羅日成,盧澤華,張 昇,黃 彪,李 穩(wěn)
(1.長(zhǎng)沙理工大學(xué)電氣與信息工程學(xué)院,湖南 長(zhǎng)沙 410004;2.高電壓與電磁兼容
北京市重點(diǎn)實(shí)驗(yàn)室(華北電力大學(xué)),北京 102206;3.溫嶺供電公司,浙江溫嶺 317500)
基于Toeplitz算法的諧波和間諧波參數(shù)估計(jì)*
羅日成1?,盧澤華2,張 昇3,黃 彪1,李 穩(wěn)1
(1.長(zhǎng)沙理工大學(xué)電氣與信息工程學(xué)院,湖南 長(zhǎng)沙 410004;2.高電壓與電磁兼容
北京市重點(diǎn)實(shí)驗(yàn)室(華北電力大學(xué)),北京 102206;3.溫嶺供電公司,浙江溫嶺 317500)
為準(zhǔn)確地檢測(cè)電力系統(tǒng)中諧波信號(hào)的參數(shù),從被檢測(cè)信號(hào)噪聲的基本特性出發(fā),將空間譜估計(jì)理論中的Toeplitz算法應(yīng)用于諧波、間諧波參數(shù)檢測(cè).首先對(duì)采樣信號(hào)構(gòu)成的自相關(guān)矩陣進(jìn)行奇異值分解,根據(jù)不同時(shí)刻白噪聲相互獨(dú)立的原理劃分出噪聲子空間和信號(hào)子空間,再利用最小二乘法和旋轉(zhuǎn)不變參數(shù)估計(jì)的原理,實(shí)現(xiàn)信號(hào)的頻率和幅值參數(shù)的準(zhǔn)確估計(jì).根據(jù)白噪聲均值為0的特性,通過(guò)仿真實(shí)驗(yàn)和現(xiàn)場(chǎng)數(shù)據(jù)分析表明:本文提出的方法在提高諧波和間諧波的參數(shù)估計(jì)精度和抗噪能力等方面具有較好的可行性和有效性,能滿足實(shí)際應(yīng)用的需要.
諧波;間諧波;Toeplitz;最小二乘;旋轉(zhuǎn)不變性;陣列信號(hào)處理;共軛矩陣
近年來(lái),非線性電力電子設(shè)備被廣泛應(yīng)用,使電網(wǎng)中出現(xiàn)了日趨嚴(yán)重的電能質(zhì)量問(wèn)題[1-2],尤其以諧波、間諧波污染為主.隨著中國(guó)加快推進(jìn)智能電網(wǎng)的建設(shè),對(duì)海島風(fēng)電、太陽(yáng)能等新能源、儲(chǔ)能設(shè)備(如鉛酸蓄電池組、鋰電池組等)和電動(dòng)汽車充電設(shè)備的并網(wǎng)運(yùn)行[3],都給電網(wǎng)帶來(lái)較大的諧波污染;諧波污染會(huì)增加電網(wǎng)損耗,減小電力供應(yīng)的效率,也會(huì)造成供電不穩(wěn)定、保護(hù)裝置誤動(dòng)作,給電力系統(tǒng)帶來(lái)十分嚴(yán)重的后果.
