• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In Situ IR Spectroscopic Study on the Hydrogenation of 1,3-Butadiene on Fresh Mo2C/γ-Al2O3Catalyst

    2014-07-31 23:15:35ZhangJingWuWeichengLiuShiyang
    中國煉油與石油化工 2014年4期

    Zhang Jing; Wu Weicheng; Liu Shiyang

    (1. Liaoning Shihua University, College of Chemistry, Chemical Engineering and Environmental Engineering, Fushun 113001; 2. SINOPEC Tianjin Branch, Tianjin 300270)

    In Situ IR Spectroscopic Study on the Hydrogenation of 1,3-Butadiene on Fresh Mo2C/γ-Al2O3Catalyst

    Zhang Jing1; Wu Weicheng1; Liu Shiyang2

    (1. Liaoning Shihua University, College of Chemistry, Chemical Engineering and Environmental Engineering, Fushun 113001; 2. SINOPEC Tianjin Branch, Tianjin 300270)

    The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3catalyst mainly forms π-adsorbed butadiene (πsand πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3catalyst.

    fresh Mo2C/γ-Al2O3catalyst; hydrogenation; 1,3-butadiene; in situ IR spectroscopy

    1 Introduction

    In recent years, early transition metal carbides are of interest because they have many superior properties such as high melting point, good thermal and catalytic behavior, and excellent electronic characteristics[1-3]. More importantly, the early transition metal carbides have shown interesting catalytic properties in many hydrogen-involved reactions, such as hydrodesulfurization (HDS)[4-8], hydrodenitrogenation (HDN)[9-10], hydrogenolysis ofn-butane[11], conversion of methane[12], dehydrogenation of propane[13], etc. Nevertheless, the hydrogenation of unsaturated hydrocarbons over the transition metal carbide has not yet been fully explored.

    Molybdenum carbide (Mo2C), which is easily prepared with high surface area using the temperature programmed reaction, is especially of interest among a large group of transition metal carbide catalysts[14-15]. It has been shown that the Mo2C surface is very active. The freshly prepared Mo2C is rapidly oxidized when it is exposed to air, so it must be passivated using a mixture containing 1% of O2in helium gas to avoid violent oxidation[16]. As a result, the studies on the carbides catalyst are usually focused on passivated or reduced carbides. Our previous study[16]has shown that the passivation of Mo2C with oxygen dramatically changed the catalyst both in its surface structure and catalytic activity, i.e., the surface of the passivated Mo2C is different from that of the fresh Mo2C catalyst. Therefore, it is of significance to gain an insight into the activity and nature of fresh Mo2C catalysts for hydrogenation reactions, especially for the hydrogenation of unsaturated hydrocarbons.

    In situ IR spectroscopy is a predominant technique used in the surface characterization of supported catalysts[17-18]. In our previous work, the surface active sites of the fresh Mo2C/γ-Al2O3[16], Mo2N/γ-Al2O3[19], and the fresh Mo2C/ γ-Al2O3for hydrogenation of benzene[20]have been studied by in situ IR spectroscopy. In this paper, hydrogenation of 1,3-butadiene over the fresh Mo2C/γ-Al2O3catalyst was studied using in situ IR spectroscopy. We attempt to investigate the surface adsorbed species of 1,3-butadiene and the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3catalyst in order to gain an insight into the structure-performance relationship for 1,3-butadiene hy-drogenation over fresh Mo2C/γ-Al2O3catalyst.

    2 Experimental

    2.1 Synthesis of fresh Mo2C/γ-Al2O3catalyst

    Ammonium heptamolybdate of the analytical reagent grade was used without further purification. The support γ-Al2O3(SBET=108 m2/g) was provided by Degussa. A fresh Mo2C/γ-Al2O3catalyst was prepared by temperature programmed reaction (TPR) of MoO3/γ-Al2O3as reported in our previous work[16].

    2.2 IR spectroscopic characterization

    The detailed information about the in-situ IR cell can be found in our previous work[16]. The IR spectroscopic experiments were carried out under the following conditions: (1) The cell was evacuated to 1.3×10-3Pa, prior to being exposed to a mixture of CO (with a partial pressure of 1.3×103Pa) and 1,3-butadiene (with a partial pressure of 1.3×103Pa) for co-adsorption. (2) The cell was exposed to a mixture of 1,3-butadiene (with a partial pressure of 1.3×103Pa) and H2(with a partial pressure of 1.3×104Pa) at different temperatures. (3) The fresh Mo2C/ γ-Al2O3catalyst was treated by a mixture of 1,3-butadiene/ H2(1.3×103/1.3×104Pa) at 773 K for 30 min, then was subjected to adsorption by CO. The deactivated Mo2C/γ-Al2O3catalyst was regenerated by hydrogen treatment at 673 K for 120 min, and then was subjected to adsorption by CO. All IR spectra were collected at room temperature on a Nicolet Impect 410 Fourier transform infrared spectrometer with a resolution of 4 cm-1and 64 scans in the region of 4 000 cm-1—1 000 cm-1.

