• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Rank of Integral Circulant Graphs

    2014-07-24 15:29:26ZHOUHouqing

    ZHOU Hou-qing

    (Department of Mathematics,Shaoyang University,Shaoyang 422004,China)

    The Rank of Integral Circulant Graphs

    ZHOU Hou-qing

    (Department of Mathematics,Shaoyang University,Shaoyang 422004,China)

    A graph is called an integral graph if it has an integral spectrum i.e.,all eigenvalues are integers.A graph is called circulant graph if it is Cayley graph on the circulant group,i.e.,its adjacency matrix is circulant.The rank of a graph is defined to be the rank of its adjacency matrix.This importance of the rank,due to applications in physics,chemistry and combinatorics.In this paper,using Ramanujan sums,we study the rank of integral circulant graphs and gave some simple computational formulas for the rank and provide an example which shows the formula is sharp.

    integral circulant graph;eigenvalues;rank

    §1. Introduction

    Circulant graphs are Cayley graphs over a cyclic group.The interest of circulant graphs in graph theory and applications has grown during the last two decades,they appeared in coding theory,VLSI design,Ramsey theory and other areas.Recently there is vast research on the interconnection schemes based on circulant interconnection topology-circulant graphs represent an important class of interconnection networks in parallel and distributed computing(see[1-2]).Integral circulant graphs are also highly symmetric and have some remarkable properties between connecting graph theory and number theory.

    In quantum communication scenario,circulant graphs is used in the problem of arranging N interacting qubits in a quantum spin network based on a circulant topology to obtain good communication between them.In general,quantum spin system can be defined as a collection of qubits on a graph,whose dynamics is governed by a suitable Hamiltonian,without external control on the system.Different classes of graphs were examined for the purpose of perfectlytransferring the states of the systems.Since circulant graphs are mirror symmetric,they represent good candidates for the property of periodicity and thus integrality[3],which further implies that integralcirculant graphs would be potentialcandidates for modeling the quantum spin networks that permit perfect state transfer[47].These properties are primarily related to the spectra of these graphs.Indeed,the eigenvalues of the graphs are indexed in palindromic order(λi=λn?i)and can be represented by Ramanujan’s sums.The rank of graph G is a basic graph parameter ofthe graph and has been used in graph theory and also in applications from computer science.Thus,it is natural and perhaps important to understand the behavior of this parameter with respect to a circulant graph.An interesting feature of this parameter is that,unlike most of graph parameters(such as the connectivity,the chromatic number etc), the rank is not monotone(adding edges may reduce the rank).So,it is not clear that one can define thresholds.Our study,however,willshed some light on this problem.

    [8]studied some parameters of integral circulant graphs as the bounds for the number of vertices and the diameter,bipartiteness and perfect state transfer.[9]proposed a generalization of unitary Cayley graphs named gcd-graphs and proved that they have to be integral.We actually focus on characterization of the rank of integral circulant graphs ICGn(D).The outline of the paper is as follows:in Section 2 we will give definitions and preliminaries.Also in this section we will recall circulant graphs and some of their basic theory.In Section 3,we investigate the rank of an integralcirculant graphs ICGn(D).

    §2. Preliminaries

    All the graphs considered in this paper are finite,undirected and without multiple edges. Let us recall that for a positive integer n and subset S?{0,1,2,···,n?1},the circulant graph G(n,S)is the graph with n vertices,labeled with integers modulo n,such that each vertex i is adjacent to|S|other vertices{i+s(mod n)|s∈S}.

    The set S is called a symbol of G(n,S).We assume that 0/∈S and s∈S if and only if n?s∈S and therefore the vertex i is adjacent to vertices i±s(mod n)for each s∈S.Let A be a circulant matrix.The entries a0,a1,···,an?1of the first row of the circulant matrix A generate the entries of the other rows by a cyclic shift(for more details see[10]).There is an explicit formula for the eigenvaluesλk,0≤k≤n?1,of a circulant matrix A.Define the polynomial Pn(z)by the entries of the first row of A,

    The eigenvalues of A are given by

    A graph is called an integral graph if it has an integral spectrum i.e.,all eigenvalues are integers.Two easy examples of integral graphs are the discrete graph on n vertices with spectrum(0,0,···,0)and the complete graph on n vertices with spectrum(n?1,?1(n?1)). So[11]has characterized circulant graphs with integral eigenvalues-integral circulant graphs. Let

    be the set of all positive integers less than n having the same greatest common divisor d with n.Let Dnbe the set of positive divisors d of n,withSo proved the following theorem [11].

