• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of drag reduction characteristics for transverse groove pipeline*

    2014-07-31 20:22:31LeleDUANSiyuSONGWangXIXiaoWEIYunboLIWeigangZHEN
    機(jī)床與液壓 2014年2期
    關(guān)鍵詞:武漢理工大學(xué)漩渦凹槽

    Le-le DUAN,Si-yu SONG,Wang XI,Xiao WEI,Yun-bo LI,Wei-gang ZHEN

    1School of Transportation, Wuhan University of Technology, Wuhan 430063, China;2Engineering Training Center,Wuhan University of Technology,Wuhan 430063,China

    Numerical simulation of drag reduction characteristics for transverse groove pipeline*

    Le-le DUAN?1,Si-yu SONG1,Wang XI1,Xiao WEI1,Yun-bo LI1,Wei-gang ZHEN?2

    1SchoolofTransportation,WuhanUniversityofTechnology,Wuhan430063,China;2EngineeringTrainingCenter,WuhanUniversityofTechnology,Wuhan430063,China

    In order to analyze the characteristics of the resistance in the transverse groove of pipelines, the standardk-εmodel was adopted to numerically calculate and compare the resistances under the conditions of different velocities in ten groups of pipelines, and the impact of speed and groove shape on the drag reduction could be obtained through these numerical simulations. Based on all these analysis, the drag reduction mechanism of groove pipelines could be obtained, i.e., the low-speed fluid is regarded as a layer of water film, which makes the high-speed fluid contacts with the inner wall of the tube, and the friction of the groove could be indirectly reduced. Therefore, the local fluid flow resistance will be decreased as the vortex zone within the groove becomes more regular.

    Transverse grooves, Vortex zone, Drag reduction characteristics, Numerical simulation, Mechanism of drag reduction

    1.Introduction

    At the end of 1950s, Stanford has conducted a series of researches about turbulent boundary layer based on the flow field display technique. The following researches also show that the flow at the bottom of the viscous layer is different from the original concept and they further confirmed that the near-wall region has turbulence characteristics. All these researches guide scientists develop some surfaces to influence the fluid flow in the near-wall region of the turbulent boundary layer. Liu Kline and Johnson from Stanford tried this at the first time in 1966. From then on, many researches have been expanding based on the concept of ‘utilizing some unsmooth surface to reduce the frictional resistance’. In 1965, Kramer started to study the movements of dolphins which seemed as a start of researches on streak grooves. In 1967, Kiev hydrodynamics laboratory studied vortex screen and put forward the possibility of reduction in dynamics resistance on streak grooves. In 2005, Huang De-bin used numerical simulation to study the drag reduction on turbulence in the groove of pipelines and gained the same results from the grooves of planks[1]. Lee and Jang pasted V-grooves on NACA 0012 airfoil section and found that the resistance of rear airfoil was reduced by 6.6%[2-3].

    In the real pipelines, head loss contains frictional loss and local resistance loss. The transverse grooves will increase the local resistance, at the same time, the friction loss could be reduced. This paper analyzed the drag reduction of different place to smoothing in grooves by using the Fluent software.

    2.Numerical computation methods

    2.1.Objects description

    There are ten types of rotation faces for pipelines, as shown in Figure 1. The pipe diameter is 8 mm, pipe range is 23 mm, groove height is 2 mm, groove range is 3 mm, and the radius of transitional curve is 1 mm. The turning points of the different parts are named as the number 1, 2, 3 and 4, as shown in Figure 1. The groove represents the transverse groove without transitional curve. Since it is centrosymmetric periodic flow in the pipes, the revolution surfaces will be studied and the corresponding grids are shown in Figure 2.

    Figure 1. Pipe model

    Figure 2. Schematic diagram of grid

    2.2.Numerical model

    Since the steady state centrosymmetric incompressible flow in pipes will be studied in this paper, the continuity equation of three-dimensional incompressible fluid flow is as follows.

    Where,ux,uy,uzare the velocity components inx,yandzdirection, respectively. The variable oftis time.

    Conservation of momentum equations for incompressible fluid flow could be obtained as follows.