目前諧波和間諧波的檢測(cè)算法都是建立在能夠精確分析信號(hào)的頻譜特征的前提上,對(duì)其頻率和幅值進(jìn)行估計(jì).現(xiàn)有的檢測(cè)方法主要有快速傅里葉變換(FFT)和小波分析等時(shí)域估計(jì)方法,多重信號(hào)分類(Multiple Signal Classification,MUSIC)、最小二乘-子空間旋轉(zhuǎn)不變子空間(TLS-ESPRIT)等具有代表性的子空間分解類譜估計(jì)算法[4],以及神經(jīng)網(wǎng)絡(luò)和遺傳算法等智能辨識(shí)分析方法.FFT在檢測(cè)不穩(wěn)定信號(hào)時(shí),易造成頻譜泄漏,難實(shí)現(xiàn)信號(hào)同步采樣,容易引起測(cè)量結(jié)果不準(zhǔn)確[5-7].小波變換在電網(wǎng)系統(tǒng)出現(xiàn)頻率偏差時(shí),小波變換法的頻率分辨率低,會(huì)發(fā)生頻譜泄露問(wèn)題[8-9].MUSIC可較精確估計(jì)出諧波參數(shù),但要進(jìn)行復(fù)雜的峰值搜索,計(jì)算量較大,且在峰值搜索的過(guò)程中存在柵欄效應(yīng),導(dǎo)致頻率估計(jì)精度不夠精確[10-12].TLS-ESPRIT需要提前估計(jì)出子信號(hào)的數(shù)目,實(shí)際信號(hào)數(shù)目與估計(jì)數(shù)目有差別時(shí),會(huì)導(dǎo)致噪聲子空間和信號(hào)子空間不正交,造成估計(jì)結(jié)果不準(zhǔn)確[13].神經(jīng)網(wǎng)絡(luò)和遺傳算法屬于人工智能算法,對(duì)噪聲的敏感程度不高,但是對(duì)樣本的要求很嚴(yán)格,需要對(duì)訓(xùn)練樣本進(jìn)行長(zhǎng)久訓(xùn)練,過(guò)程復(fù)雜[14].
本文提出的Toeplitz算法主要是利用信號(hào)子空間的旋轉(zhuǎn)不變性.首先對(duì)采樣信號(hào)構(gòu)成的協(xié)方差矩陣進(jìn)行奇異值分解,得到大特征值組成的信號(hào)子空間,然后利用分解后的奇異矢量來(lái)近似代替數(shù)據(jù)協(xié)方差矩陣并構(gòu)造新的求解矩陣,再用最小二乘法求解,得到相應(yīng)的頻率、幅值信息.
Toeplitz法是基于子空間分解的高分辨率的諧波和間諧波檢測(cè)新方法,能有效地識(shí)別電網(wǎng)中衰減和非衰減正弦信號(hào)的頻率、幅值等信息.該方法被廣泛應(yīng)用于語(yǔ)音信號(hào)和陣列信號(hào)的處理以及電力系統(tǒng)暫態(tài)信號(hào)的分解等方面.
假設(shè)信號(hào)由M個(gè)復(fù)正弦信號(hào)和一個(gè)高斯白噪聲組成:
式中:ai為諧波幅值;fi為頻率;φi為初始相位;i為諧波次數(shù),當(dāng)i=0時(shí),x(t)為基波;w(t)為均值等于0,方差σ2=1的白噪聲,且與各個(gè)頻率分量相互獨(dú)立.
對(duì)于N個(gè)快拍數(shù),式(1)也可表示為:
對(duì)信號(hào)采樣,建造U×V的采樣數(shù)據(jù)矩陣:
式中:V為時(shí)間長(zhǎng)度,且V>M;U+V為采樣數(shù)目.
定義信號(hào)矢量:
式中:A=[A1,A2,…,AM]T;φ=diag{ejω1,ejω2,…,ejωM};P=[p(f1),…,p(fM)].其中p(fi)=[1,ejωi,…,ej(V-1)ωi],1≤i≤M;求得矩陣φ后,由于φ中含有信號(hào)源的頻率信息,即可求出信號(hào)的頻率,進(jìn)而得出其余信號(hào)頻率的相關(guān)參數(shù).
Toepliz算法首先求取采樣數(shù)據(jù)矩陣X的協(xié)方差矩陣:
對(duì)協(xié)方差矩陣R進(jìn)行奇異值分解,可得到:
式中:Σs為大特征值組成的對(duì)角陣;Σn為小特征值組成的對(duì)角陣;λk和ek分別是協(xié)方差矩陣R的第i個(gè)特征值及其對(duì)應(yīng)的特征矢量(1≤k≤M),由于大小特征值在數(shù)值上差別明顯,根據(jù)特征值的這一特性,可劃分信號(hào)子空間與噪聲子空間,大特征值組成的是信號(hào)子空間Us=[e1,e2,…,eD];小特征值組成的是噪聲子空間Un=[eD+1,…,eM],D為大特征值的個(gè)數(shù).