    Theorem A circulant graph G(n,S)is integral if and only if

    for some set of divisors D?Dn.

    If D={d1,d2,···,dk},from Corollary 4.2 in[1],the graph IC Gn(D)is connected if and only if gcd(d1,d2,···,dk)=1.IC Gn(D)has k connected components if and only if gcd(d1,d2,···,dk)=k.The following proof will use this fact.

    Ramanujan’s sum[12],usually denoted Rn(t),is a function of two positive integer variables n and t defined by the formula

    φ(n),the Euler function,If the prime factorization of n is given byai>0,i=1,2,···,t.Then

    where p1<p2<···<ptare prime numbers dividing n.

    μ(n),the M¨obius function,is defined for allpositive integers n and has its values in?1,0,1 depending on the factorization of n into prime factors.It is defined as follows:

    μ(n)=1 if n is a square-free positive integer with an even number of prime factors.μ(n)=?1 if n is a square-free positive integer with an odd number of prime factors.μ(n)=0 if n is not a square-free integer.Note that Rn(0)=|Gn(1)|=φ(n)and Rn(1)=μ(n).With the convention gcd(0,n)=n andφ(1)=1=μ(1).

    In[9]it was proven that gcd-graphs(the same term as integralcirculant graphs)have integral spectrum,

    A graph is said to be singular if its adjacency matrix A is a singular matrix;then{v0: Av0=0}is the null-space of A denoted byε0(A).The nullity of G,denoted byη(G)is thedimension ofε0(A),which is the multiplicity of the zero eigenvalue of A,since A is symmetric. The rank of a graph G,denoted by rank(G),is the rank of its adjacency matrix A which is n(G)?η(G),where n(G)denotes the order of G.If a graph is not connected its rank is the sum of the rank of its connected components.This importance of the rank,due to applications in physics,chemistry and combinatorics,has spurred work in the determination of the rank for many types of graphs.

    The rank have been studied by many scholars,previous work includes ranks of trees,grid graphs,Cartesian products[13]and circulants[1415];ranks of graphs after vertex addition[16]; ranks of graphs after edge insertion or deletion[17];ranks of line graphs[18]and ranks of graphs under unary operations[19].Here,we determine the ranks of integral circulant graphs.

    The following claim holds

    Claim 2.1[20]If A is an n×n matrix,then the rank of A plus the nullity of A is equal to n.

    A scalarλis an eigenvalue of an n×n matrix A if there exists a nonzero vector x∈Rnsuch that Ax=λx or equivalently,(A?λI)x=0.If an eigenvalue is zero,then the nullspace is the set of solutions to Ax=0,so that the nullity of A gives the number of eigenvalues equal to zero.As a consequence of the above Claim 2.1,the rank of a matrix(it is diagonalizable)is equal to the difference of the dimension of the matrix and the number of eigenvalues equal to zero.

    As example ofthe preceding Claim 2.1,we consider the complete graph Kn.Since spec(Kn)= (n?1,?1(n?1)),by above Claim 2.1,we have rank(Kn)=n.

    The following lemmas will be crucial,found in[21].

    Lemma 2.2 Let n=pkm,where p is a prime number,k>1 and gcd(m,p)=1.If λiare eigenvalues of IC Gm({1})with multiplicity ti,then the eigenvalues of IC Gn({1,p})are?pk?2λi,(pk?pk?2)λiand 0 with multiplicity(p2?1)ti,tiand(pk?p2)m,respectively.

    Lemma 2.3 Let n=pqm where p,q are distinct prime numbers and gcd(m,pq)=1.If λiare eigenvalues of IC Gm({1})with multiplicity ti,then the eigenvalues of IC Gn({p,q})are?2λi,(p?2)λi,(q?2)λiand(p+q?2)λiwith multiplicity(p?1)(q?1)ti,(q?1)ti,(p?1)tiand ti,respectively.

    §3.Main Results

    We turn our attention to the rank ofintegralcirculant graphs IC Gn(D).Note that arbitrary divisor d and 1≤i≤n?1,it holds

    and

    Since g cd(n,id)=gcd(n,nd?id),thus

    for each 1≤i≤n?1.Therefore we have the following fact

    Fact 3.1 Let IC Gn(D)be an arbitrary integral circulant graph.Then for each 1≤i≤n?1,the eigenvaluesλiandλn?iof IC Gn(D)are equal.

    For i=0 we have

    As we previously said,λt,the eigenvalues of integralcirculant graphs,

    We are interested in determining the conditions that give zero eigenvalues for an integral circulant graph;conditions which will then determine the rank.

