• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration characteristics analysis of cracked beams based on energy method*

    2014-07-31 20:22:14chuanYANGYinghuiLIXiangZHAOLiangLI
    機床與液壓 2014年2期
    關鍵詞:工程學院計算結果裂紋

    E-chuan YANG, Ying-hui LI, Xiang ZHAO Liang LI

    1School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China2College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China

    Vibration characteristics analysis of cracked beams based on energy method*

    E-chuan YANG?1,2, Ying-hui LI1, Xiang ZHAO1Liang LI1

    1SchoolofMechanicsandEngineering,SouthwestJiaotongUniversity,Chengdu610031,China2CollegeofMechanicalEngineering,ChongqingUniversityofTechnology,Chongqing400054,China

    The transverse vibration of the beam with opening cracks was studied in this paper. Continuous bending stiffness and shear stiffness of the beam were deduced, based on energy distribution,using energy method of fracture mechanics. Then, the vibration characteristics of cracked Timoshenko beams were calculated using matrix transfer method. Natural frequency attenuation, which fluctuates with the variation of crack parameters such as depth and location of a crack, was analyzed. Comparing the results with those obtained by the finite-element method, the validity of the method used in this paper was verified.

    Cracked beam, Vibration characteristics, Continuous stiffness

    1.Introduction

    Beams are widely used in various engineering fields. Damages of beams will appear due to high load or other abominable working environment. Usually, the damages are marked firstly by the occurrence and extension of surface cracks. The cracks are important reason for structural failure. The research of vibration characteristics of cracked beams is the most important basic theory of the damage detection technology[1]. It need be analyzed quantitatively that how cracks will affect the vibration of a beam. At present, a number of efforts have been made to analyze how will crack parameters influence on the vibration characteristics of a beam[2-10].

    Crack modeling is always the key to study the vibration of a cracked beam, there are two widely used methods to model opening cracks in beams: the weaken section method[3-4] and the local flexibility method[5-7]. Both of the methods are to simulate the stiffness just at the section where the cracks occur. However, in fact, the crack will cause continuous stiffness attenuations near the crack region. Swamidas and Yang established the continuous bending stiffness and shear stiffness of a cracked beam based on energy theory of fracture mechanics[8]. This model reflects the stress concentration of crack area, while taking the stiffness attenuation nearby the crack section into account. In this paper, based on the continuous stiffness model and matrix transfer method, vibration characteristics of cracked Timoshenko beam were calculated. Comparing the results with those obtained by the finite-element method, the validity of the method used in this paper was verified. Meanwhile, by examples in this paper, natural frequency attenuation of the first three orders, which fluctuates with the variation of crack parameters such as depth and location of a crack, was analyzed.

    2.Energy expressions of cracked beams

    Suppose a cracked beam is subjected to a constant bending moment, if the crack has extended for Δa, the bending moment will perform some work, that will not only makes the crack growth, but also increases the strain energy of the beam:

    (1)

    Where,Sis the energy for crack growth, ΔUis the elastic strain energy increment of a cracked beam.

    Using the Clapeyron’s theorem, it can be inferred that for a cracked beam the work (W) done by stable external force or moment was twice the elastic strain energy increment (ΔU)[9]:

    (2)

    It can be obtained that:

    (3)

    3.The continuous stiffness of cracked beams

    3.1.The energy for crack growth

    When a crack is formed in one side of the beam, suppose that crack depth increases from 0 to a under constant bending moment, according to the theory of fracture mechanics, the energy needed for crack growth is:

    (4)

    Where,bis the width of beam,ais the crack depth,Gis strain energy release rate. Under the bending momentGcan be expressed as:

    (5)

    Where,KIis stress intensity factor for the first mode crack (opening crack),Eis Young Modulus.

    Figure 1. Diagrammatic sketch of a cracked beam

    A beam with a rectangular section and an opening crack is shown in Figure 1,KIcan be expressed as[10]:

    (6)

    Where,F(a/h) is shape coefficient associated witha/h. Ifa/h≤0.6, a tabular format is given as

    (7)

    Substitution of Eq. (6) and (5) into (4) yields:

    (8)

    3.2.The elastic strain energy increment of cracked beams

    If the ΔUin Eq. (2) is considered as a continuous function along the beam, such that:

    (9)

    From fracture mechanics, the stress is highly concentrated around the crack region, so we can assume that the elastic strain energy increment of a cracked beam (ΔU) is also concentrated mainly around the crack region too. The distribution of ΔU(x) along the length of a beam can be expressed as[8]:

    (10)

    Where,Q(a,c) andk(a) are terms to be determined,cis the distance to the crack iocation from one end of the beam.

