• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of centrifuge errors on calibration accuracy of error model coefficients of gyro accelerometer*

    2014-07-31 20:21:48ShimingWANGShunqingREN
    機床與液壓 2014年2期
    關鍵詞:離心機加速度計陀螺

    Shi-ming WANG, Shun-qing REN

    Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150080, China

    Impacts of centrifuge errors on calibration accuracy of error model coefficients of gyro accelerometer*

    Shi-ming WANG?, Shun-qing REN

    SpaceControlandInertialTechnologyResearchCenter,HarbinInstituteofTechnology,Harbin150080,China

    In order to study the impacts of accuracy centrifuge error on the coefficient accuracy of gyro accelerometer model, all error sources of centrifuge were analyzed. The impacts of centrifuge error sources on the coefficient calibrating accuracy of gyro accelerometer were discussed from the aspect of input specific force and angular rate relative to inertial space. Accurate expressions of input acceleration and input angular rate of tested accelerometer were obtained, error model coefficients were determined by using least square method and the impact degree of error sources on coefficient identification accuracy is evaluated in this paper. The relationships between some centrifuge errors and calibration accuracy of error coefficients of accelerometer were established and it builds a theoretical foundation for the calibrating accuracy of accelerometer to decide the accuracy of centrifuge.

    Precision centrifuge, Gyro accelerometer, Input specific force, Homogeneous transformation, Error model coefficient

    1.Introduction

    Pendulous integrating gyro accelerometer (PIGA) is a kind of gyro accelerometer that uses gyroscopic couple for feedback[1-3]. It is valuable due to the high accuracy, wide dynamic range and automatic integration and it is a major part of high accuracy inertial navigation system. The high accuracy of inertial navigation system leads to an increasing demands on accuracy of gyro accelerometer. Calibration accelerator with an input of 1g, under gravity, could no longer meet the demand any more. Higher input acceleration is always expected to calibrate the higher error coefficient and other data of gyro accelerometer[4-5]. Therefore, centrifuge experiment is commonly used to provide acceleration input of gyro accelerometer. To improve test accuracy of gyro accelerometer, centrifuge with counter-rotating platform is commonly used for effective shield of translational motion caused by centrifuge angular rate and for filtering gyro disturbance torque at the direction of outer ring principal axis of gyro accelerometer. However, during the process of testing, calibration accuracy of gyro accelerometer was often affected by centrifuge error, which leads to a certain difference between theoretical value and measured result of accelerometer output[6]. The impact of centrifuge error on calibrating accuracy of gyro accelerometer was comprehensively analyzed in this paper.

    2.Centrifuge testing experiment of gyro accelerometer

    When Calibrating gyro accelerometer on centrifuge, angular rate of centrifuge will make gyro accelerometer perform translational motions which create additional gyro disturbance torque at the direction of outer frame rotating axis of gyro accelerometer and lead to output error of gyro accelerometer. Centrifuge with counter-rotating platform could be used to eliminate such effect, as shown in Figure 1.

    In Figure 1, “1” represents the principle axis of centrifuge; “2” represents the vector rate of angular rate of principal axis of counter-rotating platform’s rotorΩ;ωis vector rate of angular rate of counter-rotating platform. During the testing process, angular rateωof counter-rotating platform at test end and vector rateΩof principle axis are equal and opposite under ideal situation, i.e.,ω=-Ω.

    Figure 1.Schematic diagram of precision centrifuge with counter-rotating platform

    According to reference[1], acceleration at the direction of input axis of accelerometer could be decomposed from acceleration at the direction of input axis of centrifuge:

    (1)

    Where,φ0refers to initial phase-angle between positive direction of input axis and the direction of centripetal accelerationO2O1at the beginning of the test.

    3.Error model of gyro accelerometer

    Error model of gyro accelerometer is:

    (2)

    Where,αrefers to output angular rate;airefers to input acceleration at the direction of input axis of gyro accelerometer;K0refers to bias;K1refers to scale factor;K2refers to second-order nonlinear error coefficient;K3refers to cubic term error model coefficient;εrefers to the residual error;ωecosφrefers to north component of geographic angular rateωeof the earth and its component at output angular rate’s direction of gyro accelerometer isωecosφcosφe0, in whichφrefers to local latitude,φ0refers to initial phase-angle between gyro accelerometer and geographic north angular rate of the earthωecosφat the beginning of the test; ΔΩrefers to the difference between angular rate of principle axis and counter-rotating platform’s angular rate, i.e.,ω=-(Ω+ΔΩ).