    Using the fundamentaltheorem of arithmetic:Any integer greater than 1 is either a prime number,or can be written as a unique product of prime numbers(ignoring the order).

    Now we prove the following theorem

    Theorem 3.2 Let IC Gn(j5i0abt0b)be an arbitrary integral circulant graph on n vertices,d denotes a divisor of n.Then the following equality holds

    where s denotes the number of t(1≤t≤n)such that

    Proof Without loss of generality,we may assume that

    where p1,p2,···,pkare distinct primes,ai>0,i=1,2,···,k.

    For positive divisors d of n,let

    Then,we have

    Thus,we obtain

    Hence,we get

    where all ti∈{1,2,···,n},ti/=tj.

    Therefore,we have the following two cases

    Then,we obtain

    Example 3.3 Again,we illustrate this by examining the integralcirculant graph,IC G24(D), on 24 vertices.

    Let d=3,the prime divisors of 24.Let D={3}?D24={1,2,3,4,6,8,12}.

    Then,

    Therefore,

    Hence,we have

    By(3.2),we have

    That is,there are 18 zero eigenvalues of IC G24({3}).According to Theorem 3.2,we have

    On the other hand,by a straightforward calculation,we obtain the following spectrum of IC G24({3})

    Thus,rank(IC G24({3}))=6.

    Obviously,this formula for the rank of integral circulant graph is sharp.Now we turn our attention to two types of integral circulant graphs n=pkm,k>1 and n=pqm,where (p,m)=1 and(pq,m)=1.

    We have the following theorem

    Theorem 3.4 Let n=pkm,k>1.Then rank(IC Gn({1,p}))=p2m,where p,m are distinct prime numbers.

    Proof Suppose n=pkm,k>1,m is a prime number,by(3.2),the eigenvalues of the integralcirculant graph IC Gm({1})are

    Using Lemma 2.2,we have the eigenvalues of IC Gn({1,p})

    Thus,we have rank(IC Gn({1,p}))=p2m.

    We see that there will not be any zero eigenvalues and by Claim 2.1,the next result easily follows.

    Theorem 3.5 Let n=pqm,p,q,m are distinct prime numbers,then

    Proof Suppose n=pqm,p,q,m are distinct prime numbers and(pq,m)=1.Similarly, the eigenvalues of IC Gm({1})are

    According to Lemma 2.3,we have,for IC Gn({p,q}),the following eigenvalues

    When p=2,p?2=0.Clearly,q/=2,there exist(q?1)m zero eigenvalues.Hence,we can determine the rank of IC Gn({p,q})=n?(q?1)m.

    Similarly,when q=2,q?2=0,there are(p?1)m eigenvalues of 0,we obtain the rank of IC Gn({p,q})=n?(p?1)m.

    Thus,we arrive at theorem.

    Remark 3.6 In this work we studied the rank ofseveralcases ofintegralcirculant graphs. For circulant graphs and even more general graphs,we haven’t discussed yet their rank.The next possible step includes ranks ofcirculant graphs and generalgraphs,we hope allthe results willbe summarized and a relationship between a graph and its rank willbe found.

    Acknowledgment The author is gratefulto anonymous referee for their usefulcomments and suggestions,which were helpful in improving the manuscript.

    [1]HWANG F K.A survey on multi-loop networks[J].Theoretical Computer Science,2003,299(1):107-121.

    [2]WEI Er-ling,HE Wei-li,LIU Yan-pei.The minimal cyele basis of circular graphs[J].Chinese Quarterly Journal of Mathematics,2007,22(1):7-11.

    [3]CHRISTANDL M,DATTA N.Perfect transfer of arbitrary states in quantum spin networks[J].Physical Review A,2005,71:032312.

    [4]AHMADIA,BELK R.On mixing in continuous time quantum walks on some circulant graphs[J].Quantum Information and Computation,2003,3(6):611–618.

    [5]ANGELES-CANUL R,NORTON R M.Perfect state transfer,integral circulants and join of graphs[J]. Quantum Information and Computation,2010,10(3&4):325–342.

    [6]ANGELES-CANUL R,NORTON R M.Quantum perfect state transfer on weighted join graphs[J].International Journal of Quantum Information,2009,7(8):1429–1445.

    [7]GODSIL C.Periodic graphs[J].The Electronic Journal of Combinatorics,2011,18(1):50–65.

    [8]SAXENA N,SEVERINI S,SHPARLINSKI I.Parameters of integralcirculant graphs and periodic quantum dynamics[J].International Journal of Quantum Information,2007,5(3):417–430.