    3.3.Continuous stiffness model

    For a beam with an opening crack, IntroducingEIC(x) as continuous bending stiffness, that means the bending stiffness of cross-section changes continuously along length direction of the beam. So, the total strain energy of the cracked beam can be expressed as:

    (11)

    Prior to crack occurrence, for a beam under a constant momentM, the bending stiffness isEI, strain energy of the beam can be expressed as:

    (12)

    Therefore, total strain energy of cracked beam can be expressed as:

    (13)

    Substitution of Eq.(8),Eq.(9),Eq.(11) and (12) into (13) yields:

    (14)

    From Eq. (14), the continuous bending stiffness of cracked beam is obtained as[8]:

    (15)

    Where,EIis bending stiffness of the beam ignoring cracks,xis the longitudinal coordinates along the beam,EIR(a,c) andk(a) are terms related to the depth and position of the crack. For rectangular section beams the expressions can be determined as:

    (16)

    (17)

    In the equation (16) and (17),lis the length of the beam andhfor height of beam section.

    By the same derivation processes, continuous shear stiffness of cracked beam can obtained as:

    (18)

    Where,GAis shear stiffness of the beam ignoring cracks.

    For a rectangular section beams, take the parameters asl=1 000 mm,h=100 mm,c=l/2,a=h/2, the continuous bending stiffness (EIC(x)) and continuous shear stiffness (GAC(x)) were calculated from Eq.(15) and (18), and shown in Figure 2.

    Figure 2.Continuous bending and shearing stiffness

    As Figure 2 shows, for a beam with a crack occurs in the midpoint of the beam and crack deptha=h/2, stiffness attenuation is very significant in the crack section. However, it is worth noting that the stiffness attenuation is also obvious at the region near the crack location, about 1/6 length of the beam.

    4.Examples

    Based on the continuous conditions (continuous displacement, rotation, bending moment and shear force), the relationships of the mode function between two adjacent segments can be established. Using matrix transfer method, the relationships of the mode function between the first and the end segment can also be derived. With given boundary conditions of end points of a beam, the characteristic equations can be built, and the natural frequency can be calculated by using Newton-Raphson method[11-12].

    4.1.The verification of validity

    To verify the validity of the method used in this paper, the first three natural frequencies of a simply supported Timoshenko beam (a rectangular cross section beam, lengthl=1 000 mm, widthb=100 mm, heighth=100 mm) with an opening crack was calculated and the results were compared with those obtained from finite element method. The ANSYS software was selected for finite element calculation, using the element type of SOLID 65 for simulation.

    The first three natural frequencies, with different crack depth(a/h=0,a/h=0.3 anda/h=0.5), obtained from two methods are listed in Table 1, which are in good agreement with one another. When the crack depth is relatively shallow, the maximum error between the two methods is very small. When the crack depth is deeper, the error value increases, but the maximum error in Table 1is only 3.81%. With the error analyses above, the conclusion can be drawn that the method used in this paper is accurate enough to model the beams with opening cracks.

    Table 1. Natural frequencies for a cracked Timoshenko beam (l/h=10)

    4.2.The effect of crack depth on natural frequencies

    Also take the rectangular section beam for example, which has been used above. Suppose the crack occurs in the midpoint of the beam. To analyze the effect of crack depth on natural frequency, the first three natural frequencies of the beam were calculated, as crack depth (a/h) change continuously from 0 to 0.5.ωciandωirespectively means theith natural frequency of the cracked beam and uncracked beam. In Figures 3 to 5, theωci/ωiis taken to express the frequency attenuation caused by cracks.

    Figure 3. The first frequency attenuation(c=l/2)

    Figure 4. The second frequency attenuation (c=l/2)

    Figure 5. The third frequency attenuation (c=l/2)

    The attenuation of the first three natural frequencies , caused by cracks with different crack depths are shown in Figures 3~5. It can be seen that the frequency attenuation can be sorted as: the first order>the third order>the second order. It is because the crack occurs in the midpoint of the beam(c=l/2). In this case, the crack has little impact on second frequency, even crack depth reaches half the height of the cross section (a/h=0.5),ωc2/ω2is 0.979 6, the frequency attenuation is about 2% and is not obvious.