    4.Centrifuge error sources that affect calibration accuracy of gyro accelerometer

    Based on the Eq.(1), impacts of centrifuge error sources on calibrating accuracy of gyro accelerometer could be first seen on the input specific force which mainly includes radius accuracy of centrifuge and principle axis angular rate accuracy. Meanwhile, distribution of centripetal acceleration and gravitational acceleration on the input axis of accelerometer that caused by such factors as centrifuge pose error and installation error will affect calibration accuracy of accelerometer. In addition, factors like pose error and installation error also affect angular rate of relative inertia space of centrifuge and thus affect calibration accuracy of gyro accelerometer. Therefore, radium error, angular rate error and pose error are the major centrifuge errors that affect calibration accuracy of gyro accelerometer. Impacts from these errors will be thoroughly analyzed as follows.

    4.1.The establishment of the coordinate system

    Structure diagram and the establishment of the coordinate system are shown in Figure 2.o0x0y0z0is geographic coordinate system;o1tx1ty1tz1tis principle axis axle sleeve coordinate system;o1x1y1z1refers to principle axis coordinate system;o2tx2ty2tz2trefers to horizontal axle sleeve coordinate system;o2x2y2z2refers to horizontal coordinate system;o3tx3ty3tz3trefers to azimuth axle sleeve coordinate system;o3x3y3z3refers to azimuth axis coordinate system;o4x4y4z4refers to working base plane coordinate system;o5x5y5z5refers to accelerometer coordinate system.

    Figure 2.Coordinate systems of centrifuge

    4.2.Analysis of centrifuge error sources that affect input specific force

    4.2.1.Static error sources

    Static error sources of centrifuge mainly include installation error of principle axis axle sleeve Δθx1tand Δθy1t; perpendicularity Δθy2tand intersection degree Δy2tbetween horizontal axis and principle axis, radium static error ΔRS, perpendicularity Δθy3tand intersection degree Δy3tbetween horizontal axis and azimuth axis, initial zero error Δθx3tof azimuth axle sleeve, perpendicularity Δθx4and Δθy4between working base plane and azimuth axis, accelerometer’s installation base plane pose error Δθx5and Δθy5, eccentricity error Δx5and Δy5, initial zero error Δθz5etc[7-8]. It needs to be pointed out that installation error of accelerometer is not a source of centrifuge error but it will affect error coefficient calibration accuracy of accelerometer and this is the reason why it is considered here. All static error sources and homogeneous matrix between adjacent coordinate systems which are given by error sources and nominal pose are shown in Table 1. In this table,Lrepresents the distance between origino4of azimuth axis coordinate system and working base plane.lrepresents the distance between origino5of accelerometer coordinate system and working base plane.

    4.2.2.Dynamic error sources

    Centrifuge dynamic errors mainly include principle axis’s runouts Δx1(Ωt) and Δy1(Ωt), axial float Δz1(ωt), wobbles Δθx1(Ωt) and Δθy1(Ωt), radius dynamic error ΔRd, horizontal axis’s runouts Δy2(β) and Δz2(β), axial float Δx2(β), wobbles Δθy2(β) and Δθz2(β), azimuth axis’s runouts Δx3(γ) and Δy3(γ), axial float Δz3(γ), wobbles Δθx3(γ) and Δθy3(γ) etc.Ωtrepresents angle caused by rotation around principle axis,βrefers to angle caused by rotation around horizontal axis,γrefers to angle caused by rotation around azimuth axis. All dynamic error sources and homogeneous matrix between adjacent coordinate system, given by error sources and nominal pose, are shown in Table 2.

    Table 1.Coordinate systems and homogeneous transformations relative to static errors of centrifuge

    Table 2.Coordinate systems and homogeneous transformations relative to dynamic errors of centrifuge

    Radius static error and dynamic error are integrated here,R=R0+ΔR, in which, ΔR=ΔRS+ΔRd,R0refers to static radium nominal value. According to homogeneous transform in Table 1 and Table 2, homogeneous matrix between accelerometer coordinate system and geographic coordinate system could be expressed as follows:

    (3)

    (4)

    This can be used to calculate gravitational acceleration’s component along each axis of coordinate system, as shown in Eq.(5):

    (5)

    Gravitational acceleration’s componentaIgon input axis of under-test accelerometer is:

    (6)

    The unit isg.

    Adopting second derivative inTsfor Eq.(4), acceleration absolute of origin of accelerometer coordinate system in principle axis coordinate systemo1x1y1z1could be expressed as follows:

    (7)

    Neglecting second-order infinitesimals during the process of calculation, and averaging with full-cycle integration, the acceleration component on each axis of accelerometer coordinate system could be obtained:

    (8)

    Therefore, the componentaIωof centripetal acceleration on input axis of accelerometer could be expressed as:

    (9)

    Where,γ=-Ωt+φ0,φ0refers to the initial phase-angle between positive direction of input axis of accelerometer and the direction of centripetal accelerationO2O1at the beginning of the test, and the other parameters are defines as follows:

    In addition, operation of centrifuge is also affected by Coriolis acceleration. So, the gyro accelerometer’s input specific force expression which contains the centrifuge error could be obtained as follows:

    (10)

