚洲乱码少妇综合久久| 欧美97在线视频| 久久精品久久久久久噜噜老黄| 女人被狂操c到高潮| 蜜臀久久99精品久久宅男| 精品一区二区三区视频在线| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| 成人高潮视频无遮挡免费网站| av在线天堂中文字幕| 亚洲欧美成人精品一区二区| 激情五月婷婷亚洲| 精品久久久久久久人妻蜜臀av| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜福利在线在线| 内地一区二区视频在线| 日韩av免费高清视频| 亚洲,欧美,日韩| 免费观看性生交大片5| 国产熟女欧美一区二区| 狂野欧美激情性bbbbbb| 久久精品久久久久久噜噜老黄| 国产成人精品一,二区| 中国国产av一级| 黄色日韩在线| 亚洲欧美一区二区三区国产| 少妇丰满av| 成人美女网站在线观看视频| 国产视频首页在线观看| 成年版毛片免费区| 欧美成人一区二区免费高清观看| 国产高清不卡午夜福利| 大香蕉97超碰在线| 亚洲真实伦在线观看| 国产v大片淫在线免费观看| 哪个播放器可以免费观看大片| 亚洲精品456在线播放app| 成人国产av品久久久| 高清av免费在线| 国产探花极品一区二区| 国产亚洲av嫩草精品影院| 国产精品国产三级专区第一集| 内地一区二区视频在线| 国产亚洲午夜精品一区二区久久 | 99久国产av精品国产电影| 一区二区三区精品91| 亚洲图色成人| 一级毛片电影观看| .国产精品久久| 51国产日韩欧美| 日韩精品有码人妻一区| 免费人成在线观看视频色| 免费观看性生交大片5| 制服丝袜香蕉在线| 免费观看的影片在线观看| 亚洲一区二区三区欧美精品 | 2018国产大陆天天弄谢| 日本熟妇午夜| 男人和女人高潮做爰伦理| 国产女主播在线喷水免费视频网站| 欧美3d第一页| 五月玫瑰六月丁香| 国产一区二区三区综合在线观看 | 日韩视频在线欧美| av国产精品久久久久影院| 99精国产麻豆久久婷婷| 日韩一区二区三区影片| 免费电影在线观看免费观看| 亚洲精品一二三| 日韩欧美精品免费久久| 欧美亚洲 丝袜 人妻 在线| 日本三级黄在线观看| 99久久中文字幕三级久久日本| 中国美白少妇内射xxxbb| 插阴视频在线观看视频| 黄片无遮挡物在线观看| 亚洲在线观看片| 校园人妻丝袜中文字幕| 午夜福利网站1000一区二区三区| 亚洲精品国产av蜜桃| 亚洲国产欧美人成| 日韩在线高清观看一区二区三区| av在线播放精品| 欧美区成人在线视频| 麻豆成人午夜福利视频| 日日啪夜夜撸| 亚洲精品456在线播放app| 亚洲天堂av无毛| 国产在线一区二区三区精| 大码成人一级视频| 午夜免费男女啪啪视频观看| 观看美女的网站| 九草在线视频观看| 日韩免费高清中文字幕av| 国产成人精品久久久久久| 精品人妻熟女av久视频| 国产精品福利在线免费观看| 欧美极品一区二区三区四区| 少妇人妻 视频| av在线老鸭窝| 麻豆国产97在线/欧美| 国产精品国产av在线观看| 偷拍熟女少妇极品色| 国产欧美亚洲国产| 一区二区三区免费毛片| 一级毛片黄色毛片免费观看视频| 男人爽女人下面视频在线观看| 亚洲av中文av极速乱| 少妇熟女欧美另类| 3wmmmm亚洲av在线观看| av在线app专区| 国产av不卡久久| 国产伦理片在线播放av一区| 免费观看无遮挡的男女| 高清午夜精品一区二区三区| 丝袜脚勾引网站| 亚洲熟女精品中文字幕| 新久久久久国产一级毛片| 日韩av免费高清视频| 熟女av电影| 国产黄片视频在线免费观看| 国产老妇女一区| 麻豆成人午夜福利视频| 一区二区三区精品91| 九九爱精品视频在线观看| av又黄又爽大尺度在线免费看| 国产精品国产av在线观看| 免费大片18禁| 亚洲av二区三区四区| 久久国内精品自在自线图片| 久久热精品热| 欧美 日韩 精品 国产| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久久久成人| 亚洲av免费高清在线观看| 精品国产三级普通话版| 国产伦理片在线播放av一区| 国产淫片久久久久久久久| 亚洲国产精品专区欧美| 一个人看视频在线观看www免费| 亚洲成人久久爱视频| 成人国产av品久久久| 久久人人爽av亚洲精品天堂 | 国产亚洲午夜精品一区二区久久 | 99热6这里只有精品| 国产一区亚洲一区在线观看| 国产精品一区二区三区四区免费观看| 久久精品国产亚洲网站| 一级片'在线观看视频|