    When the crack depth is shallow (a/h≤0.2), the attenuations of first and third frequency are also not obvious. The maximum attenuation rate of first frequency is 2.63%. The frequency attenuations become gradually obvious while the crack be deeper. When the crack depth increases (such asa/h=0.4), the maximum attenuation rate of first frequency reaches 12.03%, while that of third frequency is 6.54%. When crack depth reaches half the height of the cross section (a/h=0.5), the frequency attenuation of the cracked beam will become more significant, the maximum attenuation rate of first order frequency reaches 21.0%, while that of third order frequency is 9.99%.

    4.3.The effect of crack location on natural frequencies

    Assuming that the crack varies continuously fromC= 0 toC=L, crack depth is fixed (a/h=0.5), other parameters of the beam are the same to the previous example. To analyze how the crack position will affect on the natural frequency, the attenuation curves of the first three natural frequencies are shown in Figures 6~8.

    According to the results, for each frequency, when the crack is close to the position of a modal node, crack has tiny impact on the frequencies. If the crack is just overlap the position of a modal node, the attenuation of the second frequency is 3.2%, while 4.0% for the third frequency (see Figure 7 and Figure 8). When the crack is close to the position, where occurs the biggest mode displacement, it has more significant impact on the frequency. However, the sensitivity of each frequency is not the same. It can be found that, as the modal order increasing, the frequency becomes less sensitive to the crack. For example here (a/h=0.5,l/h=10), the maximum attenuation of the first frequency is 21.7%, while 14.8% and 10.8% for the second and third frequency (as shown in Figures 6~8).

    Figure 6. The first frequency attenuation (a/h=0.5)

    Figure 7. The second frequency attenuation (a/h=0.5)

    Figure 8. The third frequency attenuation (a/h=0.5)

    5.Conclusion

    In this paper, using energy method, continuous bending and shear stiffness model of cracked beams were obtained. By means of transfer matrix method and Newton-Raphson method, first three natural frequencies of cracked Timoshenko beams were calculated. By comparing the results with those obtained by finite element software, it was proved that the method used in this paper is valid with good accuracy.

    At the same time, through the analysis of examples, this paper summarized the influence of crack depth and crack position on the first three natural frequencies. It concludes that, frequency attenuation is not obvious when the crack depth is shallow (a/h≤0.2).However, as the crack deepening, frequency attenuation becomes more obvious. In the examples given in this paper, as the crack depth increases, or a/ h varies from 0.2 to 0.5, the maximum attenuation of the first order frequency increases from about 3.0% to about 20%. In addition, the location of cracks also impacts on the frequency attenuation of a cracked beam. When the crack position is close to a modal node, the influence is very weak. Inversely, when the crack close to the position, where occurs the biggest mode displacement, it has more significant impact on the frequency. Moreover, the Sensitivity of each order frequency to crack is not the same, as the modal order increasing, the sensitivity of the frequency to cracks presents a declining trend.

    [1] Dimarogonas A D.Vibration of cracked structure:a state of the art review[J].Engineering Fracture Mechanics,1996,55(5):831-857.

    [2] Hu Jiashun, Feng Xin, LI Xin, et al. State-of-art of vibration analysis and crack identification of cracked beams[J]. Journal of Vibration and Shock,2007, 26(11):146-152.

    [3] Irwin G R. Analysis of stresses and strains near the end of a crack traversing plate[J]. Journal of Applied Mechanics. 1957,24:361-364.

    [4] Petroski H J.Stability of a crack in a cantilever beam tinder going large plastic deformation after impact[J].International Journal of Pressure Vessels and Piping,1984,16(4):285-298.

    [5] Zheng D Y, Fan S C. Vibration and stability of cracked hollow-sectional beams[J]. Journal of Sound and Vibration, 2003, 267(4):933-954.

    [6] Papadopoulos C A, Dimarogous A. Coupled longitudinal and bending vibrations of a rotating shaft with all open crack[J]. Journal of Sound and Vibration,1987,117(1):81-83.

    [7] Lin Yanli, Guo Xinglin.characteristics of vibrational power flow of a cracked periodically supported infinite beam[J].Journal of Dalian University of Technology,2004,44(2):184-185.

    [8] Swamidas A S J, Yang X, Seshadri R. Identification of cracking in beam structures using Timoshenko and Euler formulations[J]. Journal of Engineering Mechanics, 2004, 130(11):1297-1308.

    [9] Yang X F, Swamidas A S J, Seshadri R. Crack identification in vibration beams using energy method[J]. Journal of Sound and Vibration, 2001, 244(2):339-357.

    [10]Almar-Neass,A.Fatigue handbook: offshore steel structures[M].Trondheim,Norway:Tapai,1985:144-156.