    4.3.Analysis of error sources that affect angular rate of inertial space

    In fact, pose error of centrifuge also affects angular rate. In case of in-motion counter-rotating platform, as shown in Figure 1, if taking the impact of pose error on accelerometer’s input angular rate into consideration, the corresponding homogeneous matrix could be obtained:

    (11)

    When pose changes, angular rate distribution on each axis of gyro accelerometer is:

    (12)

    Where,

    Angular rate of gyro accelerometer’s input axis is:

    (13)

    5.Impacts of all error resources on calibration accuracy of gyro accelerometer

    This paper mainly studied the impacts of all error resources on each error coefficient of gyro accelerometer with influence from centrifuge and gave one-to-one corresponding relationship between error resource and error coefficient.K1in error model of gyro accelerometer can be calibrated with an input of 1g gravitational field. Here,K1is set to be known during the testing process.

    Substitute Eq.(10) into Eq.(2), the error model of gyro accelerometer with error item could be obtained and the error model can be simplified as Eq.(14):

    Δx2(β)+Δx3(γ)+ΔR)/R0]cosγ+

    [(-Δy2t-Δy3(γ)-Δy3t-Δy2(β))/R0+

    Δθz5+Δθz2(β))]sinγ-Δx5/R0}R0(Ω+

    Δω)2/g+(-Δθy3t-Δθy3(γ)-Δθy2t-

    Δθy2(β))cosγ+Δθx3t+Δθx3(γ))sinγ-

    Δθy4-Δθy5-2ωRΩvsinφ/g〉+

    K2[R0(Ω+Δω)2/gcosγ]2+

    K3[-R0(Ω+Δω)2/gcosγ]3

    (14)

    (15)

    Substitute Eq.(14) into Eq.(15), setA=R(ω+Δω)2/gandψ=π, then one could get:

    ΔR)/R0]+Δθy3t+Δθy3(γ)+Δθy2t+

    Δy3(γ)-Δy3t-Δy2(β))/R0+Δθz5+

    Δθz2(β))]+Δθx3t+Δθx3(γ))}cosφ0+

    (AΔx5/R0+Δθy4+Δθy5+2ΩRΩvsinφ/g)〉+

    ωecosφcosφe0-ΔΩ

    (16)

    Eq.(16)couldbesimplifiedasfollows:

    K2Z2+K3Z3

    (17)

    Where,

    ΔR)/R0]+Δθy3t+Δθy3(γ)+Δθy2t+

    Δy3(γ)-Δy3t-Δy2(β))/R0+Δθz5+

    Δθz2(β))]+Δθx3t+Δθx3(γ))}cosφ0-

    (AΔx5/R0+Δθy4+Δθy5+2ΩRΩvsinφ/g)

    Therefore, when some certain amounts of inputs (say n) of gyro accelerometer which are over 1gare given, least square method could be adopted to calculate each error coefficient, as shown in Eq.(18):

    (18)

    Where,

    SetA=5, 10, 15, 20, 25, 30 (put Δωaside inA, that isA=Ω2R/g, setgper unit), each error coefficient of accelerometer in case of error item included could be evaluated, set calibration radiumR0to 2.5 m, centrifuge running time to 450 s. Angular rate corresponding to input acceleration andφ0data when 450 s run out were shown in Table 3.

    Table 3. Inputs of tested accelerometer with corresponding φ0

    In order to observe the impacts of all error items on accelerometer error coefficient, take conclusion in chapter 4.1 into consideration, all error coefficients in Eq.(17) were set to:K0=0.061 973 ^/s,K1=505.209 7 ^/g/s,K2=0.02 ^/g2/s,K3=0.003 ^/g3/s。

    1) Calculate influence of pose errors on error coefficient, set each pose error item to 1(10-5rad and use Eq.(18) to calculate all pose errors’ independent impact on each error coefficient. The specific results are shown in Table 4.

    In Table 4, taking Δθz5as an example, its impact on calibration accuracy of gyro accelerometer is analyzed, which affects output accuracy of accelerometer. Impact of Δθz5onK3is 1×10-5^/g3/s. Acceleration input of centrifuge is set to be 20g. Then, the impact on accelerometer output could be obtained:

    As obtained from the above calculation, error item Δθz5has a larger impact on gyro accelerometer and it should be fixed on actual calibration. This method can be used to calculate impact of other error items on output of gyro accelerometer. Based on the calculation, we could find out that each error affects output of accelerometer to varying degrees. This should be fixed in an actual calibration of accelerometer’s parameter.

    2) Analyze impact of speed accuracy on error coefficient of gyro accelerometer, expression of centripetal acceleration can be modified as follows:

    (19)

    Suppose the accuracy of angular rate Δωis 0.5×10-6rad/s, and substitute Eq.(19) into Eq.(18), all the error coefficients of model could be acquired by only considering the accuracy of angular rate. Here are:

    3) Discuss impact of pose error on angular rate’s accuracy which affects error coefficient calibration accuracy of gyro accelerometer. Pose error that affects accuracy of angular rate is displayed in Table 5. Take all poses impact into consideration and calculate its impact on corresponding error coefficient accuracy of accelerometer.