    [9]KLOTZ W,SANDER T.Some properties of unitary Cayley graphs[J].The Electronic Journal of Combinatorics,2007,14(1),#R45.

    [10]DAVIS P J.Circulant Matrices[M].New York-Chichester-Brisbane:John Wiley and Sons,1979.

    [11]WASIN SO.Note Integral circulant graphs[J].Discrete Mathematics,2005,306:153–158.

    [12]RAMANUJAN.On certain trigonometrical sums and their applications in the theory of numbers[J].Transactions of the Cambridge Philosophical Society,1918,22:259–276.

    [13]BEVIS J H,DOMKE G S,MILLER V A.Ranks of trees and grid graphs[J].Journal of Combinatorial Mathematics and Combinatorial Computing,1995,18:109–119.

    [14]DAVIS G J,DOMKE G S.Three-circulant graphs[J].Journal of Combinatorial Mathematics and Combinatorial Computing,2002,40:133–142.

    [15]DAVIS G J,DOMKE G S,GARNER C R.Ranks of four-circulant graphs[J].Ars Combinatoria,2002,65: 97–110.

    [16]BEVIS J H,BLOUNT K K,DAVIS G J.The rank of a graph after vertex addition[J].Linear Algebra and Its Applications,1997,265:55–69.

    [17]DAVIS G J.The rank of a graph after edge insertion or deletion[J].Congressus Numerantium,1998,133: 31–43.

    [18]DAVIS GJ,DOMKE G S,GARNER CR.Ranks ofline graphs ofregular graphs[J].Journalof Combinatorial Mathematics and Combinatorial Computing,2004,49:113–128.

    [19]GARNER C R,DAVIS G J,DOMKE G S.Ranks of regular graphs under certain unary operations[J].Ars Combinatoria,2005,74:3–24.

    [20]LANCASTER P,TISMENETSKY M.The Theory of Matrices[M].San Diego:Academic Press,1985.

    [21]MOLLAHAJIAGHAEI M.The eigenvalues and energy of integral circulant graphs[J].Transactions on Combinatorics,2012,1(3):47–56.

    tion:05C50

    1002–0462(2014)01–0116–9

    Chin.Quart.J.of Math. 2014,29(1):116—124

    date:2013-09-04

    Supported by Hunan Provincial Natural Science Foundation(13JJ3118)

    Biography:ZHOU Hou-qing(1963-),male,native of Shaoyang,Hunan,an associate professor of Shaoyang University,engages in graph theory and its applications.