    The standardk-εmodel is adopted as turbulent model.

    Where,kis the power of turbulence,Eis the dissipation rating, andCL=0.09,C1ε=1.44,C2ε=1.92,Rk=1.0.

    2.3.Boundary conditions

    According to the Fluent software, the solver could be chosen as Pressure-Based type, steady state, non-slip wall boundary and 2D axisymmetric swirl flow. The viscous model is standard k-ε model and the standard Wall Function is applied. The fluid material is liquid water and inlet velocities are 1.0 m/s, 2.0 m/s, 4.0 m/s, 6.0 m/s, 8.0 m/s and 10 m/s respectively.

    The velocity-inlet boundary is applied in this paper and the The entrance is velocity-inlet,velocity specification method is magnitude/normal to boundary, the exit boundary is outflow.

    3.Analysis of numerical simulation results

    3.1.Relationships between pressure drag and velocity

    The relationships between pressure drag and velocity are shown in Figure 3. Since the pressure drag of straight pipe is the reference value, it is set as zero. From this figure, it could be seen that the pressure drags of other pipes are increased as the increase of inlet velocity. When the inlet velocity is small, the values of pressure drag for all these pipes are very close. However, once the inlet velocity is beyond 6 m/s, place1 has the max pressure drag while the place 3 and place 4 have the minimum values.

    Figure 3. Pressure drags in different velocities

    3.2.Frictional drag with different velocities

    As shown in Figure 4, the frictional drag in straight pipe is increased faster than that in the pipes with grooves when the inlet velocity gets increased. However, all the pipes with groove have nearly the same increase in terms of frictional drag and the flow resistance mainly depends on pressure drags. Therefore, in order to reduce the flow resistance in pipes when velocity is high, the pressure drags need to be reduced.

    Figure 4. Frictional drag in different velocities

    3.3.Total resistance with different velocities

    As shown in Figure 5, the relationships between total resistance and velocity are presented. The total resistance is defined as the summation of pressure drag and frictional drag. From this figure, it could be seen that the total resistances of different pipes have almost the same growth rate with the increase of velocity. However, with the increase of velocity, the minimum flow resistance is changed for different types of grooves. When the velocity is below 3.3 m/s, the square shaped groove has the minimum resistance. When the velocity reaches up to 4 m/s, pipes with 34 smoothing have the minimum resistances.

    Figure 5. Total resistance in different velocities

    4.Analyzing of drag reduction efficiency

    Figure 6 shows the differences between straight pipes and groove pipes under the conditions of different velocities. Figure 7 shows the drag reduction efficiency in different types of grooves.

    DFi=Fz-Fi

    Drag reduction efficiency is defined as follows:

    ?=DFi/Fz

    Where,Fzis the total resistance in straight pipe,Fiis the total resistance in different types of grooves.

    From the Figure 6, it could be seen that the grooves with 134 smoothing have no drag reduction. The higher the velocity is, the faster the total resistance increase. When velocity reaches up to 6 m/s, most pipes have best efficiencies; however, when velocity is beyond 9 m/s, straight pipes have minimum resistance among all these pipes and other pipes have no drag reduction when the velocity is up to 10 m/s.

    It could be seen in Figure 7, when velocity is 2 m/s, the square grooves have the best drag reduction at 33%. Once the velocity is below 4 m/s, most of the drag reduction efficiencies in various types will increase alone with the velocity. When the velocity is higher than 4 m/s, the drag reduction efficiencies of all these various types will decrease as the increase of velocity. The grooves with 34 smoothing have the best drag reduction. When velocity is 4 m/s, the drag reduction efficiency is 21.63%.

    Figure 6. Drag reduction in straight pipes and grooves pipes in different velocities

    Figure 7. Drag reduction efficiency in different types of grooves

    5.Analysis of drag reduction mechanism

    Since the existence of grooves within pipe makes the fluid velocity become slow and they work as water film which could force the fluid contact with the tube wall indirectly, the frictional resistance will be reduced. Meanwhile, as shown in Figure 8 and Figure 9, the turbulence area has been moved back due to the existence of grooves and the Fluid becomes steady both in front of the groove and behind the grooves. Therefore, the turbulence area has almost gone. When the grooves are optimized, the decrement of the frictional resistance is greater than the increment of pressure resistance. When the velocity is small, the vortex becomes nearly static due to the arise of the square grooves, as there is only a large regular vortex movement in the groove, as a result, most wetted surface is at a small velocity region and the frictional resistance is within a small range. As shown in Figure 10 and Figure 11, those transitional curves make the wetted surface larger and the vortex becomes irregular so that the local resistance gets increased.