    Table 4. Single impact of pose error on the calibration accuracy of error model coefficients

    Table 5. Impacts of centrifuge errors through angular rate on calibrating accuracy of error model coefficients

    6.Conclusion

    1) All possible error sources that affect calibration accuracy of gyro accelerometer during the process of experiment and complete error model with all error resources are obtained in this paper.

    2) Least square method was used to calculate and discuss impacts of all error resources on each error model coefficient. Therefore, the relationship between calibration error of accelerometer and centrifuge error was determined.

    3) Eq.(18) was used to amend and re-identify error model coefficient after gyro accelerometer identified it in accordance with input calibration and output, which will improve identification accuracy of error model coefficients.

    [1] WANG Shi-ming,REN Shun-qing.Calibration accuracy of error model coefficients K2 and K3 of gyro accelerometer influenced by errors of centrifuge[J].Nanotechnology and precision Engineering,2013,11(2):140-145.

    [2] Wu Wenxin,Error analysis of gyro accelerometer tested on precision centrifuge[D].Harbin:Harbin Institute of Technology,2011.

    [3] WANG Shi-ming,REN Shun-qing.Relationship between calibration accuracy of error model coefficients of accelerometer and errors of precision centrifuge[J].Journal of Astronautics,2012,33(4):520-526.

    [4] Std 836TM-2009,IEEE Recommended Practice for Precision Centrifuge Testing of Linear Accelerometers[S].The Institute of Electrical and Electronics Engineers.

    [5] Lu Yuan,Cheng Xianghong.Random misalignment and lever arm vector online estimation in ship borne aircraft transfer alignment[J].2014,47(1):756-764.

    [6] Xing Hai-feng.Research on the influence of the errors of precision centrifuge on the model coefficients calibrating error of the measured accelerometers[D].Harbin:Harbin Institute of Technology,2009.

    [7] Li Dan-dong.The test method research of high precision quartz accelerometer[D].Harbin:Harbin Institute of Technology,2011.

    [8] WU Sai-cheng,QIN Shi-qiao,WANG Xing-shu,et al.Systematic calibration method for RLG inertial measurement unit[J].Journal of Chinese Inertial Technology,2011,19(2):185-189.

    離心機誤差對陀螺加速度計誤差模型系數(shù)標定精度的影響*

    王世明?, 任順清

    哈爾濱工業(yè)大學 空間控制與慣性技術中心, 哈爾濱 150080

    為了研究精密離心機自身誤差對陀螺加速度計模型系數(shù)標定精度的影響,分析了離心機各個誤差源,從輸入比力和相對慣性空間角速率兩個方面討論了離心機誤差源對加速度計參數(shù)標定的精度影響,給出了被試加速度計輸入加速度和角速度的精確表達式。應用最小二乘法對誤差模型參數(shù)進行辨識,且計算了在各誤差源作用下對于參數(shù)辨識精度的影響程度。根據(jù)仿真結果,找出了某些離心機誤差對加速度計誤差系數(shù)標定的影響關系,為按照加速度計的標定精度來確定離心機的精度打下了理論基礎。

    精密離心機;陀螺加速度計;輸入比力;齊次變換;誤差模型系數(shù)

    TB934

    2014-03-10

    10.3969/j.issn.1001-3881.2014.12.002

    *Project supported by Twelfth Five-year Pre-research Project (No.51309050202)