    3 Results and Discussion

    3.1 Co-adsorption of 1,3-butadiene and CO on fresh Mo2C/γ-Al2O3catalyst

    Figure 1 shows the IR spectra of CO co-adsorbed with 1,3-butadiene on the Mo2C/γ-Al2O3catalyst at room temperature. Figure 1a displays the spectra of CO adsorbed on fresh Mo2C/γ-Al2O3catalyst. It is shown that CO species adsorbed on a fresh Mo2C/γ-Al2O3sample gave two characterized IR bands at 2054 cm-1and 2196 cm-1(Figure 1a). The band at 2054 cm-1could be assigned to the linearly adsorbed CO on Moδ+(0<δ<2) sites of fresh Mo2C/ γ-Al2O3sample, while the band at 2196 cm-1might be assigned to a CCO species that were formed from the reaction of CO with the surface-active carbon atoms of Mo2C/ γ-Al2O3[16]. Figure 1b shows the IR spectroscopic analysis of 1,3-butadiene species which were pre-adsorbed on the Mo2C/γ-Al2O3catalyst prior to the introduction of CO. In comparison with the results of Figure 1a, the band at 2196 cm-1disappeared, while the band at 2 054 cm-1decreased significantly in intensity in Figure 1b. In addition, a weak band at 2 012 cm-1was observed in Figure 1b. This result implies that the pre-adsorbed 1,3-butadiene prevented CO from its adsorption on Mo2C/γ-Al2O3catalyst surface. The IR spectrum of CO that was pre-adsorbed on Mo2C/ γ-Al2O3catalyst prior to the introduction of 1,3-butadiene is shown in Figure 1c. It can be seen that Figure 1b is similar to Figure 1c. Moreover, the band intensity of 2012 cm-1in Figure 1c is stronger than that in Figure 1b. It is obvious that the presence of pre-adsorbed 1,3-butadiene strongly suppress the adsorption of CO on the Mo2C/ γ-Al2O3sample, especially at the Moδ+(0<δ<2) sites. Moreover, the pre-adsorbed 1,3-butadiene has a significant influence on the frequency of CO vibration. These results indicate that 1,3-butadiene is adsorbed mainly at the Moδ+(0<δ<2) sites of the fresh Mo2C/γ-Al2O3catalyst and have both electronic and blocking effects on the surface sites. The bathochromic shift of υ(CO) caused by coadsorption of 1,3-butadiene can be interpreted in terms of the electronic effects of π-donation of 1,3-butadiene.

    Figure 1 IR spectra of CO adsorbed at RT on Mo2C/γ-Al2O3catalyst

    3.2 Hydrogenation of 1,3-butadiene on fresh Mo2C/ γ-Al2O3catalyst

    Figure 2 shows the IR spectra of 1,3-butadiene/hydrogen (1.3×103/1.3×104Pa) mixture adsorbed on fresh Mo2C/γ-Al2O3catalyst at RT at different adsorption time. Four bands at 3 107 cm-1, 3 088 cm-1, 1 605 cm-1and 1 588 cm-1are observed when the adsorption time is 1 min. The bands at 3 088 cm-1and 3 107 cm-1appear due to the stretching mode of unsaturated C—H groups and can be ascribed to the π-adsorbed species[21]. The bands at 1 605 cm-1and 1 588 cm-1can be ascribed to the stretching mode of C=C bonds. According to Sheppard’s results[22], υ(C=C) is observed in the region of 1 650—1 550 cm-1for C=C groups with only σ-type metal substitution, while υ(C=C) is observed in the region of 1 650 cm-1—1 550 cm-1for C=C groups with π-bonding only. So the band at 1 605 cm-1could be attributed to σ-bonded species and the band at 1 588 cm-1to single π-adsorbed 1,3-butadiene (πs). It is found out that the characteristic bands of 1,3-butadiene (at 3 107 cm-1, 3 088 cm-1(υ(=CH)), 1 605 cm-1, and 1 588 cm-1(υ(C=C))) show a declining intensity, while the characteristic bands of alkane at 2 965 cm-1(υ(CH3)) and 1 445 cm-1(δ(CH3)) appear with an increasing adsorption time. These two bands (at 2 965 cm-1and 1 445 cm-1) are assigned to the gas-phase butane. After the adsorption time is increased to 1 h, the bands ascribed to 1,3-butadiene decrease greatly, while the characteristic bands of butane are clearly observed. These results show that 1,3-butadiene can be easily hydrogenated to form butane over the fresh Mo2C/γ-Al2O3catalyst. However, two additional bands at 1 651 cm-1and 1 633 cm-1in the υ(C=C)region are observed in Figure 2. These two IR bands in the υ(C=C)region are the same as those of 1-butene, indicating that 1-butene may be an intermediate of the reaction for converting 1,3-butadiene to butane. A tentative assignment for the IR bands[21,23]is given in Table 1.