    Figure 8. Velocity vector in square groove

    Figure 9. Velocity vector in straight pipe

    Figure 10. Velocity vector in square groove

    Figure 11. Velocity vector in 134 smoothing groove

    6.Conclusion

    Within a relative big velocity range, i.e., from 1.0 m/s to 10.0 m/s, the numerical simulations are adopted to analyze the pressure resistance, frictional resistance and total resistance for ten types of grooves within pipes in this paper, and the efficiency of those pipes are evaluated as compared with that of straight pipes. The conclusions could be drawn as follows:

    1) Grooves in straight pipes could make turbulence area move back to reduce frictional resistance and fluid flow in grooves is at a relative low velocity, therefore the frictional resistance is at a low degree. Local resistance increases alone with the increase of velocity so that the drag reduction efficiency is low. When velocity reaches up to 10 m/s, the fluid flow resistance will be increased.

    2) The shape of the grooves has dominant effects on the fluid flow resistance. Different grooves have different levels of regular vortex. The more regular the vortex is, the less the resistance is. When velocity is small, the fluid in square groove works as a water film separating the fluid from the tube wall and the fluid flow resistance could be reduced. However, those transitional curves make the fluid and wall contact well, and the frictional resistance could be increased.

    3) Different velocities correspond to different optimal shapes of grooves. As a result, different shapes of grooves should be adopted for different values of velocity.

    [1] Guo X.Optimization Design Method For Drag reduction Over Riblet Structure[D].Xi’an:Northwest Polytechnic University,2007.

    [2] Huang D,Deng X,Wang Y.Numerical Simulation Study Of Turbulent Drag Reduction Over Riblet Surfaces Of Tubes[J].Journal Of Hydrodynamics,2005.

    [3] Lee S,Jan Y.Control of flow around a NACA0012 airfoil with a micro-riblet film[J].Journal of Fluids and Structures,2005.

    橫向凹槽管道的減阻特性數(shù)值模擬研究*

    段樂樂1,宋思宇1,奚 望1,魏 驍1,李云波1,鄭衛(wèi)剛2

    1.武漢理工大學(xué) 交通學(xué)院,武漢 430063;2.武漢理工大學(xué) 工程訓(xùn)練中心,武漢 430063

    針對管道內(nèi)橫向凹槽減阻問題,采用標(biāo)準(zhǔn)κ-ε模型,通過數(shù)值仿真,計(jì)算比較了在10組管道內(nèi)不同流速情況下的阻力,分析了速度和凹槽形狀對減阻的影響。得到凹槽減阻機(jī)理:凹槽內(nèi)的低速流體相當(dāng)于一層水膜,可使高速流體不直接與管內(nèi)壁接觸,從而減小摩擦阻力;同時(shí)凹槽內(nèi)漩渦區(qū)越規(guī)則,局部阻力越小。

    橫向凹槽;漩渦區(qū);減阻特性;數(shù)值仿真;減阻機(jī)理

    TQ022.1

    2014-02-01

    10.3969/j.issn.1001-3881.2014.12.011

    *Project supported by National Undergraduate Training Programs for Innovation and Entrepreneurship(20131049702002)