    CLC number:O157.5 Document code:A

    十八禁网站免费在线| 黄色视频,在线免费观看| 精品国产超薄肉色丝袜足j| a级毛片在线看网站| 国产伦理片在线播放av一区| 国产精品香港三级国产av潘金莲| 日本一区二区免费在线视频| 人妻一区二区av| 十八禁高潮呻吟视频| 老司机亚洲免费影院| 人妻久久中文字幕网| 亚洲中文av在线| 国产精品香港三级国产av潘金莲| 女人爽到高潮嗷嗷叫在线视频| 久久香蕉激情| 久久久欧美国产精品| 国产精品久久久久久精品古装| 久久久久久亚洲精品国产蜜桃av| 一进一出好大好爽视频| 热re99久久精品国产66热6| 亚洲色图综合在线观看| 黄色视频,在线免费观看| 亚洲欧美色中文字幕在线| 久久久精品区二区三区| 91九色精品人成在线观看| www.精华液| 久久99一区二区三区| 80岁老熟妇乱子伦牲交| 日韩 欧美 亚洲 中文字幕| 在线观看66精品国产| 脱女人内裤的视频| 老司机午夜十八禁免费视频| 夜夜爽天天搞| 80岁老熟妇乱子伦牲交| 新久久久久国产一级毛片| 亚洲欧美日韩另类电影网站| 热re99久久国产66热| 99久久精品国产亚洲精品| 久久精品成人免费网站| 亚洲精品成人av观看孕妇| 老司机午夜十八禁免费视频| 精品免费久久久久久久清纯 | 中文字幕最新亚洲高清| 成人手机av| 亚洲av欧美aⅴ国产| 男女之事视频高清在线观看| 亚洲,欧美精品.| 老司机靠b影院| 大片免费播放器 马上看| 男女高潮啪啪啪动态图| 成年人黄色毛片网站| 久久久水蜜桃国产精品网| 午夜两性在线视频| 亚洲精品国产区一区二| 成人特级黄色片久久久久久久 | 精品久久蜜臀av无| 国产亚洲欧美精品永久| 最黄视频免费看| 亚洲国产欧美一区二区综合| 女性生殖器流出的白浆| av视频免费观看在线观看| 亚洲 国产 在线| 亚洲中文字幕日韩| 亚洲精品成人av观看孕妇| 久久久久网色| 一边摸一边做爽爽视频免费| 蜜桃国产av成人99| 一边摸一边抽搐一进一出视频| 国产亚洲欧美精品永久| tocl精华| 99国产精品一区二区蜜桃av | 久久人人97超碰香蕉20202| 757午夜福利合集在线观看| 黄色片一级片一级黄色片| 人人妻人人澡人人爽人人夜夜| 91大片在线观看| 色综合欧美亚洲国产小说| 中文字幕人妻熟女乱码| 午夜老司机福利片| 国产精品偷伦视频观看了| 亚洲国产欧美一区二区综合| 人成视频在线观看免费观看| 午夜福利在线观看吧| 日韩欧美三级三区| 宅男免费午夜| 超碰97精品在线观看| 国产精品久久久久久精品电影小说| 国产亚洲午夜精品一区二区久久| 午夜老司机福利片| 日本av免费视频播放| 女人久久www免费人成看片| h视频一区二区三区| 纯流量卡能插随身wifi吗| 亚洲av成人一区二区三| 高清av免费在线| 亚洲免费av在线视频| 国产成人一区二区三区免费视频网站| 性色av乱码一区二区三区2| 久久国产亚洲av麻豆专区| 91麻豆精品激情在线观看国产 | 动漫黄色视频在线观看| 成人永久免费在线观看视频 | 999久久久精品免费观看国产| 亚洲欧美色中文字幕在线| 9热在线视频观看99| 在线观看免费视频日本深夜| 国产精品1区2区在线观看. | 男女免费视频国产| 亚洲av日韩精品久久久久久密| 丝袜美腿诱惑在线| 久久久国产精品麻豆| 美女高潮喷水抽搐中文字幕| 久久毛片免费看一区二区三区| 99国产极品粉嫩在线观看| 亚洲欧美激情在线| 在线观看66精品国产| 久热爱精品视频在线9| 在线观看66精品国产| 免费日韩欧美在线观看| 91九色精品人成在线观看| 我要看黄色一级片免费的| 下体分泌物呈黄色| 一区二区三区激情视频| 亚洲精品国产一区二区精华液| 一级,二级,三级黄色视频| 日韩人妻精品一区2区三区| 热99re8久久精品国产| av福利片在线| 高清毛片免费观看视频网站 | 狠狠婷婷综合久久久久久88av| 久久婷婷成人综合色麻豆| 激情在线观看视频在线高清 | 人人妻人人添人人爽欧美一区卜| 99国产综合亚洲精品| 国产一卡二卡三卡精品| 99精品欧美一区二区三区四区| 巨乳人妻的诱惑在线观看| 精品一区二区三卡| 成人国产一区最新在线观看| 狠狠精品人妻久久久久久综合| 美女高潮喷水抽搐中文字幕| 午夜福利视频在线观看免费| 亚洲伊人色综图| 蜜桃国产av成人99| avwww免费| 亚洲第一av免费看| 国产精品免费一区二区三区在线 | 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲av国产电影网| 又大又爽又粗| 极品人妻少妇av视频| 亚洲成a人片在线一区二区| 老司机午夜十八禁免费视频| 欧美精品av麻豆av| 