此時(shí),可用奇異值分解后的奇異矢量來(lái)近似代替無(wú)噪聲情況下的數(shù)據(jù)協(xié)方差矩陣:
通過(guò)旋轉(zhuǎn)不變子空間的方法:
此時(shí),可將矩陣B分為兩個(gè)M-1維的子空間B1和B2.B1為矩陣B去掉最后一行后的M-1維子空間;B2為矩陣B去掉第一行后的M-1維子空間.可知:
顯然易見B1和B2滿足如下關(guān)系:
式中:矩陣D為最小二乘解.從式(11)可知:
其中,Us1為Us的前M-1行,Us2為Us的后M-1行.所以式(8)的最小二乘解為:
對(duì)矩陣D進(jìn)行特征分解,由特征值λM即可獲得信號(hào)源中各個(gè)分量的頻率fM.
式中:fi為信號(hào)的頻率.
在求得信號(hào)中各個(gè)正弦分量的頻率后,可通過(guò)最小二乘法求得幅值信息.對(duì)于N個(gè)采樣信號(hào),令
由最小二乘法可得:
由式(16)求得各信號(hào)分量的幅值為:
基于Toeplitz算法,對(duì)N點(diǎn)采樣數(shù)據(jù),先通過(guò)式(7),(8),(9),(14)和式(15)估計(jì)出信號(hào)頻率信息,再通過(guò)式(16)和式(17)估計(jì)出幅值.本文算法流程圖如圖1所示.
圖1 算法流程圖Fig.1 Flowchart of algorithm
在電力系統(tǒng)中的諧波和間諧波幅值均不大,故將仿真信號(hào)中的諧波幅值比例控制在20%以內(nèi),通過(guò)式(18)進(jìn)行仿真實(shí)驗(yàn).
式中:w為均值是0,方差為0.01的白噪聲;信號(hào)由頻率為50 Hz的基波,頻率分別為150 Hz和350 Hz的諧波以及頻率分別為42 Hz和276 Hz的間諧波等多個(gè)子信號(hào)組成.信噪比SNR為25 d B,采樣頻率為1 k Hz,采樣個(gè)數(shù)為512.加入高斯白噪聲后的波形如圖2所示.
圖2 仿真信號(hào)波形圖Fig.2 Waveforms of the simulation harmonic signal
利用Toeplitz提取的基波和諧波信號(hào)如圖3所示.表1為Toeplitz算法與經(jīng)典FFT算法所得頻率與幅值的比較.
圖3 算法頻譜分析結(jié)果Fig.3 Spectrum analysis results of algorithm
表1 Toeplitz算法與經(jīng)典FFT算法比較____Tab.1_Comparison of the FFT and Toepl_______ itz
利用Toeplitz算法精確提取了各次諧波信號(hào)的參數(shù),并與用經(jīng)典FFT算法估計(jì)的結(jié)果作比較.定義相對(duì)誤差:
式中:Er為相對(duì)誤差;X(i)為基波或各次諧波頻率、幅值的初值;為本文算法多次測(cè)量取得的平均值.
由表1可知,Toeplitz算法頻率誤差為0.046 7%,幅值誤差為4.367%.FFT算法頻率誤差為0.24%,幅值誤差為14.83%,由于經(jīng)典FFT算法對(duì)簡(jiǎn)諧波的檢測(cè)出現(xiàn)頻譜泄露和柵欄效應(yīng)的問(wèn)題,造成部分子信號(hào)幅頻特性嚴(yán)重失真,檢測(cè)出了一些虛假的間諧波信號(hào)(40.65,0.028;276.93,1.164),淹沒(méi)了原信號(hào)中(42 Hz,276 Hz)的2個(gè)間諧波信號(hào),因此大大影響FFT對(duì)諧波參數(shù)檢測(cè)的準(zhǔn)確性.而本文方法基于信號(hào)子空間的基礎(chǔ)上,結(jié)合子空間旋轉(zhuǎn)不變性思想和最小二乘法的特性,降低了噪聲空間對(duì)參數(shù)檢測(cè)的影響,實(shí)現(xiàn)了對(duì)信號(hào)參數(shù)的有效估計(jì).分析表明,本文算法在低性噪比下比經(jīng)典FFT算法頻率、幅值估計(jì)精確度更高.