    ? Shi-ming WANG, PhD. E-mail: wangshi_8845@163.com

    猜你喜歡
    離心機加速度計陀螺
    基于加速度計的起重機制動下滑量測量
    做個紙陀螺
    玩陀螺
    學生天地(2019年6期)2019-03-07 01:10:46
    LP60型雙級活塞推料離心機的研制與應用
    陀螺轉轉轉
    軍事文摘(2018年24期)2018-12-26 00:58:18
    我最喜歡的陀螺
    快樂語文(2018年36期)2018-03-12 00:56:02
    基于遺傳算法的加速度計免轉臺標定方法
    離心機轉速及相對離心力的正確表示
    常溫下硅微諧振加速度計零偏穩(wěn)定性的提高
    ZPJ-40型高速轉盤離心機減振技術
    国产欧美日韩一区二区精品| 久久久午夜欧美精品| 3wmmmm亚洲av在线观看| 男女之事视频高清在线观看| 成年女人毛片免费观看观看9| 美女被艹到高潮喷水动态| 网址你懂的国产日韩在线| 国产真实伦视频高清在线观看 | 伦精品一区二区三区| 91午夜精品亚洲一区二区三区 | 波多野结衣巨乳人妻| 中文亚洲av片在线观看爽| 在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 美女 人体艺术 gogo| 欧美潮喷喷水| 欧美一区二区精品小视频在线| 丰满人妻一区二区三区视频av| 夜夜爽天天搞| 精品久久久久久久久久久久久| 看免费成人av毛片| 日韩精品有码人妻一区| 国模一区二区三区四区视频| 亚洲国产精品久久男人天堂| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| 日日干狠狠操夜夜爽| 日本黄色片子视频| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 久久久久久久午夜电影| 在线看三级毛片| 久久久久久久久中文| 日本免费一区二区三区高清不卡| 精品久久国产蜜桃| 99在线视频只有这里精品首页| 观看免费一级毛片| 1000部很黄的大片| 日韩强制内射视频| 国产精品久久久久久久久免| 一个人看的www免费观看视频| 18禁黄网站禁片免费观看直播| 超碰av人人做人人爽久久| 亚洲成人久久爱视频| av专区在线播放| 成人av一区二区三区在线看| 99在线人妻在线中文字幕| 精品欧美国产一区二区三| 淫妇啪啪啪对白视频| 亚洲中文字幕日韩| 国产男人的电影天堂91| 国产美女午夜福利| 国产欧美日韩精品一区二区| 人人妻人人澡欧美一区二区| 两个人视频免费观看高清| 久久精品国产99精品国产亚洲性色| 亚洲午夜理论影院| www日本黄色视频网| 欧美日韩乱码在线| 九九爱精品视频在线观看| 色综合色国产| 久久精品国产清高在天天线| 久久久久国内视频| 联通29元200g的流量卡| 中文字幕av成人在线电影| 精品久久国产蜜桃| 99热这里只有是精品在线观看| 麻豆一二三区av精品| 1000部很黄的大片| 国产一区二区三区在线臀色熟女| 国产精品久久久久久久久免| 中文亚洲av片在线观看爽| 亚州av有码| 国内精品宾馆在线| 午夜日韩欧美国产| 国产午夜精品久久久久久一区二区三区 | 日本免费一区二区三区高清不卡| 国内毛片毛片毛片毛片毛片| 亚洲国产精品久久男人天堂| 欧美日韩黄片免| 国产男人的电影天堂91| 中文字幕精品亚洲无线码一区| 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av在线| 日韩强制内射视频| 国产亚洲精品久久久com| 国产欧美日韩一区二区精品| 亚洲国产高清在线一区二区三| h日本视频在线播放| 国产免费一级a男人的天堂| 国产三级在线视频| 色精品久久人妻99蜜桃| 欧美最新免费一区二区三区| 国产美女午夜福利| 亚洲人与动物交配视频| 干丝袜人妻中文字幕| 国内精品久久久久精免费| 国产av一区在线观看免费| 色尼玛亚洲综合影院| 亚洲av不卡在线观看| 国产在线男女| 亚洲中文字幕日韩| 色吧在线观看| 亚洲精华国产精华精| 久久99热6这里只有精品| 午夜精品一区二区三区免费看| 免费av不卡在线播放| 精品人妻视频免费看| 男女边吃奶边做爰视频| 成年人黄色毛片网站| 又爽又黄a免费视频| 又紧又爽又黄一区二区| 午夜a级毛片| av在线天堂中文字幕| 国产淫片久久久久久久久| 观看免费一级毛片| 熟妇人妻久久中文字幕3abv| 我的老师免费观看完整版| 日韩欧美三级三区| 免费搜索国产男女视频| 在线看三级毛片| 又黄又爽又刺激的免费视频.