香蕉久久夜色| 亚洲五月色婷婷综合| 欧美性长视频在线观看| 中文字幕精品免费在线观看视频| 精品国产国语对白av| 曰老女人黄片| 高清av免费在线| 亚洲人成电影观看| 国产麻豆69| 免费人妻精品一区二区三区视频| 中国美女看黄片| 老鸭窝网址在线观看| 18在线观看网站| 老鸭窝网址在线观看| 99热国产这里只有精品6| 国产伦理片在线播放av一区| 女性生殖器流出的白浆| 狠狠婷婷综合久久久久久88av| 久久天躁狠狠躁夜夜2o2o| 亚洲国产av新网站| 久久久久精品国产欧美久久久| 国产成人免费无遮挡视频| 多毛熟女@视频| 国产人伦9x9x在线观看| 一级毛片精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一区中文字幕在线| 欧美日韩av久久| 一区二区三区激情视频| 亚洲伊人色综图| 新久久久久国产一级毛片| 久久久久久人人人人人| 国产成人系列免费观看| 在线永久观看黄色视频| 国产不卡av网站在线观看| 久久av网站| 19禁男女啪啪无遮挡网站| 一二三四社区在线视频社区8| 日韩欧美三级三区| 成年人免费黄色播放视频| 午夜福利,免费看| 国产有黄有色有爽视频| 一夜夜www| 国产熟女午夜一区二区三区| 日韩一卡2卡3卡4卡2021年| 免费久久久久久久精品成人欧美视频| 久久人妻福利社区极品人妻图片| 午夜福利一区二区在线看| 黄片小视频在线播放| 日韩视频一区二区在线观看| 最近最新免费中文字幕在线| a级毛片在线看网站| 大片电影免费在线观看免费| 久久影院123| 亚洲色图综合在线观看| 国产精品98久久久久久宅男小说| 99国产精品一区二区三区| 亚洲熟女毛片儿| 黑人巨大精品欧美一区二区蜜桃| 精品亚洲成a人片在线观看| 精品一品国产午夜福利视频| 国产欧美日韩精品亚洲av| 日韩欧美免费精品| 日本av免费视频播放| 老司机福利观看| 黑人操中国人逼视频| 国产精品一区二区精品视频观看| 老司机在亚洲福利影院| 国产无遮挡羞羞视频在线观看| 日韩一区二区三区影片| 亚洲美女黄片视频| tube8黄色片| 另类亚洲欧美激情| 免费女性裸体啪啪无遮挡网站| 最近最新中文字幕大全免费视频| 亚洲一码二码三码区别大吗| 高清毛片免费观看视频网站 | 老司机午夜十八禁免费视频| 黑人猛操日本美女一级片| 我的亚洲天堂| 在线 av 中文字幕| 成人av一区二区三区在线看| 麻豆成人av在线观看| 丝袜在线中文字幕| av欧美777| 大香蕉久久网| 久久天躁狠狠躁夜夜2o2o| 亚洲情色 制服丝袜| 一区二区三区激情视频| 国产精品久久久人人做人人爽| 精品久久久久久电影网| 精品久久蜜臀av无| 亚洲色图av天堂| 人妻 亚洲 视频| bbb黄色大片| 黑人巨大精品欧美一区二区mp4| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 久久热在线av| 久久婷婷成人综合色麻豆| 亚洲精品国产精品久久久不卡| 亚洲性夜色夜夜综合| 1024视频免费在线观看| 欧美精品av麻豆av| 日日爽夜夜爽网站| 99九九在线精品视频| a级毛片黄视频| 亚洲五月色婷婷综合| 丰满饥渴人妻一区二区三| 亚洲av成人不卡在线观看播放网| 精品一区二区三区视频在线观看免费 | 侵犯人妻中文字幕一二三四区| 老司机亚洲免费影院| 午夜激情av网站| 国产精品亚洲一级av第二区| a级毛片黄视频| 免费在线观看影片大全网站| 天天添夜夜摸| 国产男女内射视频| 午夜激情av网站| 亚洲精品美女久久久久99蜜臀| 啪啪无遮挡十八禁网站| 久久久国产一区二区| 色精品久久人妻99蜜桃| 亚洲欧美日韩高清在线视频 | 男女午夜视频在线观看| 露出奶头的视频| 老司机午夜福利在线观看视频 | 两个人免费观看高清视频| 波多野结衣一区麻豆| 天堂8中文在线网| 久久久精品区二区三区| 女人久久www免费人成看片| 男人操女人黄网站| 午夜福利视频精品| 亚洲 国产 在线| 久久人妻熟女aⅴ| 老司机福利观看| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 一区二区av电影网| aaaaa片日本免费| aaaaa片日本免费| 真人做人爱边吃奶动态| 精品一区二区三区视频在线观看免费 | 女人高潮潮喷娇喘18禁视频| 99在线人妻在线中文字幕 | 国内毛片毛片毛片毛片毛片| 99久久国产精品久久久| 日本vs欧美在线观看视频| 色老头精品视频在线观看| 考比视频在线观看| 最黄视频免费看| 亚洲av片天天在线观看| 久久精品aⅴ一区二区三区四区| 男女免费视频国产| 国产激情久久老熟女| 建设人人有责人人尽责人人享有的| 午夜福利视频在线观看免费| 国产欧美日韩一区二区三| 中亚洲国语对白在线视频| 久久久久久久久免费视频了| 亚洲午夜精品一区,二区,三区| 天天躁夜夜躁狠狠躁躁| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 亚洲av片天天在线观看| 国产在线一区二区三区精| 久久人妻福利社区极品人妻图片| 桃红色精品国产亚洲av| 啦啦啦中文免费视频观看日本| 亚洲精品在线观看二区| 51午夜福利影视在线观看| 色尼玛亚洲综合影院| 精品国产超薄肉色丝袜足j| 国产欧美亚洲国产| 免费不卡黄色视频| 香蕉久久夜色| 日韩视频在线欧美| 91国产中文字幕| www.