    ? Wei-gang ZHEN. E-mail: zfeidiao@126.com

    猜你喜歡
    武漢理工大學(xué)漩渦凹槽
    一種智能立式壓濾機(jī)專用的塑料濾板
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡則
    FF陷控制權(quán)爭奪漩渦
    汽車觀察(2018年10期)2018-11-06 07:05:06
    雙面圓弧凹槽細(xì)頸的高速銑削加工
    魚群漩渦
    中外文摘(2017年19期)2017-10-10 08:28:41
    環(huán)形凹槽類鑄件鑄造工藝
    中醫(yī)教育陷“量升質(zhì)降”漩渦
    Lanterne-volant
    幾何形態(tài)和視覺感知的探討
    麻豆成人av视频| 99热这里只有是精品50| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| 国产精品国产三级国产av玫瑰| 成人二区视频| 18禁动态无遮挡网站| 涩涩av久久男人的天堂| 久久久久久久亚洲中文字幕| 久久久亚洲精品成人影院| 嘟嘟电影网在线观看| 国产久久久一区二区三区| 一级爰片在线观看| 日韩,欧美,国产一区二区三区| 成年女人在线观看亚洲视频 | 少妇裸体淫交视频免费看高清| 高清午夜精品一区二区三区| 日韩免费高清中文字幕av| 国国产精品蜜臀av免费| 久久ye,这里只有精品| 精品一区在线观看国产| 欧美性猛交╳xxx乱大交人| 欧美精品国产亚洲| 日日啪夜夜爽| 亚洲av在线观看美女高潮| 99久久人妻综合| 一级av片app| 国产91av在线免费观看| 丝瓜视频免费看黄片| 最近最新中文字幕大全电影3| 国产成人a区在线观看| 看黄色毛片网站| 黄色欧美视频在线观看| 国产精品久久久久久久电影| 777米奇影视久久| 国产精品三级大全| 亚洲国产av新网站| 久久久精品免费免费高清| 国产成人精品一,二区| 欧美+日韩+精品| 在线观看一区二区三区激情| av专区在线播放| 人妻制服诱惑在线中文字幕| 免费av不卡在线播放| 交换朋友夫妻互换小说| 3wmmmm亚洲av在线观看| 99热网站在线观看| 草草在线视频免费看| 欧美bdsm另类| 午夜激情久久久久久久| 午夜亚洲福利在线播放| 成人无遮挡网站| 日韩一区二区三区影片| 亚洲国产精品国产精品| 九九在线视频观看精品| 黑人高潮一二区| 精品久久久精品久久久| 国产日韩欧美亚洲二区| 国产熟女欧美一区二区| 99热网站在线观看| 国产 精品1| 久久久精品免费免费高清| 中文字幕av成人在线电影| 国产精品三级大全| 热re99久久精品国产66热6| 欧美日本视频| 26uuu在线亚洲综合色| 91在线精品国自产拍蜜月| 一级av片app| 国产一区二区三区综合在线观看 | freevideosex欧美| 亚洲精品国产成人久久av| 秋霞在线观看毛片| 人人妻人人看人人澡| 免费高清在线观看视频在线观看| 欧美性感艳星| 国产欧美日韩一区二区三区在线 | 在线观看免费高清a一片| 国产爽快片一区二区三区| 国产伦精品一区二区三区四那| 午夜精品一区二区三区免费看| 日韩av在线免费看完整版不卡| 亚洲精华国产精华液的使用体验| 精品一区在线观看国产| 偷拍熟女少妇极品色| 国语对白做爰xxxⅹ性视频网站| 成年免费大片在线观看| 天天一区二区日本电影三级| 国产 一区精品| 久久ye,这里只有精品| 久久人人爽人人片av| 久久久欧美国产精品| 蜜臀久久99精品久久宅男| 亚洲av一区综合| 女人被狂操c到高潮| 特级一级黄色大片| 少妇人妻 视频| 18禁在线无遮挡免费观看视频| 免费黄网站久久成人精品| 国产黄片美女视频| 