| 久久久色成人| 给我免费播放毛片高清在线观看| 一级av片app| 亚洲在线观看片| 成人一区二区视频在线观看| 一个人看的www免费观看视频| 日韩欧美国产一区二区入口| 久久中文看片网| 亚洲av一区综合| 麻豆成人午夜福利视频| 黄色丝袜av网址大全| 国产精品野战在线观看| 午夜福利欧美成人| av女优亚洲男人天堂| 18+在线观看网站| av在线观看视频网站免费| 岛国在线免费视频观看| 日本一本二区三区精品| 亚洲乱码一区二区免费版| 成人午夜高清在线视频| 欧美潮喷喷水| 成人国产麻豆网| 俺也久久电影网| 日日夜夜操网爽| av在线观看视频网站免费| 搡老妇女老女人老熟妇| 国产成人a区在线观看| 午夜福利高清视频| 夜夜爽天天搞| 免费av观看视频| 久久国产乱子免费精品| 一本一本综合久久| 亚洲最大成人中文| 床上黄色一级片| 99热这里只有是精品在线观看| 成年版毛片免费区| 九九热线精品视视频播放| 欧美成人免费av一区二区三区| 女同久久另类99精品国产91| 乱人视频在线观看| 十八禁国产超污无遮挡网站| 日韩欧美精品v在线| 欧美黑人巨大hd| 精品国内亚洲2022精品成人| 国产不卡一卡二| 久久久久九九精品影院| 成人永久免费在线观看视频| 精品午夜福利在线看| 久久精品国产亚洲网站| 全区人妻精品视频| 观看美女的网站| 久久国产精品人妻蜜桃| 美女大奶头视频| 性色avwww在线观看| 99热精品在线国产| 午夜影院日韩av| 中国美女看黄片| 日韩一区二区视频免费看| 搡老岳熟女国产| 俺也久久电影网| 国产亚洲精品综合一区在线观看| 97超视频在线观看视频| 91精品国产九色| 成年女人看的毛片在线观看| 男女之事视频高清在线观看| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 观看美女的网站| 在线播放国产精品三级| 亚洲成人久久性| 久久中文看片网| 99热这里只有是精品在线观看| .国产精品久久| 国产一区二区在线av高清观看| 国产精品伦人一区二区| 91午夜精品亚洲一区二区三区 | 韩国av一区二区三区四区| avwww免费| 麻豆国产av国片精品| 国产伦一二天堂av在线观看| 美女黄网站色视频| 午夜福利成人在线免费观看| 日韩精品青青久久久久久| 久久久久久久精品吃奶| 中文字幕高清在线视频| 深夜精品福利| 日本三级黄在线观看| ponron亚洲| 69av精品久久久久久| 99热精品在线国产| 久久亚洲精品不卡| 美女高潮的动态| 成年女人看的毛片在线观看| 久久久久久久精品吃奶| 在线播放无遮挡| 我的女老师完整版在线观看| 在线看三级毛片| 亚洲人成网站在线播放欧美日韩| 日日干狠狠操夜夜爽| 99热精品在线国产| 一a级毛片在线观看| 国产欧美日韩一区二区精品| 国产老妇女一区| 国产精品自产拍在线观看55亚洲| 免费人成在线观看视频色| 国产一区二区在线观看日韩| 国产真实乱freesex| 又黄又爽又免费观看的视频| 狂野欧美激情性xxxx在线观看| 尤物成人国产欧美一区二区三区| 国产真实伦视频高清在线观看 | 午夜福利18| 男人和女人高潮做爰伦理| 人妻制服诱惑在线中文字幕| 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品 | 国产久久久一区二区三区| 波多野结衣高清无吗| 91久久精品国产一区二区成人| 99热精品在线国产| 99热只有精品国产| 免费看av在线观看网站| 91久久精品电影网| 禁无遮挡网站| 亚洲专区国产一区二区| 欧美在线一区亚洲| 91狼人影院| 国产精品人妻久久久影院| 精品日产1卡2卡| 亚洲专区中文字幕在线| 高清毛片免费观看视频网站| 黄色日韩在线| 99国产精品一区二区蜜桃av| 欧美激情国产日韩精品一区| 哪里可以看免费的av片| 日本一本二区三区精品| 久久久久久久久大av| 免费看日本二区| 一进一出抽搐gif免费好疼| 性插视频无遮挡在线免费观看| 国产精品不卡视频一区二区| 色综合站精品国产| 国产大屁股一区二区在线视频| 国产高清视频在线播放一区| 最近最新免费中文字幕在线| 特级一级黄色大片| 欧美日韩中文字幕国产精品一区二区三区| 国产大屁股一区二区在线视频| 搡老岳熟女国产| bbb黄色大片| 亚洲中文字幕日韩| 久久久久久久精品吃奶| 国产亚洲精品综合一区在线观看| 久久久久久久午夜电影| 成人欧美大片| 长腿黑丝高跟| 国产精品一区二区免费欧美| 91麻豆精品激情在线观看国产| 国产单亲对白刺激| av在线观看视频网站免费| 最近在线观看免费完整版| 亚洲av二区三区四区| 欧美日韩乱码在线| 国产伦在线观看视频一区| 麻豆国产97在线/欧美| 尤物成人国产欧美一区二区三区| 搡女人真爽免费视频火全软件 | 久久精品国产鲁丝片午夜精品 | 无人区码免费观看不卡| 日韩精品中文字幕看吧| 国产精品国产三级国产av玫瑰| 久久九九热精品免费| 亚洲18禁久久av| 99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 草草在线视频免费看| 国产精品嫩草影院av在线观看 | 亚洲美女黄片视频| 一区二区三区免费毛片| 国产色婷婷99| 免费看a级黄色片| 91久久精品国产一区二区成人| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 日本爱情动作片www.