    Figure 2 IR spectra of 1,3-butadiene/H2(1.3×103/1.3×104Pa) adsorbed on fresh Mo2C/γ-Al2O3catalyst at RT with an increasing adsorption time

    Table 1 Assignment of the IR bands of 1,3-butadiene adsorbed on fresh Mo2C/γ-Al2O3catalyst

    As it has been discussed above, our IR results show that hydrogenation of 1,3-butadiene over the fresh Mo2C/ γ-Al2O3catalyst produces mainly butane along with a small portion of butene. The possible reason why fresh Mo2C/γ-Al2O3catalyst shows a certain butene selectivity during the hydrogenation of 1,3-butadiene can be inferred as follows: Adsorption of 1,3-butadiene on the Mo2C/ γ-Al2O3catalyst results in both π- and σ-bonded species. According to the sum frequency generation (SFG) studies described by Somorjai[24-25], the π-adsorbed species are considered to be the dominant intermediate for the olefin hydrogenation reaction, while the σ-bonded species may play a role in side reactions and/or in catalyst deactivation. For 1,3-butadiene adsorption, both πsand πdadsorbed species are formed on the surface of Mo2C/γ-Al2O3catalyst, while only πs-adsorbed species are formed during butene adsorption as evidenced by Wu’s results[21]. It is found out that the heat of adsorption of πd-adsorbed 1,3-butadiene is about twice that of πs-adsorbed butene[26]. Thus, the butene formed by hydrogenation is less readily adsorbed on the catalyst and cannot easily replace the adsorbed 1,3-butadiene. Therefore, butene is desorbed from the surface of the catalyst and enters into the gas phase after it is formed by the hydrogenation of 1,3-butadiene. This is the reason why a small portion of butene is ob-served from the IR spectroscopic analysis.

    Figure 3 IR spectra of 1,3-butadiene/H2(1.3×103/1.3×104Pa) mixture adsorbed on Mo2C/γ-Al2O3catalyst at different temperatures

    Figure 4 IR spectra of 1,3-butadiene/H2(1.3×103/1.3×104Pa) mixture adsorbed onγ-Al2O3at different temperatures

    3.3 Effect of reaction temperature on the hydrogenation of 1,3-butadiene

    The effect of the reaction temperature on the hydrogenation of 1,3-butadiene over the fresh Mo2C/γ-Al2O3catalyst was also investigated, and the results are displayed in Figure 3. Figure 3 shows the changes of IR bands of 1,3-butadiene adsorbed on Mo2C/γ-Al2O3catalyst at high temperature. It is observed that the characteristic bands of 1,3-butadiene decrease in intensity, while the butane related bands increase in intensity with an increasing temperature. The IR band at 3 170 cm-1, 3 088 cm-1, 1 605 cm-1,and 1 588 cm-1, which is the characteristic feature of1,3-butadiene, disappears at 673 K, while an IR band at 2 965 cm-1assigned to butane is observed. It can be seen that the changes of IR bands at high temperature are similar to that of bands at RT. Moreover, the high temperature improves the hydrogenation reaction of 1,3-butadiene to form butane. Figure 4 gives the IR spectra of 1,3-butadiene/H2(1.3×103/1.3×104Pa) mixture adsorbed on γ-Al2O3support at different temperatures. The adsorbed 1,3-butadiene on γ-Al2O3support gives IR bands similar to that of 1,3-butadiene in the gas phase, indicating that the 1,3-butadiene is weakly or physically absorbed on the γ-Al2O3support. Moreover, the spectra in Figure 4 do not show obvious change with an increasing temperature. These results suggest that the fresh Mo2C/γ-Al2O3catalyst exhibits a high activity for the hydrogenation of 1,3-butadiene.

    3.4 The changes of reaction active sites of Mo2C/γ-Al2O3before and after butadiene hydrogenation

    Figure 5 IR spectra of CO adsorbed at RT on Mo2C/γ-Al2O3catalyst before and after 1,3-butadiene hydrogenation reaction

    Figure 5 compares the IR spectra of CO adsorbed on Mo2C/γ-Al2O3catalyst before and after 1,3-butadiene hydrogenation reaction. As mentioned before, CO species adsorbed on a fresh Mo2C/γ-Al2O3sample gave two characterized IR bands at 2 054 cm-1and 2 196 cm-1, respectively. However, these two adsorption bands disappeared after 1,3-butadiene hydrogenation reaction. These two characteristic bands were still not observed even after the catalyst was reduced by H2at 673 K. This result may suggest that the coke deposited on the Mo2C/γ-Al2O3catalyst is formed during the hydrogenation reaction of 1,3-butadiene. The treatment of catalyst with hydrogen at 673 K cannot remove the coke deposits from the surface of Mo2C/γ-Al2O3catalyst. As a result, CO cannot be adsorbed on Mo2C/γ-Al2O3catalyst, and the adsorptionbands of CO are not observed.

    4 Conclusions

    Hydrogenation of 1,3-butadiene on fresh Mo2C/γ-Al2O3catalyst was studied by in situ IR spectroscopy, and the following conclusions can be drawn:

    (1) Adsorption of 1,3-butadiene on the fresh Mo2C/γ-Al2O3catalyst mainly forms π-adsorbed butadiene (πsand πd) and σ-bonded species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites.

    (2) The selectivity in butene during the hydrogenation of 1,3-butadiene over the fresh Mo2C/γ-Al2O3catalyst may be explained by competitive adsorption between 1,3-butadiene and butane. The πd-adsorbed 1,3-butadiene inhibits the adsorption of butene, and then butene is desorbed from the surface of the catalyst and enters into the gas phase after it is formed.

    (3) Coke deposited on the Mo2C/γ-Al2O3catalyst may be formed during the hydrogenation reaction of 1,3-butadiene. The treatment of catalyst with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3catalyst.

    Acknowledgements:This work is financially supported by the National Natural Science Foundation of China (No. 20903054), Liaoning Provincial Natural Science Foundation (No. 2014020107), Program for Liaoning excellent talents in university (No. LJQ2014041), and is also sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (SRF for ROCS, SEM).