為進(jìn)一步驗(yàn)證本文算法的精確性,取與式(18)中相同的512個(gè)樣本數(shù)據(jù)點(diǎn),分別利用Toeplitz,PM-MUSIC(基于PM算子的MUSIC算法),TLSESPRIT(總體最小二乘 -空間旋轉(zhuǎn)不變性)和ROOT-MUSIC(求根MUSIC算法)提取諧波參數(shù). TLS-ESPRIT屬于信號(hào)子空間算法,也是利用子空間信號(hào)的旋轉(zhuǎn)不變性來(lái)求解;PM-MUSIC和ROOT-MUSIC,都屬于噪聲子空間算法,利用導(dǎo)向矢量與噪聲子空間的正交性得到信號(hào)的參數(shù).實(shí)驗(yàn)結(jié)果如表2所示.
表2 Toeplitz算法與PM-MUSIC,TLS-ESPRIT,ROOT-MUSIC算法結(jié)果比較Tab.2 Comparison between Toeplitz and PM-MUSIC,TLS-ESPRIT,ROOT-MUSIC
由表2可知,利用相同的樣本數(shù)據(jù),在信噪比SNR=25 d B的條件下,Toeplitz算法頻率估計(jì)誤差為0.046 7%,幅值估計(jì)誤差為4.367%,均小于其他3種算法的估計(jì)結(jié)果,因此Toeplitz算法的頻率與幅值估計(jì)結(jié)果更精確.
在不同信噪比環(huán)境下,分別利用以上4種算法對(duì)相同的樣本數(shù)據(jù)估計(jì)頻率幅值,圖4為頻率誤差、幅值誤差與信噪比關(guān)系,在不同信噪比環(huán)境下,TLS-ESPRIT,PM-MUSIC,ROOT-MUSIC算法的頻率估計(jì)值相差不大,當(dāng)SNR=10 dB時(shí),誤差值增大到0.125%.從圖4可知,Toeplitz算法估計(jì)的頻率誤差明顯小于其他3種算法,因此抗噪能力更強(qiáng).在SNR為10 dB時(shí),Toeplitz算法估計(jì)的幅值誤差值為9.24%,比其他3種算法的幅值估計(jì)更小,估計(jì)性能更優(yōu).隨著信噪比降低,4種方法的估計(jì)精度都出現(xiàn)了一定的衰減,但本文算法的衰減幅度更小.信噪比較高時(shí),PM-MUSIC和ROOT-MUSIC算法性能比較接近,但仍優(yōu)于TLS-ESPRIT算法而差于Toeplitz算法.總的來(lái)說(shuō),Toeplitz算法較PM-MUSIC,TLS-ESPRIT和ROOT-MUSIC算法有更好的抗干擾性,在低信噪比的環(huán)境下,依然能夠獲得較好的參數(shù)估計(jì)性能.
圖4 高斯白噪聲下不同信噪比時(shí)誤差比較Fig.4 Comparison between the error in different SNRS
造成嚴(yán)重閃變的主要原因是工業(yè)負(fù)荷,尤其是那些大量使用電弧爐、軋鋼機(jī)和多組電焊機(jī)的鋼鐵企業(yè).在許多情況下,類似礦井絞車等大型波動(dòng)性電動(dòng)機(jī)負(fù)荷也會(huì)引起閃變問(wèn)題.經(jīng)常會(huì)引起閃變的普通負(fù)荷是電弧爐(Electric Arc Furnace).電弧爐是非線性時(shí)變負(fù)荷,常常造成很大的電壓閃變和諧波畸變,大多數(shù)大電流波動(dòng)在熔化初期產(chǎn)生.在此期間,廢鋼碎塊實(shí)際上會(huì)在兩個(gè)電極之間搭橋,在電爐變壓器二次側(cè)造成大電抗短路.熔化期一般造成1~10 Hz的電壓閃變.一旦熔化期結(jié)束,就進(jìn)入精煉期,通常極間會(huì)有穩(wěn)定的電弧,導(dǎo)致高功率的三相穩(wěn)定負(fù)荷.