    [11]Cui Can, Du Changcheng, Li Yinghui. A new rapidly method for vibration characteristic of stepped beam[J].Journal of Sichuan University (Engineering Science Edition), 2011, 43(Supplement 2):33-36.

    [12]Qian Bo, Yue Huaying. Numerical calculation of natural frequency of transverse vibration of non-uniform beams[J].Mechanics in Engineering, 2011,33(6):45-49.

    基于能量法的裂紋梁振動特性分析*

    楊鄂川?1,2,李映輝1,趙 翔1,李 亮1

    1.西南交通大學 力學與工程學院,成都 610031;2.重慶理工大學 機械工程學院,重慶 400054

    研究了含常開裂紋梁的橫向振動,基于斷裂力學中的能量法,推導了裂紋梁基于能量分布的連續(xù)彎曲及剪切剛度表達式;而后基于矩陣傳遞法,計算了含裂紋Timoshenko梁的振動特性,分析了裂紋深度及位置等裂紋參數(shù)對固有頻率衰減的影響,同時將計算結果與有限元軟件計算結果進行了比較,驗證了該方法的有效性。

    裂紋梁; 振動特性; 連續(xù)剛度

    O321

    2014-03-21

    10.3969/j.issn.1001-3881.2014.12.007

    *Project supported by the National Natural Science Fund(11072204) and Central Scientific Research Fund of Colleges and Universities(SWJTU11ZT15)