    [1] Yu C C, Ramanathan S, Dhandapani B, et al. Bimetallic Nb-Mo carbide hydroprocessing catalysts: Synthesis, characterization, and activity studies[J]. Journal of Physical Chemistry B, 1997, 101(4): 512-518

    [2] Niu S Q, Hall M B. Theoretical studies on reactions of transition metal complexes[J]. Chemical Review, 2000, 100(2): 353-406

    [3] Rohmer M M, Benard M, Poblet J M. Structure, reactivity, and growth pathways of metallocarbohedrenes M8C12 and transition metal/carbon clusters and nanocrystals: A challenge to computational chemistry[J]. Chemical Review, 2000, 100(2): 495-542

    [4] Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts: Adsorption sites, catalytic activities, and nature of the active surface[J]. Journal of Catalysis, 1996, 164(1):109-121

    [5] Li S, Lee J S. Molybdenum nitride and carbide prepared from heteropolyacid: III. Hydrodesulfurization of benzothiophene[J]. Journal of Catalysis, 1998, 178(1): 119-136

    [6] Costa P Da, Potvin C, Manoli J M, et al. New catalysts for deep hydrotreatment of diesel fuel: Kinetics of 4,6-dimethyldibenzothiophene hydrodesulfurization over aluminasupported molybdenum carbide[J]. Journal of Molecular Catalysis A: Chemistry, 2002, 184(1/2): 323-333

    [7] McCrea K R, Logan J W, Tarbuck T L, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts: Effect of Mo loading and phase[J]. Journal of Catalysis, 1997, 171(1): 255-267

    [8] Diaz B, Sawhill S J, Bale D H, et al. Hydrodesulfurization over supported monometallic, bimetallic and promoted carbide and nitride catalysts[J]. Catalysis Today, 2003, 86(1/4): 191-209

    [9] Al-Megren H A, González-Cortés S L, Xiao T C, et al. A comparative study of the catalytic performance of Co-Mo and Co(Ni)-W carbide catalysts in the hydrodenitrogenation (HDN) reaction of pyridine[J]. Applied Catalysis A: General, 2007, 329: 36-45

    [10] Sayag C, Suppan S, Trawczyński J, et al. Effect of support activation on the kinetics of indole hydrodenitrogenation over mesoporous carbon black composites-supported molybdenum carbide[J]. Fuel Processing Technology, 2002, 77/78: 261-267

    [11] Lee J S, Locatelli S, Oyama S T, et al. Molybdenum carbide catalysts: 3. Turnover rates for the hydrogenolysis ofn-butane[J]. Journal of Catalysis, 1990, 125(1): 157-170

    [12] York A P E, Claridge J B, Brungs A J, et al. Molybdenum and tungsten carbides as catalysts for the conversion of methane to synthesis gas using stoichiometric feedstocks[J]. Chemical Communications, 1997, 100(1): 39-40

    [13] Solymosi F, Németh R, óvári L, et al. Reactions of propane on supported Mo2C catalysts[J]. Journal of Catalysis, 2000, 195(2): 316-325.

    [14] Solymosi F, Szoke A, Cserenyi J. Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts[J]. Catalysis Letters, 1996, 39(3/4): 157-161

    [15] Wang L B, Li Q W, Mei T, et al. A thermal reduction route to nanocrystalline transition metal carbides from waste polytetrafluoroethylene and metal oxides[J]. Materials Chemistry and Physics, 2012, 137(1): 1-4

    [16] Wu W C, Wu Z L, Liang C H, et al. In situ FT-IR spectroscopic studies of CO adsorption on fresh Mo2C/Al2O3catalyst[J]. Journal of Physical Chemistry B, 2003, 107(29): 7088-7094

    [17] Shen Q, Fan Y J, Yin L, et al. Two-dimensional continuous online in situ ATR-FTIR spectroscopic investigation of adsorption of butyl xanthate on CuO surfaces[J]. Acta Physico-Chimica Sinica, 2014, 30(2): 359-364 (in Chinese)

    [18] Christensen A N. The crystal growth of molybdenum carbide, Mo2C, by a floating zone technique[J]. Journal of Crystal Growth, 1976, 33(1): 58-60

    [19] Yang S, Li C, Xu J, et al. Surface sites of alumina-supported molybdenum nitride characterized by FTIR, TPDMS, and volumetric chemisorption[J]. Journal of Physical Chemistry, 1998, 102(36): 6986-6993

    [20] Yang F, Zhang J, Wu W C. Hydrogenation of benzene over Mo2C/γ-Al2O3catalyst studied by in situ IR spectroscopy[J]. Acta Physico-Chimica Sinica, 2014, 30(5):943-949 (in Chinese)

    [21] Wu Z L, Hao Z X, Ying P L, et al. An IR study on selective hydrogenation of 1,3-butadiene on transition metal nitrides: 1,3-Butadiene and 1-butene adsorption on Mo2N/ γ-Al2O3catalyst[J]. Journal of Physical Chemistry B, 2000, 104(51): 12275-12281

    [22] Sheppard N, Cruz C D L. Vibrational spectra of hydrocarbons adsorbed on metals: Part I. Introductory principles, ethylene, and the higher acyclic alkenes[J]. Advances in Catalysis, 1996, 41: 1-112