在一煉鐵廠的電弧爐中取一相電流數(shù)據(jù),利用Toeplitz方法對(duì)采樣數(shù)據(jù)進(jìn)行檢測(cè)分析.圖5為實(shí)時(shí)信號(hào)波形圖.采樣頻率為1 280 Hz,采樣時(shí)間為0.16 s.圖6為利用Toeplitz算法分析得到的實(shí)時(shí)信號(hào)幅頻特性圖.
圖5 實(shí)時(shí)信號(hào)波形圖Fig.5 Waveforms of real-time signal
圖6 算法檢測(cè)的頻率檢測(cè)結(jié)果Fig.6 Spectrum analysis results of algorithm
在內(nèi)存為2 GB,處理器為core2 extreme qx9770(3.2 GHz),操作系統(tǒng)win7,MATLAB7.0版本下,該算法的用時(shí)為15.2 ms,利用Toeplitz算法可把基波和諧波間諧波信號(hào)有效提取出來(lái)(幅值在0.01 k A以下省略);由圖6可知,頻率分別為49.98,10.76,27.31,73.76,90.90,110.01,157.63,244.80,252.26和350.54,376.34 Hz;幅值分別為0.368 8,0.101 2,0.201 1,0.072 4,0.082 3,0.036 9,0.024 6,0.014 2,0.026 8,0.010 7和0.020 8 k A.實(shí)驗(yàn)結(jié)果驗(yàn)證了該算法能較好地處理實(shí)時(shí)數(shù)據(jù),準(zhǔn)確檢測(cè)出諧波和間諧波信號(hào)參數(shù),具有較好的可通用性.
1)本文在對(duì)幾種常用電力諧波檢測(cè)方法進(jìn)行比較的基礎(chǔ)上,結(jié)合最小二乘理論和旋轉(zhuǎn)不變性思想,提出了基于Toeplitz的諧波和間諧波檢測(cè)方法.
2)仿真實(shí)驗(yàn)結(jié)果驗(yàn)證了Toeplitz法好于FFT法和另外幾個(gè)常見的空間子分解類諧波檢測(cè)方法,它具有較好的抗噪能力.
3)從實(shí)時(shí)數(shù)據(jù)分析得出,Toeplitz法能夠應(yīng)用于實(shí)時(shí)信號(hào)檢測(cè)中,是一種諧波間諧波分析的有效方法,可作為諧波間諧波檢測(cè)的一種新工具.
[1] 林海雪.現(xiàn)代電能質(zhì)量的基本問(wèn)題[J].電網(wǎng)技術(shù),2001,25 (10):5-12. LIN Hai-xue.Main problems of modern power quality[J]. Power System Technology,2001,25(10):5-12.(In Chinese)
[2] 肖湘寧,韓民曉,徐永海,等.電能質(zhì)量分析與控制[M].北京:中國(guó)電力出版社,2004:85-122. XIAO Xiang-ning,HAN Min-xiao,XU Yong-hai,et al.The power quality analysis and control[M].Beijing:China Electric Power Press,2004:85-122.(In Chinese)
[3] 高賜威,張亮.電動(dòng)汽車充電對(duì)電網(wǎng)影響的綜述[J].電網(wǎng)技術(shù),2011,35(2):127-131. GAO Ci-wei,ZHANG Liang.A survey of influence of electrics vehicle charging on power grid[J].Power System Technology,2011,35(2):127-131.(In Chinese)
[4] 王永良,陳輝,彭應(yīng)寧,等.空間譜估計(jì)理論與算法[M].北京:清華大學(xué)出版社,2004:167-189. WANG Yong-liang,CHEN Hui,PENG Ying-ning.Spatial spectrum estimation theory and algorithm[M].Beijing:Tsinghua University Publishing House,2004:167-189.(In Chinese)
[5] 高云鵬,滕召勝,溫和,等.凱塞窗插值FFT的電力諧波分析與應(yīng)用[J].中國(guó)電機(jī)工程學(xué)報(bào),2010,30(4):43-48. GAO Yun-peng,TENG Zhao-sheng,WEN He,et al.Harmonicanalysis based on kaiser window interpolation FFTand itsapplication[J].Proceedings of the CSEE,2010,30(4):43-48. (In Chinese)
[6] 張斌,孫靜.基于Mallat算法和快速傅里葉變換的電能質(zhì)量分析方法[J].電網(wǎng)技術(shù),2007,31(19):35-40. ZHANG Bin,SUN Jing.A power quality analysis method based on Mallat algorithm and fast Fourier transform[J].Power System Technology,2007,31(19):35-40.(In Chinese)
[7] 李麗,嚴(yán)正,王興志.IGG法和擴(kuò)展傅里葉結(jié)合的間諧波分析[J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2010,22(3):9-14. LI Li,YAN Zheng,WANG Xing-zhi.Inter-harmonic analysis using IGG and extended fourier[J].Proceedings of the CSUEPSA,2010,22(3):9-14.(In Chinese)