在线观看 | 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久av不卡| 国产黄片美女视频| 啪啪无遮挡十八禁网站| 黄色配什么色好看| а√天堂www在线а√下载| 午夜免费男女啪啪视频观看 | 人妻少妇偷人精品九色| 午夜福利高清视频| 亚洲人与动物交配视频| 日韩精品青青久久久久久| 国产淫片久久久久久久久| 亚洲电影在线观看av| 性插视频无遮挡在线免费观看| 欧美精品啪啪一区二区三区| 欧美zozozo另类| 欧美激情国产日韩精品一区| 一个人免费在线观看电影| 看黄色毛片网站| 麻豆国产97在线/欧美| 久久久精品大字幕| 国产av不卡久久| av在线老鸭窝| 国产私拍福利视频在线观看| 真实男女啪啪啪动态图| 91麻豆精品激情在线观看国产| 亚洲精品乱码久久久v下载方式| 深夜a级毛片| 99热这里只有是精品在线观看| 97碰自拍视频| 国产视频内射| 日本与韩国留学比较| 99热6这里只有精品| 久久精品人妻少妇| 午夜激情欧美在线| 国产男靠女视频免费网站| 一级黄片播放器| 又粗又爽又猛毛片免费看| 国产精品一区www在线观看 | 精品日产1卡2卡| 深夜a级毛片| 成人鲁丝片一二三区免费| 2021天堂中文幕一二区在线观| 国产中年淑女户外野战色| 在线观看av片永久免费下载| 午夜激情福利司机影院| av在线观看视频网站免费| 在线看三级毛片| 午夜免费成人在线视频| 国产69精品久久久久777片| 亚洲精品在线观看二区| 日韩 亚洲 欧美在线| 国内少妇人妻偷人精品xxx网站| 午夜精品久久久久久毛片777| 国产免费一级a男人的天堂| 欧美色视频一区免费| 1000部很黄的大片| 三级毛片av免费| 欧美+亚洲+日韩+国产| 热99re8久久精品国产| 国产午夜福利久久久久久| 俺也久久电影网| av.在线天堂| 亚洲最大成人手机在线| 日韩欧美 国产精品| 成人性生交大片免费视频hd| 国产精品久久久久久亚洲av鲁大| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 蜜桃亚洲精品一区二区三区| 最新中文字幕久久久久| 国产在视频线在精品| 久久中文看片网| 精品久久久久久久久久免费视频| 久久精品影院6| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 天堂av国产一区二区熟女人妻| 琪琪午夜伦伦电影理论片6080| 国产精品野战在线观看| 极品教师在线免费播放| 欧美日韩瑟瑟在线播放| 亚洲国产精品成人综合色| 看十八女毛片水多多多| 亚洲欧美清纯卡通| 亚洲成人久久性| 国产成人aa在线观看| 亚洲 国产 在线| 无人区码免费观看不卡| 国产精品无大码| 亚洲av不卡在线观看| 亚洲美女视频黄频| 男女那种视频在线观看| 精品久久国产蜜桃| 国产精品亚洲美女久久久| 亚洲七黄色美女视频| 精品福利观看| 嫁个100分男人电影在线观看| 亚洲中文字幕一区二区三区有码在线看| 99久久精品国产国产毛片| 国产精品一区二区性色av| 国产精品一区www在线观看 | 亚洲天堂国产精品一区在线| АⅤ资源中文在线天堂| 午夜免费男女啪啪视频观看 | 久久草成人影院| 欧美bdsm另类| 级片在线观看| 国产一区二区在线av高清观看| 日韩欧美在线乱码| 亚洲欧美日韩卡通动漫| 亚洲中文字幕日韩| 国产麻豆成人av免费视频| av中文乱码字幕在线| 蜜桃亚洲精品一区二区三区| 一进一出好大好爽视频| 国内精品久久久久精免费| 亚洲av日韩精品久久久久久密| 国产精品不卡视频一区二区| 亚洲七黄色美女视频| 欧美最新免费一区二区三区| 最近在线观看免费完整版| 嫩草影视91久久| 久久久国产成人精品二区| avwww免费| 国产 一区 欧美 日韩| 国产亚洲91精品色在线| 日日摸夜夜添夜夜添av毛片 | 亚洲国产高清在线一区二区三| 午夜精品久久久久久毛片777| 日日啪夜夜撸| 老司机福利观看| 高清日韩中文字幕在线| a级一级毛片免费在线观看| 一级毛片久久久久久久久女| 免费观看的影片在线观看| 伊人久久精品亚洲午夜| 深爱激情五月婷婷| 美女免费视频网站| 最近在线观看免费完整版| 日本黄色视频三级网站网址| 欧美在线一区亚洲| 伊人久久精品亚洲午夜| 黄色视频,在线免费观看| a级一级毛片免费在线观看| 亚洲熟妇熟女久久| 中文字幕人妻熟人妻熟丝袜美| 日本黄色视频三级网站网址| 