    [23] Wu Z L, Hao Z X, Li C, et al. Selective hydrogenation of 1,3-butadiene on molybdenum nitride catalyst: Identification of the adsorbed hydrocarbonaceous species[J]. Studies in Surface Science and Catalysis, 2001, 138: 445-452

    [24] Somorjai G A, Rupprechter G. Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy[J]. Journal of Physical Chemistry B, 1999, 103(10): 1623-1638

    [25] Cremer P, Su X, Shen Y R, et al. Ethylene hydrogenation on Pt (111) monitored in situ at high pressures using sum frequency generation[J]. Journal of the American Chemical Society, 1996, 118(12): 2942-2949

    [26] Tourillon G, Cassuto A, Jugnet Y, et al. Buta-1,3-diene and but-1-ene chemisorption on Pt (111), Pd (111), Pd (110) and Pd50Cu50(111) as studied by UPS, NEXAFS and HREELS in relation to catalysis[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(23): 4835-4841

    Received date: 2014-04-09; Accepted date: 2014-08-05.

    Wu Weicheng, E-mail: weichengwu@ live.cn.

    妹子高潮喷水视频| 色视频在线一区二区三区| 亚洲成人手机| 男人舔女人的私密视频| 欧美激情极品国产一区二区三区| 国产精品国产三级专区第一集| 亚洲精品乱久久久久久| 高清欧美精品videossex| 狠狠精品人妻久久久久久综合| 免费在线观看完整版高清| 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 亚洲av片天天在线观看| 亚洲精品一区蜜桃| 狠狠婷婷综合久久久久久88av| 日本wwww免费看| 亚洲情色 制服丝袜| 国产精品免费视频内射| 国产精品久久久人人做人人爽| 久久99一区二区三区| 女人精品久久久久毛片| 女性被躁到高潮视频| 精品亚洲成国产av| 日本a在线网址| 成人国语在线视频| a级毛片黄视频| 精品一区二区三卡| 1024视频免费在线观看| 久久国产精品人妻蜜桃| 少妇 在线观看| 精品一区二区三卡| 国产黄色免费在线视频| 欧美另类一区| av电影中文网址| 亚洲精品自拍成人| 在线观看免费日韩欧美大片| 国产精品久久久久久人妻精品电影 | 亚洲久久久国产精品| 日韩电影二区| 国产精品麻豆人妻色哟哟久久| 国产亚洲av高清不卡| 成年av动漫网址| 日本欧美国产在线视频| 精品久久蜜臀av无| 亚洲欧洲日产国产| 精品高清国产在线一区| 免费av中文字幕在线| 少妇猛男粗大的猛烈进出视频| 亚洲自偷自拍图片 自拍| 50天的宝宝边吃奶边哭怎么回事| 色婷婷av一区二区三区视频| 久久国产精品人妻蜜桃| 天天躁日日躁夜夜躁夜夜| 国产精品久久久久成人av| 国产亚洲av高清不卡| 午夜激情久久久久久久| 日韩中文字幕视频在线看片| 日本wwww免费看| 久久久国产一区二区| 日本vs欧美在线观看视频| 首页视频小说图片口味搜索 | 自线自在国产av| 美女国产高潮福利片在线看| 搡老乐熟女国产| 亚洲综合色网址| 黄色毛片三级朝国网站| 午夜日韩欧美国产| 久久 成人 亚洲| 日韩 亚洲 欧美在线| 热re99久久国产66热| 欧美久久黑人一区二区| 日韩中文字幕视频在线看片| 国产精品欧美亚洲77777| 成人18禁高潮啪啪吃奶动态图| 欧美人与性动交α欧美软件| 国产1区2区3区精品| 国产成人一区二区三区免费视频网站 | 精品国产乱码久久久久久小说| 国产精品一国产av| 香蕉国产在线看| 一级片免费观看大全| 亚洲av欧美aⅴ国产| 国产成人精品无人区| 国产男女超爽视频在线观看| 国产精品麻豆人妻色哟哟久久| 手机成人av网站| 精品少妇一区二区三区视频日本电影| 午夜福利影视在线免费观看| 曰老女人黄片| 亚洲欧美激情在线| 99国产精品99久久久久| 一区二区三区四区激情视频| 一区二区三区乱码不卡18| 日韩免费高清中文字幕av| a级毛片黄视频| 日本欧美国产在线视频| 国产精品 欧美亚洲| 亚洲精品国产色婷婷电影| 99久久精品国产亚洲精品| 视频区图区小说| 国产黄色免费在线视频| 久久九九热精品免费| 亚洲欧洲国产日韩| 