国产国拍精品亚洲av在线观看| 国产精品嫩草影院av在线观看| 成人美女网站在线观看视频| 国产黄色免费在线视频| 亚洲欧美日韩卡通动漫| 天堂网av新在线| av在线蜜桃| 一边亲一边摸免费视频| 韩国高清视频一区二区三区| av天堂中文字幕网| 高清av免费在线| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 亚洲精品日韩av片在线观看| 婷婷色综合www| 精品一区二区三卡| 亚洲欧美精品专区久久| 久久97久久精品| 欧美高清性xxxxhd video| 欧美最新免费一区二区三区| 日韩av免费高清视频| 禁无遮挡网站| 97超碰精品成人国产| 91aial.com中文字幕在线观看| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 成人亚洲精品一区在线观看 | 日本与韩国留学比较| 一区二区三区四区激情视频| 99热这里只有是精品在线观看| 欧美潮喷喷水| 干丝袜人妻中文字幕| 日韩av免费高清视频| 嫩草影院新地址| 熟女人妻精品中文字幕| 中文字幕久久专区| 美女脱内裤让男人舔精品视频| 久久久久精品久久久久真实原创| 亚洲精品国产成人久久av| 一级毛片我不卡| 久久久久国产精品人妻一区二区| 老女人水多毛片| 国产伦理片在线播放av一区| 三级国产精品欧美在线观看| 99久久精品热视频| 啦啦啦中文免费视频观看日本| 精品人妻熟女av久视频| 伦理电影大哥的女人| 七月丁香在线播放| 下体分泌物呈黄色| 亚洲在久久综合| 精品国产三级普通话版| 最近的中文字幕免费完整| 国产伦理片在线播放av一区| 18禁裸乳无遮挡动漫免费视频 | 亚洲电影在线观看av| 2018国产大陆天天弄谢| 啦啦啦啦在线视频资源| 99视频精品全部免费 在线| 777米奇影视久久| 99热全是精品| 最近中文字幕2019免费版| 国产成人福利小说| 国产欧美日韩一区二区三区在线 | 久久久久网色| 一个人看视频在线观看www免费| 久久久成人免费电影| 亚洲国产精品成人久久小说| 岛国毛片在线播放| 成人特级av手机在线观看| 国产黄色视频一区二区在线观看| 久久人人爽人人片av| 国产成年人精品一区二区| 亚洲av电影在线观看一区二区三区 | 国产高清三级在线| 欧美97在线视频| 亚洲欧美日韩东京热| 日产精品乱码卡一卡2卡三| 日韩制服骚丝袜av| 亚洲精品久久午夜乱码| 国产成人aa在线观看| 最近最新中文字幕大全电影3| 亚洲成人av在线免费| 久久久久精品久久久久真实原创| 黄色视频在线播放观看不卡| 国产毛片a区久久久久| 我的女老师完整版在线观看| 国产免费一区二区三区四区乱码| 老司机影院成人| 少妇被粗大猛烈的视频| 在线观看一区二区三区| 嫩草影院精品99| 少妇 在线观看| 国产欧美日韩一区二区三区在线 | 久久久久久久国产电影| 国产毛片在线视频| 久久99蜜桃精品久久| 国产黄a三级三级三级人| 久久99热这里只频精品6学生| 成年免费大片在线观看| 中文字幕久久专区| 国产午夜福利久久久久久| 婷婷色麻豆天堂久久| 色吧在线观看| 亚洲va在线va天堂va国产| 亚洲av成人精品一区久久| 色综合色国产| 成人国产av品久久久| 在线播放无遮挡| 哪个播放器可以免费观看大片| 久久人人爽av亚洲精品天堂 | 干丝袜人妻中文字幕| 日本熟妇午夜| 亚洲美女视频黄频| av在线播放精品| 国产久久久一区二区三区| av天堂中文字幕网| 免费电影在线观看免费观看| 日日摸夜夜添夜夜爱| 国产亚洲精品久久久com| 99热全是精品| av线在线观看网站| 日韩视频在线欧美| 尾随美女入室| av福利片在线观看| 永久免费av网站大全| 