日韩欧美三级三区| 又爽又黄a免费视频| 亚洲最大成人中文| 夜夜爽天天搞| 免费av不卡在线播放| 99国产精品一区二区蜜桃av| 少妇熟女aⅴ在线视频| 免费大片18禁| 人人妻人人看人人澡| 琪琪午夜伦伦电影理论片6080| 国产探花在线观看一区二区| 天堂动漫精品| 黄色欧美视频在线观看| 精华霜和精华液先用哪个| 免费电影在线观看免费观看| 午夜爱爱视频在线播放| av福利片在线观看| 亚洲无线在线观看| 欧美最黄视频在线播放免费| 高清日韩中文字幕在线| 免费看日本二区| av国产免费在线观看| 精品午夜福利视频在线观看一区| 精品一区二区三区人妻视频| 亚洲av免费高清在线观看| h日本视频在线播放| 色吧在线观看| 久久久久九九精品影院| 变态另类成人亚洲欧美熟女| 国产精品精品国产色婷婷| 国产欧美日韩精品一区二区| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲网站| 成人av一区二区三区在线看| 免费观看的影片在线观看| 成人av一区二区三区在线看| 51国产日韩欧美| 国产老妇女一区| 亚洲欧美清纯卡通| 日本黄大片高清| 一本一本综合久久| 亚洲中文字幕日韩| 欧美色视频一区免费| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 日本与韩国留学比较| 亚洲欧美精品综合久久99| 久久国产乱子免费精品| 成年女人毛片免费观看观看9| 一进一出抽搐gif免费好疼| 久9热在线精品视频| 99久久久亚洲精品蜜臀av| 在线免费十八禁| ponron亚洲| 97超级碰碰碰精品色视频在线观看| 国产乱人视频| 狂野欧美白嫩少妇大欣赏| 久久热精品热| 麻豆国产av国片精品| 成人毛片a级毛片在线播放| 麻豆精品久久久久久蜜桃| 日本色播在线视频| 亚洲第一电影网av| 久久中文看片网| 99热这里只有是精品50| 亚洲国产欧美人成| 久久久久久久久久成人| 亚洲av第一区精品v没综合| 欧美绝顶高潮抽搐喷水| 亚洲精品影视一区二区三区av| 国产精品98久久久久久宅男小说| 性插视频无遮挡在线免费观看| 欧美日韩综合久久久久久 | 亚洲成a人片在线一区二区| 美女免费视频网站| 老司机午夜福利在线观看视频| 美女大奶头视频| 亚洲av电影不卡..在线观看| 日韩欧美一区二区三区在线观看| 精品久久久噜噜| 欧美一区二区国产精品久久精品| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 99久久九九国产精品国产免费| 日本一二三区视频观看| 一区二区三区激情视频| 久久久久国内视频| 亚洲电影在线观看av| 三级毛片av免费| 亚洲成人中文字幕在线播放| 天堂影院成人在线观看| 国产成年人精品一区二区| 九色国产91popny在线| 久久人人爽人人爽人人片va| 在线观看舔阴道视频| 在线观看美女被高潮喷水网站| 又黄又爽又免费观看的视频| 中亚洲国语对白在线视频| 亚洲国产高清在线一区二区三| 老熟妇仑乱视频hdxx| 美女xxoo啪啪120秒动态图| 亚洲va日本ⅴa欧美va伊人久久| 搡老妇女老女人老熟妇| 成人国产综合亚洲| 91久久精品国产一区二区成人| 一个人看的www免费观看视频| 啪啪无遮挡十八禁网站| 国产精品国产高清国产av| 99国产精品一区二区蜜桃av| 黄色一级大片看看| 嫩草影院新地址| 国产乱人伦免费视频| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av涩爱 | 黄色丝袜av网址大全| 精品乱码久久久久久99久播| 国产在线男女| 日本a在线网址| 成人高潮视频无遮挡免费网站| 欧美成人性av电影在线观看| 成年版毛片免费区| 免费搜索国产男女视频| 女同久久另类99精品国产91| 久久国内精品自在自线图片| 午夜福利在线在线| 日本三级黄在线观看| 免费高清视频大片| 午夜免费男女啪啪视频观看 | 春色校园在线视频观看| 日本免费一区二区三区高清不卡| 国内精品宾馆在线| 日韩人妻高清精品专区| 亚洲一区高清亚洲精品| 少妇丰满av| 观看免费一级毛片| 欧美日韩中文字幕国产精品一区二区三区| av在线亚洲专区| 欧美xxxx黑人xx丫x性爽| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 很黄的视频免费| 色在线成人网| 久久精品国产亚洲av天美| 在线免费观看的www视频| 免费人成在线观看视频色| 俄罗斯特黄特色一大片| 国产白丝娇喘喷水9色精品| 色综合站精品国产| 简卡轻食公司| 此物有八面人人有两片| 啦啦啦啦在线视频资源| 热99在线观看视频| 大又大粗又爽又黄少妇毛片口| 日韩欧美免费精品| 欧美最新免费一区二区三区| 国产人妻一区二区三区在| 3wmmmm亚洲av在线观看|