一级片'在线观看视频| 欧美少妇被猛烈插入视频| 黄色a级毛片大全视频| 精品久久蜜臀av无| 日本猛色少妇xxxxx猛交久久| 一级,二级,三级黄色视频| 午夜福利一区二区在线看| 国产欧美日韩精品亚洲av| 国产不卡av网站在线观看| 成人亚洲欧美一区二区av| tube8黄色片| 国产亚洲一区二区精品| 亚洲精品第二区| 亚洲少妇的诱惑av| 搡老岳熟女国产| 一区二区三区激情视频| 999久久久国产精品视频| 国产深夜福利视频在线观看| 中文乱码字字幕精品一区二区三区| a级毛片黄视频| 又黄又粗又硬又大视频| 国产日韩欧美视频二区| 中文字幕精品免费在线观看视频| 中国国产av一级| 丰满少妇做爰视频| 日韩制服丝袜自拍偷拍| 熟女av电影| 精品少妇黑人巨大在线播放| 国产一区二区激情短视频 | 一区二区三区精品91| 亚洲国产欧美在线一区| 午夜福利视频精品| 亚洲精品国产区一区二| 久久天堂一区二区三区四区| 免费观看人在逋| 一区二区av电影网| 欧美久久黑人一区二区| 水蜜桃什么品种好| 免费黄频网站在线观看国产| 女人久久www免费人成看片| 成人手机av| 激情五月婷婷亚洲| 国产老妇伦熟女老妇高清| 丁香六月天网| 久久女婷五月综合色啪小说| 欧美国产精品一级二级三级| 久久精品国产a三级三级三级| 51午夜福利影视在线观看| av一本久久久久| 亚洲国产欧美日韩在线播放| 亚洲国产精品一区二区三区在线| 一级毛片女人18水好多 | www.熟女人妻精品国产| 国产在线一区二区三区精| 大话2 男鬼变身卡| 成年女人毛片免费观看观看9 | 亚洲av日韩在线播放| 伦理电影免费视频| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| 男男h啪啪无遮挡| 亚洲第一av免费看| 亚洲精品自拍成人| 99九九在线精品视频| 一区福利在线观看| 视频区图区小说| 五月天丁香电影| 欧美激情 高清一区二区三区| 亚洲av成人精品一二三区| 老司机亚洲免费影院| 久久天堂一区二区三区四区| 亚洲精品乱久久久久久| 欧美日韩亚洲高清精品| 精品福利永久在线观看| 日日夜夜操网爽| 亚洲国产毛片av蜜桃av| 成人黄色视频免费在线看| 欧美乱码精品一区二区三区| 国产一卡二卡三卡精品| xxx大片免费视频| 亚洲专区国产一区二区| 人人妻人人澡人人爽人人夜夜| 一边亲一边摸免费视频| 中文字幕亚洲精品专区| 免费看十八禁软件| 99国产精品一区二区三区| 欧美黄色片欧美黄色片| 婷婷丁香在线五月| 亚洲av成人不卡在线观看播放网 | av一本久久久久| 欧美+亚洲+日韩+国产| 纵有疾风起免费观看全集完整版| 精品少妇内射三级| 黄片小视频在线播放| 日本vs欧美在线观看视频| 亚洲五月色婷婷综合| 老司机影院毛片| 伦理电影免费视频| 国产xxxxx性猛交| 波多野结衣一区麻豆| 中文字幕精品免费在线观看视频| av有码第一页| 久久国产精品人妻蜜桃| 久久亚洲精品不卡| 日韩大片免费观看网站| 999久久久国产精品视频| 男的添女的下面高潮视频| 91精品国产国语对白视频| 欧美黑人精品巨大| 日韩中文字幕视频在线看片| 国产深夜福利视频在线观看| 亚洲色图 男人天堂 中文字幕| 免费在线观看视频国产中文字幕亚洲 | 欧美人与善性xxx| 成人国语在线视频| 啦啦啦啦在线视频资源| 日韩人妻精品一区2区三区| 亚洲中文日韩欧美视频| 久久精品国产亚洲av涩爱| xxx大片免费视频| 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 欧美乱码精品一区二区三区| 亚洲中文av在线| 多毛熟女@视频| 亚洲精品一区蜜桃| 只有这里有精品99| 欧美日韩av久久| 久久精品人人爽人人爽视色| 免费在线观看日本一区| 午夜福利乱码中文字幕| 各种免费的搞黄视频| 婷婷成人精品国产| 免费高清在线观看视频在线观看| 99国产精品一区二区三区| 国产欧美亚洲国产| 精品一区二区三区av网在线观看 | 午夜久久久在线观看| 久久久久久久国产电影| 免费女性裸体啪啪无遮挡网站| 久久久国产一区二区| 久久人人97超碰香蕉20202| 又大又爽又粗| a 毛片基地| 最近中文字幕2019免费版| 黄片播放在线免费| 少妇被粗大的猛进出69影院| 91麻豆av在线| 久久久国产欧美日韩av| 精品一区二区三区四区五区乱码 | 母亲3免费完整高清在线观看| 在线观看免费高清a一片| 亚洲视频免费观看视频| √禁漫天堂资源中文www| 日本五十路高清| 制服诱惑二区| 国产日韩欧美视频二区| 亚洲精品自拍成人| 欧美日韩av久久| 最近中文字幕2019免费版| 亚洲精品久久午夜乱码| 尾随美女入室| 欧美大码av| 欧美97在线视频| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 亚洲一区二区三区欧美精品| 欧美日韩av久久| 美女脱内裤让男人舔精品视频| 国产日韩一区二区三区精品不卡| 欧美变态另类bdsm刘玥| 免费久久久久久久精品成人欧美视频| 国产在线观看jvid| 桃花免费在线播放| 亚洲av在线观看美女高潮| 欧美成狂野欧美在线观看| 欧美国产精品va在线观看不卡| 亚洲中文日韩欧美视频| 亚洲图色成人| 亚洲中文av在线| 