日韩精品有码人妻一区| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| freevideosex欧美| 日韩成人av中文字幕在线观看| 天堂俺去俺来也www色官网| 久久精品国产亚洲av涩爱| 日本午夜av视频| 能在线免费看毛片的网站| av在线老鸭窝| 国产高清不卡午夜福利| 美女国产视频在线观看| 欧美日韩国产mv在线观看视频 | 国产伦理片在线播放av一区| 国产熟女欧美一区二区| 国产亚洲91精品色在线| 下体分泌物呈黄色| 亚洲精品456在线播放app| 69av精品久久久久久| 亚洲欧美一区二区三区国产| 久久久欧美国产精品| 2022亚洲国产成人精品| 一级a做视频免费观看| 亚洲av免费高清在线观看| 亚洲不卡免费看| 色综合色国产| 国产一区二区三区av在线| 午夜福利在线在线| 在线观看三级黄色| 韩国av在线不卡| 久久久欧美国产精品| 国产精品无大码| 免费观看性生交大片5| 欧美成人精品欧美一级黄| 亚洲成色77777| 爱豆传媒免费全集在线观看| 最近2019中文字幕mv第一页| 看黄色毛片网站| 国产精品无大码| 欧美激情在线99| 国产综合懂色| 亚洲色图av天堂| 中国三级夫妇交换| 嫩草影院入口| videos熟女内射| 肉色欧美久久久久久久蜜桃 | 建设人人有责人人尽责人人享有的 | 丰满人妻一区二区三区视频av| 国产亚洲av嫩草精品影院| 国产色爽女视频免费观看| 日韩欧美 国产精品| 一级毛片电影观看| 内地一区二区视频在线| 久久久久国产网址| 亚洲怡红院男人天堂| 51国产日韩欧美| 免费看光身美女| 亚洲av成人精品一二三区| 免费大片18禁| 51国产日韩欧美| 女人久久www免费人成看片| 亚洲伊人久久精品综合| 亚洲欧美清纯卡通| 欧美成人精品欧美一级黄| 国产精品99久久久久久久久| 男女下面进入的视频免费午夜| 欧美成人a在线观看| 免费人成在线观看视频色| 只有这里有精品99| 国产成人a∨麻豆精品| 亚洲美女搞黄在线观看| 亚洲av二区三区四区| 久久久久久久久大av| 国产精品嫩草影院av在线观看| 18+在线观看网站| 久久久久精品久久久久真实原创| 一本久久精品| 亚洲人成网站在线观看播放| 精华霜和精华液先用哪个| 日韩免费高清中文字幕av| 日韩欧美一区视频在线观看 | 国产伦精品一区二区三区四那| 国产欧美另类精品又又久久亚洲欧美| 新久久久久国产一级毛片| 97人妻精品一区二区三区麻豆| 麻豆乱淫一区二区| 91午夜精品亚洲一区二区三区| 久久久色成人| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| av天堂中文字幕网| av国产久精品久网站免费入址| 内射极品少妇av片p| 激情 狠狠 欧美| 美女被艹到高潮喷水动态| 色吧在线观看| tube8黄色片| 又大又黄又爽视频免费| 亚洲成人一二三区av| 汤姆久久久久久久影院中文字幕| 国产乱来视频区| 免费观看无遮挡的男女| 午夜免费男女啪啪视频观看| 亚洲精品国产色婷婷电影| 精品一区二区三卡| 国产av不卡久久| 国产久久久一区二区三区| 久久精品国产自在天天线| 婷婷色av中文字幕| 国产精品无大码| 国产精品一二三区在线看| 男人舔奶头视频| 国产黄色视频一区二区在线观看| 午夜日本视频在线| 亚洲欧美日韩另类电影网站 | 国产精品国产三级专区第一集| 中文乱码字字幕精品一区二区三区| 你懂的网址亚洲精品在线观看| 欧美xxxx黑人xx丫x性爽| 欧美激情久久久久久爽电影| 亚洲色图综合在线观看| 免费看光身美女| 日韩成人av中文字幕在线观看| 色5月婷婷丁香| a级毛片免费高清观看在线播放| 成人综合一区亚洲| 久久人人爽人人爽人人片va| 可以在线观看毛片的网站| 大片电影免费在线观看免费| 日韩一区二区视频免费看| 久久久国产一区二区| 