精华液| 麻豆成人av在线观看| 日韩三级视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利乱码中文字幕| 亚洲熟女精品中文字幕| 丰满少妇做爰视频| 午夜福利乱码中文字幕| 纵有疾风起免费观看全集完整版| 一级片'在线观看视频| 下体分泌物呈黄色| 91成年电影在线观看| 一级片'在线观看视频| 国产日韩欧美在线精品| 波多野结衣av一区二区av| 90打野战视频偷拍视频| 久久久久视频综合| 精品高清国产在线一区| 久久久久久人人人人人| 国产成人精品在线电影| 国产精品秋霞免费鲁丝片| 在线十欧美十亚洲十日本专区| 蜜桃国产av成人99| videosex国产| 免费不卡黄色视频| 国产99久久九九免费精品| 国产精品久久久久久精品古装| 在线观看免费视频网站a站| 久久99一区二区三区| 午夜成年电影在线免费观看| 下体分泌物呈黄色| 1024香蕉在线观看| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 国产无遮挡羞羞视频在线观看| 人妻 亚洲 视频| 成人黄色视频免费在线看| 国产免费视频播放在线视频| 午夜免费成人在线视频| 精品福利永久在线观看| 精品国产国语对白av| 日韩欧美三级三区| 日本一区二区免费在线视频| 亚洲欧美精品综合一区二区三区| 国产精品免费一区二区三区在线 | 大型av网站在线播放| 看免费av毛片| 在线观看免费视频网站a站| 麻豆国产av国片精品| 久久精品亚洲熟妇少妇任你| 欧美午夜高清在线| 制服诱惑二区| 亚洲自偷自拍图片 自拍| av视频免费观看在线观看| 1024视频免费在线观看| 啦啦啦视频在线资源免费观看| 男人舔女人的私密视频| 久久中文字幕人妻熟女| 精品久久蜜臀av无| 亚洲熟女毛片儿| 叶爱在线成人免费视频播放| 亚洲成国产人片在线观看| 中文字幕精品免费在线观看视频| 新久久久久国产一级毛片| videosex国产| 午夜老司机福利片| 高清欧美精品videossex| 热99久久久久精品小说推荐| 色婷婷av一区二区三区视频| 女同久久另类99精品国产91| 99精国产麻豆久久婷婷| 丰满迷人的少妇在线观看| 国产亚洲精品第一综合不卡| 久久久久国内视频| 在线观看免费高清a一片| 美女午夜性视频免费| 亚洲伊人久久精品综合| 久久久久网色| 十八禁网站网址无遮挡| 热99re8久久精品国产| 无限看片的www在线观看| 国产又爽黄色视频| 桃红色精品国产亚洲av| 欧美久久黑人一区二区| 精品国产亚洲在线| 欧美激情 高清一区二区三区| 亚洲欧美一区二区三区黑人| 国产精品久久电影中文字幕 | 欧美中文综合在线视频| 亚洲伊人色综图| 久久天躁狠狠躁夜夜2o2o| 亚洲自偷自拍图片 自拍| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 三上悠亚av全集在线观看| 成人亚洲精品一区在线观看| 国产精品欧美亚洲77777| 丝袜喷水一区| 大香蕉久久成人网| 久久精品国产综合久久久| a级片在线免费高清观看视频| 国产黄频视频在线观看| 国产1区2区3区精品| 日韩欧美一区视频在线观看| 国产国语露脸激情在线看| 少妇 在线观看| 岛国毛片在线播放| 法律面前人人平等表现在哪些方面| 亚洲成人免费电影在线观看| 天天添夜夜摸| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看| 久久久国产成人免费| 黄网站色视频无遮挡免费观看| 国产成人免费无遮挡视频| 日韩精品免费视频一区二区三区| 欧美日韩福利视频一区二区| 天堂俺去俺来也www色官网| 久久亚洲真实| 美女国产高潮福利片在线看| 欧美激情高清一区二区三区| 黄色毛片三级朝国网站| 中文字幕人妻丝袜一区二区| 国产男女内射视频| 巨乳人妻的诱惑在线观看| 亚洲精品乱久久久久久| 在线观看免费视频日本深夜| 日本a在线网址| 欧美日韩国产mv在线观看视频| 