    ? E-chuan YANG, PhD. E-mail:yangechuan@sina.com

    猜你喜歡
    工程學院計算結果裂紋
    福建工程學院
    福建工程學院
    不等高軟橫跨橫向承力索計算及計算結果判斷研究
    甘肅科技(2020年20期)2020-04-13 00:30:40
    福建工程學院
    Epidermal growth factor receptor rs17337023 polymorphism in hypertensive gestational diabetic women: A pilot study
    福建工程學院
    微裂紋區(qū)對主裂紋擴展的影響
    超壓測試方法對炸藥TNT當量計算結果的影響
    火炸藥學報(2014年3期)2014-03-20 13:17:39
    預裂紋混凝土拉壓疲勞荷載下裂紋擴展速率
    噪聲對介質(zhì)損耗角正切計算結果的影響
    日韩欧美 国产精品| 亚洲精品影视一区二区三区av| 他把我摸到了高潮在线观看| 又粗又爽又猛毛片免费看| 制服人妻中文乱码| 69av精品久久久久久| 国产私拍福利视频在线观看| www.色视频.com| 国产精品综合久久久久久久免费| 久久久久精品国产欧美久久久| 嫩草影院入口| 88av欧美| 日韩人妻高清精品专区| 麻豆一二三区av精品| 午夜激情福利司机影院| 超碰av人人做人人爽久久 | 亚洲av五月六月丁香网| 首页视频小说图片口味搜索| 深爱激情五月婷婷| 亚洲真实伦在线观看| 成年版毛片免费区| 尤物成人国产欧美一区二区三区| 一区二区三区免费毛片| 女人高潮潮喷娇喘18禁视频| 一区二区三区国产精品乱码| 久久精品国产99精品国产亚洲性色| 欧美zozozo另类| 久久99热这里只有精品18| 中文亚洲av片在线观看爽| 久久久久久久亚洲中文字幕 | 亚洲欧美日韩高清专用| 午夜亚洲福利在线播放| 97碰自拍视频| 老熟妇乱子伦视频在线观看| 成人亚洲精品av一区二区| 午夜激情福利司机影院| 精品久久久久久久末码| 国产高潮美女av| 黄色丝袜av网址大全| 可以在线观看的亚洲视频| 国产美女午夜福利| 国产美女午夜福利| 可以在线观看的亚洲视频| 嫁个100分男人电影在线观看| 男女做爰动态图高潮gif福利片| 女人高潮潮喷娇喘18禁视频| 国产一区在线观看成人免费| 少妇熟女aⅴ在线视频| 国产在线精品亚洲第一网站| 成人18禁在线播放| 久9热在线精品视频| 午夜激情福利司机影院| 无人区码免费观看不卡| 亚洲五月天丁香| 久久中文看片网| 国产免费一级a男人的天堂| 国产精品综合久久久久久久免费| 亚洲av成人不卡在线观看播放网| 夜夜看夜夜爽夜夜摸| 欧美中文综合在线视频| 国产成人av教育| 久久久久久久精品吃奶| 男女视频在线观看网站免费| 宅男免费午夜| 夜夜看夜夜爽夜夜摸| 久久精品亚洲精品国产色婷小说| 日韩国内少妇激情av| 国产在线精品亚洲第一网站| 久久草成人影院| 国产欧美日韩一区二区精品| 欧美性感艳星| АⅤ资源中文在线天堂| 国产精品98久久久久久宅男小说| 无限看片的www在线观看| 岛国在线观看网站| 小说图片视频综合网站| 精品不卡国产一区二区三区| 亚洲中文日韩欧美视频| 国产色爽女视频免费观看| 热99re8久久精品国产| 国产单亲对白刺激| 国内久久婷婷六月综合欲色啪| 舔av片在线| 免费电影在线观看免费观看| 欧美一区二区精品小视频在线| 悠悠久久av| 国产野战对白在线观看| 国内揄拍国产精品人妻在线| 国产精品免费一区二区三区在线| 人人妻,人人澡人人爽秒播| 欧美绝顶高潮抽搐喷水| 欧美乱色亚洲激情| 亚洲无线观看免费| 国内精品久久久久精免费| 99久久成人亚洲精品观看| 美女被艹到高潮喷水动态| 两性午夜刺激爽爽歪歪视频在线观看| 日韩精品中文字幕看吧| 在线国产一区二区在线| 久久久久性生活片| 在线看三级毛片| 亚洲第一欧美日韩一区二区三区| 色视频www国产| 在线免费观看不下载黄p国产 | 一级黄片播放器| 精品无人区乱码1区二区| 久久人妻av系列| 亚洲av成人精品一区久久| 亚洲第一电影网av| 日韩欧美在线二视频| 老司机午夜十八禁免费视频| 国产在线精品亚洲第一网站| 在线观看日韩欧美| 国产精品嫩草影院av在线观看 | 99国产精品一区二区蜜桃av| 亚洲精品久久国产高清桃花| 亚洲av一区综合| 国产三级在线视频| 日日夜夜操网爽| 最新美女视频免费是黄的| 精品国内亚洲2022精品成人| 美女被艹到高潮喷水动态| 国产成人a区在线观看| 午夜激情欧美在线| 欧美在线一区亚洲| 欧美成狂野欧美在线观看| 成年免费大片在线观看| 人妻久久中文字幕网| 中文字幕久久专区| 搡老熟女国产l中国老女人| 