亚洲人成电影免费在线| 亚洲欧美一区二区三区久久| 成人免费观看视频高清| 黄色毛片三级朝国网站| 九草在线视频观看| 亚洲色图综合在线观看| 91精品三级在线观看| 国产精品欧美亚洲77777| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 好男人电影高清在线观看| 日韩大码丰满熟妇| 丁香六月欧美| 十分钟在线观看高清视频www| 高清av免费在线| 一区二区三区乱码不卡18| 久久亚洲国产成人精品v| 亚洲国产av影院在线观看| 欧美 亚洲 国产 日韩一| 日韩制服丝袜自拍偷拍| 91精品三级在线观看| 男女边吃奶边做爰视频| 亚洲国产看品久久| xxx大片免费视频| av在线app专区| 国产极品粉嫩免费观看在线| 中文字幕制服av| 久久精品亚洲av国产电影网| 韩国高清视频一区二区三区| 亚洲五月婷婷丁香| 韩国高清视频一区二区三区| 久久精品亚洲av国产电影网| 欧美精品高潮呻吟av久久| 亚洲天堂av无毛| 欧美日韩av久久| 亚洲欧美精品自产自拍| 欧美 亚洲 国产 日韩一| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频| 欧美激情极品国产一区二区三区| 丁香六月欧美| 视频区欧美日本亚洲| 黄色怎么调成土黄色| avwww免费| 国产精品亚洲av一区麻豆| 99久久人妻综合| 婷婷色综合大香蕉| 中文字幕亚洲精品专区| 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 美女主播在线视频| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲av片在线观看秒播厂| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 国产极品粉嫩免费观看在线| 男人舔女人的私密视频| 亚洲国产av新网站| 新久久久久国产一级毛片| 精品久久久久久电影网| 男女午夜视频在线观看| 18禁裸乳无遮挡动漫免费视频| 十八禁高潮呻吟视频| 菩萨蛮人人尽说江南好唐韦庄| 999久久久国产精品视频| 99精品久久久久人妻精品| 免费在线观看影片大全网站 | 亚洲精品成人av观看孕妇| 亚洲国产欧美一区二区综合| 亚洲精品第二区| 麻豆av在线久日| 久久国产精品影院| 久久性视频一级片| 欧美成人精品欧美一级黄| 麻豆国产av国片精品| 丝袜在线中文字幕| 99热国产这里只有精品6| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久小说| 少妇粗大呻吟视频| 黄色片一级片一级黄色片| 中文字幕制服av| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看 | 日韩电影二区| 伦理电影免费视频| 亚洲成av片中文字幕在线观看| 两个人看的免费小视频| www.999成人在线观看| 精品少妇久久久久久888优播| 亚洲成av片中文字幕在线观看| 50天的宝宝边吃奶边哭怎么回事| 岛国毛片在线播放| 国产免费一区二区三区四区乱码| 久久人妻福利社区极品人妻图片 | 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 观看av在线不卡| 国产欧美日韩一区二区三区在线| 又大又黄又爽视频免费| 日本五十路高清| 欧美黄色淫秽网站| avwww免费| 欧美少妇被猛烈插入视频| 国产精品国产av在线观看| 欧美大码av| 男女床上黄色一级片免费看| 久久 成人 亚洲| 亚洲人成77777在线视频| 丰满少妇做爰视频| 国产成人精品久久二区二区91| 成年人午夜在线观看视频| 老鸭窝网址在线观看| 侵犯人妻中文字幕一二三四区| 国产成人影院久久av| 韩国高清视频一区二区三区| av福利片在线| 精品亚洲成国产av| 国产精品三级大全| 人人妻人人爽人人添夜夜欢视频| 啦啦啦视频在线资源免费观看| 国产精品.久久久| 亚洲国产欧美网| 久久人妻福利社区极品人妻图片 | 亚洲美女黄色视频免费看| 每晚都被弄得嗷嗷叫到高潮| 性少妇av在线| 男女无遮挡免费网站观看| 国产亚洲午夜精品一区二区久久| 亚洲av美国av| 国产免费视频播放在线视频| 免费观看av网站的网址| 一二三四在线观看免费中文在| 亚洲av国产av综合av卡| 一区二区三区激情视频| 又大又黄又爽视频免费| 亚洲国产毛片av蜜桃av| 激情五月婷婷亚洲| 欧美日本中文国产一区发布| 91九色精品人成在线观看| 国产成人精品久久久久久| 国产精品99久久99久久久不卡| 麻豆av在线久日| 亚洲精品国产区一区二| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| 亚洲欧洲日产国产| 99国产精品免费福利视频| 少妇猛男粗大的猛烈进出视频| 叶爱在线成人免费视频播放| 黄色视频在线播放观看不卡| 午夜av观看不卡| 欧美+亚洲+日韩+国产| 18禁裸乳无遮挡动漫免费视频| 国产精品香港三级国产av潘金莲 | 色94色欧美一区二区| 一本久久精品| cao死你这个sao货| 国产老妇伦熟女老妇高清| 亚洲九九香蕉| 99久久99久久久精品蜜桃| 