精品少妇黑人巨大在线播放| 黑人猛操日本美女一级片| 无遮挡黄片免费观看| 国产国语露脸激情在线看| 色婷婷久久久亚洲欧美| 日韩熟女老妇一区二区性免费视频| 欧美国产精品一级二级三级| 丁香欧美五月| bbb黄色大片| 国产视频一区二区在线看| 成人免费观看视频高清| 色综合欧美亚洲国产小说| 又大又爽又粗| 久久久久国产一级毛片高清牌| 亚洲成人免费电影在线观看| 麻豆av在线久日| 欧美激情久久久久久爽电影 | www.999成人在线观看| 欧美中文综合在线视频| 搡老岳熟女国产| 免费观看a级毛片全部| 国产精品免费视频内射| 丝袜美腿诱惑在线| 我的亚洲天堂| 日韩成人在线观看一区二区三区| 久久这里只有精品19| 国产深夜福利视频在线观看| 国产极品粉嫩免费观看在线| 12—13女人毛片做爰片一| 成年人黄色毛片网站| 另类精品久久| 久久九九热精品免费| 热re99久久精品国产66热6| 成人手机av| 老司机在亚洲福利影院| 99riav亚洲国产免费| 手机成人av网站| 狠狠婷婷综合久久久久久88av| 天堂8中文在线网| 国产不卡av网站在线观看| 成人18禁在线播放| 国产xxxxx性猛交| 成人国产av品久久久| 99精品欧美一区二区三区四区| 成人国产av品久久久| 香蕉丝袜av| xxxhd国产人妻xxx| 久久久欧美国产精品| 欧美日韩亚洲国产一区二区在线观看 | 久久人妻福利社区极品人妻图片| 在线播放国产精品三级| 韩国精品一区二区三区| 久久国产精品大桥未久av| 精品第一国产精品| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 久久影院123| 国产精品香港三级国产av潘金莲| tocl精华| 激情在线观看视频在线高清 | videos熟女内射| 亚洲av国产av综合av卡| 不卡av一区二区三区| 亚洲熟妇熟女久久| 一级毛片电影观看| 丁香六月天网| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 麻豆av在线久日| 中文字幕精品免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 日韩免费av在线播放| 亚洲av国产av综合av卡| 高清欧美精品videossex| 狠狠婷婷综合久久久久久88av| 亚洲av成人一区二区三| 极品教师在线免费播放| 亚洲自偷自拍图片 自拍| 亚洲国产欧美一区二区综合| 精品少妇一区二区三区视频日本电影| 免费观看人在逋| 窝窝影院91人妻| 18禁国产床啪视频网站| 一级片'在线观看视频| 97在线人人人人妻| 久久九九热精品免费| 午夜激情av网站| 丝袜美腿诱惑在线| 免费一级毛片在线播放高清视频 | 久久久精品区二区三区| 精品免费久久久久久久清纯 | 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| 成人黄色视频免费在线看| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品在线电影| 精品一区二区三区av网在线观看 | 国产一区二区激情短视频| 色视频在线一区二区三区| 另类亚洲欧美激情| 欧美一级毛片孕妇| 十八禁高潮呻吟视频| 久9热在线精品视频| 婷婷成人精品国产| 一区二区三区精品91| 久久国产精品人妻蜜桃| 国产亚洲精品第一综合不卡| 99久久国产精品久久久| 三上悠亚av全集在线观看| 高清毛片免费观看视频网站 | 丝袜在线中文字幕| 麻豆av在线久日| 超碰成人久久| 少妇裸体淫交视频免费看高清 | 国产精品.久久久| 高潮久久久久久久久久久不卡| 亚洲国产看品久久| 欧美成人免费av一区二区三区 | 久久久国产成人免费| 丝袜美足系列| 一二三四社区在线视频社区8| 亚洲成国产人片在线观看| 日韩欧美国产一区二区入口| tocl精华| 狠狠精品人妻久久久久久综合| 叶爱在线成人免费视频播放| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 亚洲天堂av无毛| 丰满饥渴人妻一区二区三| 性色av乱码一区二区三区2| 国产日韩一区二区三区精品不卡| 丝瓜视频免费看黄片| 久久精品91无色码中文字幕| 亚洲 欧美一区二区三区| 国产91精品成人一区二区三区 | 黄色 视频免费看| 久久香蕉激情| 久久久久久久国产电影| 最黄视频免费看| 久久久久久人人人人人| 免费观看a级毛片全部| 久久久久久久国产电影| 99久久国产精品久久久| 精品人妻1区二区| 亚洲伊人久久精品综合| 日本五十路高清| 亚洲成国产人片在线观看| 精品亚洲成国产av| 日本wwww免费看| av线在线观看网站|