免费人成在线观看视频色| 国产av麻豆久久久久久久| 亚洲欧美日韩东京热| 99国产精品一区二区三区| 91在线观看av| 精品国产超薄肉色丝袜足j| 国产午夜精品久久久久久一区二区三区 | 国内精品一区二区在线观看| 国产熟女xx| 小蜜桃在线观看免费完整版高清| 波野结衣二区三区在线 | 欧美日本亚洲视频在线播放| 全区人妻精品视频| 变态另类成人亚洲欧美熟女| 少妇高潮的动态图| 大型黄色视频在线免费观看| 一进一出抽搐gif免费好疼| 无限看片的www在线观看| 久久精品国产综合久久久| 国产精品一区二区免费欧美| 最近最新中文字幕大全电影3| 内地一区二区视频在线| 国产亚洲av嫩草精品影院| 男人的好看免费观看在线视频| av视频在线观看入口| 51午夜福利影视在线观看| 99国产精品一区二区蜜桃av| 国产成人福利小说| 亚洲熟妇熟女久久| 国产黄a三级三级三级人| 九色成人免费人妻av| 床上黄色一级片| 国产三级黄色录像| 久久中文看片网| 亚洲精品色激情综合| 18禁国产床啪视频网站| 亚洲熟妇中文字幕五十中出| 国产一区二区激情短视频| 国产三级黄色录像| 欧美在线一区亚洲| 欧美日韩一级在线毛片| 日韩欧美在线二视频| 韩国av一区二区三区四区| 又黄又爽又免费观看的视频| 日韩大尺度精品在线看网址| 亚洲国产中文字幕在线视频| 老司机福利观看| 日日摸夜夜添夜夜添小说| 国产视频一区二区在线看| 嫩草影视91久久| 国产99白浆流出| av福利片在线观看| 国产免费一级a男人的天堂| 国产野战对白在线观看| 亚洲内射少妇av| 日韩欧美精品免费久久 | 国产黄色小视频在线观看| 一二三四社区在线视频社区8| 舔av片在线| 老鸭窝网址在线观看| 99国产精品一区二区蜜桃av| 俺也久久电影网| 狂野欧美激情性xxxx| 免费人成在线观看视频色| 在线观看免费视频日本深夜| 伊人久久大香线蕉亚洲五| 婷婷六月久久综合丁香| 成人三级黄色视频| 国产精品久久久久久亚洲av鲁大| 日本五十路高清| 美女免费视频网站| 国产精品免费一区二区三区在线| 国产精品,欧美在线| 老汉色av国产亚洲站长工具| 偷拍熟女少妇极品色| 亚洲五月婷婷丁香| 国产极品精品免费视频能看的| 在线十欧美十亚洲十日本专区| 欧美日韩综合久久久久久 | 岛国视频午夜一区免费看| 久久精品国产亚洲av香蕉五月| 久久精品夜夜夜夜夜久久蜜豆| 欧美在线黄色| 亚洲激情在线av| 亚洲内射少妇av| 国产精品 国内视频| 亚洲成a人片在线一区二区| 人妻丰满熟妇av一区二区三区| 91在线观看av| 波野结衣二区三区在线 | 一区二区三区激情视频| 老熟妇仑乱视频hdxx| 欧美bdsm另类| 18禁在线播放成人免费| 国产麻豆成人av免费视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人三级黄色视频| 久久亚洲精品不卡| 一个人免费在线观看电影| 亚洲av免费高清在线观看| 亚洲avbb在线观看| 久久久久国产精品人妻aⅴ院| 国产三级中文精品| 亚洲熟妇熟女久久| 高清日韩中文字幕在线| 亚洲精品粉嫩美女一区| 亚洲五月婷婷丁香| 99热这里只有精品一区| 欧美一级a爱片免费观看看| 亚洲avbb在线观看| 国产综合懂色| 亚洲av二区三区四区| 亚洲国产高清在线一区二区三| 一a级毛片在线观看| 制服丝袜大香蕉在线| 天天躁日日操中文字幕| 最近在线观看免费完整版| 国产精品亚洲av一区麻豆| 欧美3d第一页| 国产成人av激情在线播放| 国产老妇女一区| 久久国产精品影院| 国产一级毛片七仙女欲春2| 免费在线观看影片大全网站| 亚洲自拍偷在线| 舔av片在线| 国产精品嫩草影院av在线观看 | 亚洲欧美激情综合另类| 国产久久久一区二区三区| 怎么达到女性高潮| 国产成+人综合+亚洲专区| 精品不卡国产一区二区三区| 此物有八面人人有两片| 国产不卡一卡二| 中文字幕人妻熟人妻熟丝袜美 | 欧美+亚洲+日韩+国产| 此物有八面人人有两片| 丰满的人妻完整版| 色综合站精品国产| 99久久无色码亚洲精品果冻| 女人被狂操c到高潮| 可以在线观看毛片的网站| 成年女人看的毛片在线观看| 国产精品免费一区二区三区在线| 亚洲欧美日韩卡通动漫| 两个人视频免费观看高清| 叶爱在线成人免费视频播放| 国产伦人伦偷精品视频| 99riav亚洲国产免费| 久久国产精品人妻蜜桃| 91九色精品人成在线观看| 国产精品99久久99久久久不卡| 国产一级毛片七仙女欲春2| 亚洲专区中文字幕在线| 香蕉av资源在线| 嫁个100分男人电影在线观看| 欧美极品一区二区三区四区| 精品不卡国产一区二区三区| avwww免费| 欧美成人a在线观看| 女警被强在线播放| 国产97色在线日韩免费| 亚洲欧美日韩高清在线视频| 又紧又爽又黄一区二区| 