夜夜爽夜夜爽视频| 国产av不卡久久| 男人添女人高潮全过程视频| 欧美国产精品一级二级三级 | 日本三级黄在线观看| 久久久久精品久久久久真实原创| 国产久久久一区二区三区| 亚洲欧洲国产日韩| 精品人妻一区二区三区麻豆| 七月丁香在线播放| 在线观看一区二区三区激情| 精品久久久久久久久av| 日韩欧美一区视频在线观看 | 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂| 日日撸夜夜添| 99热这里只有是精品50| 2018国产大陆天天弄谢| 看黄色毛片网站| 国产亚洲最大av| 国产在线男女| 青春草亚洲视频在线观看| 久久久精品免费免费高清| 最近最新中文字幕免费大全7| 晚上一个人看的免费电影| 99re6热这里在线精品视频| 国产又色又爽无遮挡免| 日本午夜av视频| 亚洲国产最新在线播放| 波多野结衣巨乳人妻| 国产精品偷伦视频观看了| 国产精品嫩草影院av在线观看| 免费大片黄手机在线观看| 亚洲欧洲日产国产| 亚洲图色成人| 亚洲精品久久久久久婷婷小说| 亚洲婷婷狠狠爱综合网| 欧美人与善性xxx| 自拍欧美九色日韩亚洲蝌蚪91 | 久久午夜福利片| 九九在线视频观看精品| 国产片特级美女逼逼视频| 国产爱豆传媒在线观看| 韩国高清视频一区二区三区| 国产一区二区在线观看日韩| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 精品视频人人做人人爽| 欧美少妇被猛烈插入视频| 午夜免费男女啪啪视频观看| 午夜免费鲁丝| 波野结衣二区三区在线| 国内精品宾馆在线| 亚洲精品乱码久久久久久按摩| 少妇 在线观看| 国产精品福利在线免费观看| 晚上一个人看的免费电影| 日韩不卡一区二区三区视频在线| 真实男女啪啪啪动态图| 九色成人免费人妻av| 日韩欧美一区视频在线观看 | 免费不卡的大黄色大毛片视频在线观看| 久久久久久久亚洲中文字幕| 久久久精品94久久精品| 十八禁网站网址无遮挡 | 激情 狠狠 欧美| 久久久久久久久久成人| 卡戴珊不雅视频在线播放| 99精国产麻豆久久婷婷| 久久久色成人| 国产极品天堂在线| 国产一级毛片在线| 99热网站在线观看| 日韩视频在线欧美| 亚洲av电影在线观看一区二区三区 | 亚洲精品色激情综合| 成年女人在线观看亚洲视频 | 人人妻人人澡人人爽人人夜夜| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区性色av| 97精品久久久久久久久久精品| 中文欧美无线码| 在线亚洲精品国产二区图片欧美 | 中文字幕久久专区| 国产精品精品国产色婷婷| 特级一级黄色大片| 成人无遮挡网站| 免费观看在线日韩| 日韩 亚洲 欧美在线| 国产精品成人在线| 亚洲av在线观看美女高潮| 五月玫瑰六月丁香| 另类亚洲欧美激情| 久久97久久精品| 精品国产一区二区三区久久久樱花 | 日韩成人av中文字幕在线观看| 亚洲色图av天堂| 国产亚洲av嫩草精品影院| 久久久亚洲精品成人影院| a级毛色黄片| 又大又黄又爽视频免费| 精品久久久噜噜| 一级毛片电影观看| 黄色配什么色好看| 最近手机中文字幕大全| 午夜福利高清视频| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 国产日韩欧美亚洲二区| 久久久久久久午夜电影| 九草在线视频观看| 国产精品熟女久久久久浪| 亚洲精品日韩在线中文字幕| 国产爽快片一区二区三区| 亚洲精品色激情综合| 免费看不卡的av| 久久久精品欧美日韩精品| 搞女人的毛片| 97热精品久久久久久| 日韩欧美 国产精品| 美女高潮的动态| 精品国产三级普通话版| 国产淫语在线视频| 久久人人爽av亚洲精品天堂 | 看非洲黑人一级黄片| 