国产午夜精品一二区理论片| 五月开心婷婷网| 久久天躁狠狠躁夜夜2o2o | 侵犯人妻中文字幕一二三四区| 国产欧美日韩精品亚洲av| 校园人妻丝袜中文字幕| 人妻一区二区av| 午夜久久久在线观看| 欧美在线黄色| 一本—道久久a久久精品蜜桃钙片| 久久精品国产a三级三级三级| 人人妻人人澡人人看| 18禁观看日本| 亚洲美女黄色视频免费看| 久久久精品区二区三区| 人体艺术视频欧美日本| 久久热在线av| 宅男免费午夜| 两个人看的免费小视频| 国产一卡二卡三卡精品| 一级毛片电影观看| 在线观看免费视频网站a站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一av免费看| 亚洲成国产人片在线观看| av在线老鸭窝| 久久久久视频综合| 久久久国产欧美日韩av| 桃花免费在线播放| 亚洲伊人色综图| 操出白浆在线播放| 亚洲专区国产一区二区| 激情视频va一区二区三区| 51午夜福利影视在线观看| 美女福利国产在线| 考比视频在线观看| 国产激情久久老熟女| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 欧美亚洲日本最大视频资源| 国产色视频综合| 丰满饥渴人妻一区二区三| 两个人免费观看高清视频| 国产成人啪精品午夜网站| 国产真人三级小视频在线观看| 麻豆国产av国片精品| 久久久久久久大尺度免费视频| 欧美人与性动交α欧美精品济南到| 性色av一级| 99久久综合免费| 国产精品九九99| 久久99热这里只频精品6学生| 精品人妻熟女毛片av久久网站| 日日夜夜操网爽| 亚洲av美国av| 高潮久久久久久久久久久不卡| 熟女av电影| 人人妻人人添人人爽欧美一区卜| 你懂的网址亚洲精品在线观看| 国产精品99久久99久久久不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 天天影视国产精品| 国产成人av激情在线播放| 久久中文字幕一级| 黄网站色视频无遮挡免费观看| 精品久久久久久电影网| 亚洲人成网站在线观看播放| 丝袜美足系列| 久久精品成人免费网站| av天堂在线播放| 亚洲精品国产色婷婷电影| 看十八女毛片水多多多| 国产黄色视频一区二区在线观看| 99热国产这里只有精品6| 丁香六月天网| 9色porny在线观看| 免费观看av网站的网址| 亚洲av综合色区一区| av福利片在线| 国产在线一区二区三区精| 一区二区av电影网| 亚洲精品一区蜜桃| 最新在线观看一区二区三区 | 久久亚洲国产成人精品v| 日韩av免费高清视频| 少妇精品久久久久久久| 午夜老司机福利片| 欧美精品高潮呻吟av久久| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 精品国产乱码久久久久久男人| a级毛片黄视频| 只有这里有精品99| 国产欧美日韩一区二区三区在线| 一级毛片 在线播放| 成年动漫av网址| 久久国产精品人妻蜜桃| 国产在线视频一区二区| 精品国产国语对白av| 最近最新中文字幕大全免费视频 | 视频在线观看一区二区三区| 国产亚洲一区二区精品| 99热国产这里只有精品6| av在线app专区| 亚洲精品国产一区二区精华液| 日韩欧美一区视频在线观看| 黑人欧美特级aaaaaa片| 欧美激情极品国产一区二区三区| 午夜91福利影院| 天天操日日干夜夜撸| 另类精品久久| 亚洲国产av新网站| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品一区三区| 免费在线观看完整版高清| 黄色a级毛片大全视频| 人人妻人人澡人人爽人人夜夜| 免费在线观看视频国产中文字幕亚洲 | 欧美黑人欧美精品刺激| 99国产精品99久久久久| 亚洲欧美一区二区三区黑人| 亚洲欧美中文字幕日韩二区| 亚洲五月婷婷丁香| 十八禁高潮呻吟视频| 免费久久久久久久精品成人欧美视频| 欧美人与善性xxx| 9191精品国产免费久久| 国产女主播在线喷水免费视频网站| 激情视频va一区二区三区| 国产成人一区二区三区免费视频网站 | 少妇 在线观看| 久久九九热精品免费| 国产高清视频在线播放一区 | 免费久久久久久久精品成人欧美视频| 一本一本久久a久久精品综合妖精| 99国产精品99久久久久| 国产成人精品久久二区二区91| 国产日韩欧美视频二区| 久久这里只有精品19| 男女无遮挡免费网站观看| 亚洲欧美日韩高清在线视频 | 免费在线观看影片大全网站 | 国语对白做爰xxxⅹ性视频网站| 天天操日日干夜夜撸| 国产亚洲一区二区精品| 国产一区二区在线观看av| 午夜福利一区二区在线看| 亚洲精品av麻豆狂野| 亚洲中文av在线| 人妻人人澡人人爽人人| 亚洲精品自拍成人| 亚洲av成人不卡在线观看播放网 | 真人做人爱边吃奶动态| 黄频高清免费视频| 久久久久久免费高清国产稀缺| 七月丁香在线播放| 久久天堂一区二区三区四区| 国产免费视频播放在线视频| 男女下面插进去视频免费观看| 亚洲三区欧美一区| 美女主播在线视频| 午夜影院在线不卡| 亚洲欧洲精品一区二区精品久久久| 一本一本久久a久久精品综合妖精| 真人做人爱边吃奶动态| 大话2 男鬼变身卡| 久久精品久久久久久久性| 七月丁香在线播放| 18禁国产床啪视频网站|