日韩免费av在线播放| 日韩成人在线观看一区二区三区| a级毛片a级免费在线| 久久久国产成人精品二区| 国产老妇女一区| 欧美黑人欧美精品刺激| a在线观看视频网站| 怎么达到女性高潮| 欧美一区二区精品小视频在线| 精品国产三级普通话版| www.999成人在线观看| 成人午夜高清在线视频| 首页视频小说图片口味搜索| 欧美高清成人免费视频www| ponron亚洲| 色吧在线观看| av视频在线观看入口| 国产精华一区二区三区| 国产精品电影一区二区三区| 美女免费视频网站| 夜夜爽天天搞| svipshipincom国产片| 亚洲专区中文字幕在线| 色播亚洲综合网| 真人做人爱边吃奶动态| 色在线成人网| 俺也久久电影网| 国产亚洲精品综合一区在线观看| eeuss影院久久| 国产黄色小视频在线观看| 久久人妻av系列| 精品人妻1区二区| 69人妻影院| 最新在线观看一区二区三区| av福利片在线观看| 国产91精品成人一区二区三区| 亚洲精品影视一区二区三区av| 91麻豆av在线| 国产探花极品一区二区| 波多野结衣高清无吗| 亚洲av日韩精品久久久久久密| 成人av在线播放网站| 丁香六月欧美| 久久久久久人人人人人| 女人十人毛片免费观看3o分钟| 蜜桃久久精品国产亚洲av| 亚洲电影在线观看av| 天天添夜夜摸| 国产精品亚洲av一区麻豆| 天堂av国产一区二区熟女人妻| 精华霜和精华液先用哪个| 中国美女看黄片| 国产在视频线在精品| 黄色成人免费大全| 国产精品一及| 在线观看午夜福利视频| 国产成人av激情在线播放| 一区二区三区高清视频在线| 88av欧美| 色视频www国产| 久久精品国产亚洲av涩爱 | 黄片小视频在线播放| a在线观看视频网站| 小蜜桃在线观看免费完整版高清| 久久国产乱子伦精品免费另类| 国产精品一区二区三区四区久久| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| 亚洲欧美日韩无卡精品| 中亚洲国语对白在线视频| 亚洲在线自拍视频| 91久久精品电影网| 国产精品一区二区三区四区久久| 亚洲成av人片免费观看| 最新美女视频免费是黄的| 欧美日韩黄片免| 俄罗斯特黄特色一大片| 99热这里只有精品一区| 身体一侧抽搐| 免费看美女性在线毛片视频| 国产高清videossex| 老汉色∧v一级毛片| 国产黄a三级三级三级人| xxxwww97欧美| 日本一本二区三区精品| 亚洲专区国产一区二区| 国产私拍福利视频在线观看| 久久九九热精品免费| 国产精品一区二区免费欧美| 国产乱人视频| 免费人成视频x8x8入口观看| 欧美一级毛片孕妇| 久久久久国产精品人妻aⅴ院| 黄色女人牲交| 在线观看午夜福利视频| 一本精品99久久精品77| 国产午夜福利久久久久久| 欧美性感艳星| 欧美中文综合在线视频| 日韩中文字幕欧美一区二区| 国产精品日韩av在线免费观看| 亚洲久久久久久中文字幕| 亚洲专区国产一区二区| 乱人视频在线观看| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 97超级碰碰碰精品色视频在线观看| 欧美最新免费一区二区三区 | svipshipincom国产片| 真人做人爱边吃奶动态| 亚洲乱码一区二区免费版| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 中文字幕人成人乱码亚洲影| 精品乱码久久久久久99久播| 最近最新中文字幕大全免费视频| 亚洲精品乱码久久久v下载方式 | 69人妻影院| 亚洲精品乱码久久久v下载方式 | 极品教师在线免费播放| 美女高潮的动态| 亚洲国产精品合色在线| АⅤ资源中文在线天堂| 老司机福利观看| 久久久久久人人人人人| 天天添夜夜摸| www国产在线视频色| 国产伦精品一区二区三区四那| 亚洲 国产 在线| 日本免费a在线| 亚洲男人的天堂狠狠| 免费在线观看影片大全网站| or卡值多少钱| 国产v大片淫在线免费观看| 久久香蕉精品热| 岛国视频午夜一区免费看| 无人区码免费观看不卡| 9191精品国产免费久久| 久久亚洲精品不卡| 可以在线观看的亚洲视频| 亚洲欧美日韩东京热| 国产私拍福利视频在线观看| bbb黄色大片| 成人国产综合亚洲| 十八禁网站免费在线| 精品日产1卡2卡| 波多野结衣高清无吗| 国内毛片毛片毛片毛片毛片| 黄色丝袜av网址大全| 欧美最新免费一区二区三区 | 在线观看66精品国产| 在线视频色国产色| 午夜福利视频1000在线观看| 窝窝影院91人妻| 久久精品人妻少妇| 精品久久久久久久毛片微露脸| 欧美乱码精品一区二区三区| 又紧又爽又黄一区二区| 一二三四社区在线视频社区8| 精品日产1卡2卡| 99国产极品粉嫩在线观看| 久久久久国内视频| 在线观看舔阴道视频| 