国产色爽女视频免费观看| 国产黄a三级三级三级人| 欧美一级a爱片免费观看看| 日韩大片免费观看网站| 国产伦精品一区二区三区四那| 成人漫画全彩无遮挡| 精品视频人人做人人爽| 深爱激情五月婷婷| 看十八女毛片水多多多| 久久久久精品性色| 亚洲精品成人久久久久久| 又爽又黄a免费视频| 精品久久国产蜜桃| 欧美激情久久久久久爽电影| 色婷婷久久久亚洲欧美| 男女啪啪激烈高潮av片| 国产爽快片一区二区三区| 亚洲av福利一区| 国产伦在线观看视频一区| 欧美成人一区二区免费高清观看| 日韩一本色道免费dvd| 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 久久久欧美国产精品| 少妇猛男粗大的猛烈进出视频 | 国产亚洲一区二区精品| 99久久精品热视频| 国产欧美日韩精品一区二区| 最近中文字幕高清免费大全6| 亚洲电影在线观看av| 三级国产精品片| 亚洲欧美成人综合另类久久久| 亚洲三级黄色毛片| 午夜免费鲁丝| 欧美xxⅹ黑人| 亚洲精品中文字幕在线视频 | 你懂的网址亚洲精品在线观看| 少妇熟女欧美另类| 亚洲av成人精品一二三区| 美女被艹到高潮喷水动态| 啦啦啦中文免费视频观看日本| 欧美xxⅹ黑人| 国产一级毛片在线| 啦啦啦在线观看免费高清www| 亚洲在久久综合| 亚洲四区av| 2021天堂中文幕一二区在线观| av黄色大香蕉| av在线天堂中文字幕| av福利片在线观看| 免费在线观看成人毛片| 一级毛片 在线播放| 国产又色又爽无遮挡免| 欧美日韩国产mv在线观看视频 | 我要看日韩黄色一级片| 欧美区成人在线视频| 国产精品国产三级国产专区5o| 日本wwww免费看| 少妇的逼水好多| 69人妻影院| 我的老师免费观看完整版| 欧美 日韩 精品 国产| 一本色道久久久久久精品综合| 在线播放无遮挡| 国语对白做爰xxxⅹ性视频网站| 免费高清在线观看视频在线观看| 乱码一卡2卡4卡精品| 欧美性感艳星| 国产午夜福利久久久久久| 啦啦啦啦在线视频资源| 精品午夜福利在线看| 不卡视频在线观看欧美| 亚洲av免费高清在线观看| 亚洲天堂av无毛| 亚洲在线观看片| 午夜亚洲福利在线播放| 国产午夜福利久久久久久| 韩国av在线不卡| 哪个播放器可以免费观看大片| 欧美成人午夜免费资源| 国产成人91sexporn| 国产成人精品一,二区| 亚洲精品乱久久久久久| 国产探花在线观看一区二区| 久久精品综合一区二区三区| 国产成人午夜福利电影在线观看| 听说在线观看完整版免费高清| 欧美人与善性xxx| 亚洲aⅴ乱码一区二区在线播放| 三级经典国产精品| 婷婷色综合www| 国内少妇人妻偷人精品xxx网站| 能在线免费看毛片的网站| 国产女主播在线喷水免费视频网站| 最近2019中文字幕mv第一页| 日韩欧美精品v在线| 别揉我奶头 嗯啊视频| 大码成人一级视频| 成人午夜精彩视频在线观看| 亚洲av一区综合| .国产精品久久| 麻豆成人午夜福利视频| 亚洲一区二区三区欧美精品 | 日本午夜av视频| av黄色大香蕉| 男女边吃奶边做爰视频| 免费看光身美女| 亚洲欧美清纯卡通| 亚洲一区二区三区欧美精品 | 在线观看一区二区三区| 真实男女啪啪啪动态图| 综合色av麻豆| 伦理电影大哥的女人| 最近手机中文字幕大全| 亚洲精品视频女| 成人亚洲精品av一区二区| 亚州av有码| 少妇的逼水好多| 国精品久久久久久国模美| 全区人妻精品视频| 亚洲精品成人av观看孕妇| 国产 一区精品| 午夜精品一区二区三区免费看| 一个人观看的视频www高清免费观看| 国产极品天堂在线| 国产免费又黄又爽又色| 久久久久久久精品精品| av网站免费在线观看视频| 新久久久久国产一级毛片| 69人妻影院| 久久久午夜欧美精品| 夜夜爽夜夜爽视频| 精品久久久久久久末码|