国产精品三级大全| 亚洲第一电影网av| 国产三级中文精品| 亚洲黑人精品在线| 精品国内亚洲2022精品成人| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀| 欧美另类亚洲清纯唯美| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 婷婷亚洲欧美| 久久香蕉国产精品| 法律面前人人平等表现在哪些方面| 午夜两性在线视频| 久久久久久久精品吃奶| 久久精品亚洲精品国产色婷小说| 国产成年人精品一区二区| 欧美中文综合在线视频| 亚洲真实伦在线观看| 成人无遮挡网站| 国产精品亚洲美女久久久| 少妇的逼好多水| 亚洲国产中文字幕在线视频| 此物有八面人人有两片| 久久久久国内视频| 亚洲成av人片在线播放无| 美女免费视频网站| 亚洲av一区综合| 丰满人妻熟妇乱又伦精品不卡| www日本黄色视频网| 首页视频小说图片口味搜索| 日本免费一区二区三区高清不卡| 国产精品久久视频播放| 又黄又爽又免费观看的视频| 免费大片18禁| 欧美日韩福利视频一区二区| 国产探花极品一区二区| 亚洲18禁久久av| 久久伊人香网站| av中文乱码字幕在线| 国产淫片久久久久久久久 | 51午夜福利影视在线观看| 99久久99久久久精品蜜桃| 久久99热这里只有精品18| 精品熟女少妇八av免费久了| 一区二区三区高清视频在线| 精品欧美国产一区二区三| 日韩中文字幕欧美一区二区| 欧美成人一区二区免费高清观看| 国产精品98久久久久久宅男小说| 亚洲黑人精品在线| 亚洲一区二区三区不卡视频| 国产精品久久久久久精品电影| 很黄的视频免费| 在线天堂最新版资源| 欧美日韩乱码在线| 欧美日韩国产亚洲二区| 国产精品一及| 成熟少妇高潮喷水视频| 1000部很黄的大片| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 国产私拍福利视频在线观看| 在线播放国产精品三级| 亚洲精品日韩av片在线观看 | 制服人妻中文乱码| 国产蜜桃级精品一区二区三区| 久久草成人影院| 国产午夜精品久久久久久一区二区三区 | 高清在线国产一区| 日韩人妻高清精品专区| 一边摸一边抽搐一进一小说| 久久久久国产精品人妻aⅴ院| 少妇裸体淫交视频免费看高清| 香蕉久久夜色| a级毛片a级免费在线| 波多野结衣巨乳人妻| 久久久久久国产a免费观看| av黄色大香蕉| 欧美bdsm另类| 成年女人毛片免费观看观看9| 又粗又爽又猛毛片免费看| 真人一进一出gif抽搐免费| 小说图片视频综合网站| 亚洲黑人精品在线| 伊人久久精品亚洲午夜| 精品久久久久久久毛片微露脸| 亚洲在线观看片| 亚洲激情在线av| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品成人久久久久久| aaaaa片日本免费| 国产高潮美女av| 久久九九热精品免费| av在线蜜桃| 久久久国产成人免费| 国产高潮美女av| 国产精品嫩草影院av在线观看 | 88av欧美| 少妇人妻精品综合一区二区 | 久久久国产精品麻豆| 亚洲成av人片在线播放无| 国产欧美日韩一区二区三| 国产日本99.免费观看| 国内少妇人妻偷人精品xxx网站| 嫩草影院入口| 韩国av一区二区三区四区| 国产精品三级大全| 亚洲男人的天堂狠狠| 欧美日韩黄片免| 欧美激情在线99| 亚洲最大成人中文| 亚洲国产欧美人成| 制服人妻中文乱码| 长腿黑丝高跟| 午夜日韩欧美国产| 免费观看人在逋| 中文资源天堂在线| 18禁美女被吸乳视频| 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看| 白带黄色成豆腐渣| www.www免费av| 亚洲国产高清在线一区二区三| 日韩高清综合在线| 亚洲精品一卡2卡三卡4卡5卡| 男女视频在线观看网站免费| 日韩欧美在线乱码| 国产黄色小视频在线观看| 老熟妇乱子伦视频在线观看| 嫩草影院入口| 亚洲一区二区三区色噜噜| 可以在线观看的亚洲视频| 亚洲自拍偷在线| 亚洲久久久久久中文字幕| 99热只有精品国产| 国产色婷婷99| 男女床上黄色一级片免费看| 日日摸夜夜添夜夜添小说| 国产精品自产拍在线观看55亚洲| 亚洲无线观看免费| 19禁男女啪啪无遮挡网站| 黄色丝袜av网址大全| avwww免费| 人妻久久中文字幕网| 最新中文字幕久久久久| 亚洲avbb在线观看| 一进一出好大好爽视频| 国产探花在线观看一区二区| 久久久精品欧美日韩精品| 欧美激情久久久久久爽电影| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| 18美女黄网站色大片免费观看| 精品不卡国产一区二区三区| 午夜精品在线福利|