[8] 杜天軍,陳光禹,雷勇.基于混疊補(bǔ)償小波變換的電力系統(tǒng)諧波檢測(cè)方法[J].中國(guó)電機(jī)工程學(xué)報(bào),2005,25(3):43-48. DU Tian-jun,CHEN Guang-ju,LEI Yong.A novel method for power system harmonic detection based on wavelet transform with aliasing compensation[J].Proceedings of the CSEE,2005,25(3):43-48.(In Chinese)
[9] FERRERO A.High accuracy fourier analysis based on synchronous sampling techniques[J].IEEE Transmission on Instrument and Measurement,1992,41(6):780-785.
[10]蔡濤,段善旭,劉方銳.基于實(shí)值 MUSIC算法的電力諧波分析[J].電工技術(shù)學(xué)報(bào),2009,24(12):149-155. CAI Tao,DUAN Shan-xu,LIU Fang-rui.Power harmonic analysis based on real-valued spectral MUSIC algorithm[J]. Transactions of China Electro-Technical Society,2009,24 (12):149-155.(In Chinese)
[11]REN Q S,WILLIS A J.Fast root-MUSIC algorithm[J]. IEE Electronics Letters,1997,33(6):450-451.
[12]RAO B D,HARI K V S.Performance analysis of Root-MUSIC[J].IEEE Trans on ASSP,1989,37(12):1939-1949.
[13]張君俊,楊洪耕.間諧波參數(shù)估計(jì)的TLS-ESPRIT算法[J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2010,22(2):70-74. ZHANG Jun-jun,YANG Hong-geng.TLS-ESPRIT for interharmonic estimation[J].Proceedings of the CSU-EPSA,2010,22(2):70-74.(In Chinese)
[14]初憲武.基于TLS-ESPRIT算法和自適應(yīng)神經(jīng)網(wǎng)絡(luò)的間諧波分析[J].電工電能新技術(shù),2010,29(2):17-20. CHU Xian-wu.Interharmonic analysis based on TLS-ESPRIT algorithm and adeline neural network[J].Advanced Technology of Electrical Engineering and Energy,2010,29(2):17-20.(In Chinese)
Parameter Estimation of Harmonics and Inter Harmonics Based on Toeplitz Algorithm
LUO Ri-cheng1?,LU Ze-hua2,ZHANG Sheng3,HUANG Biao1,LI Wen1
(1.College of Electrical and Information Engineering,Changsha Univ of Science and Technology,Changsha,Hunan 410004,China;2.Beijing Key Laboratory of High Voltage&EMC,North China Electric Power Univ,Beijing 102206,China;3.Wenling Power Supply Company,Wenling,Zhejiang 317500,China)
In order to accurately detect the parameters of harmonics in the power system,an algorithm based on a method of spatial spectrum estimation named Toeplitz was proposed on the basis of the essential property of noise information.First,eigen-value decomposition was used for the autocorrelation of matrix constructed by sampling data to get signal sub-space and noise sub-space.It adopts the principle of least squares method and rotational invariance techniques to calculate high precision signal parameter flicker.Finally,based on the estimated frequency of every signal component and the characteristic of zero average value of noise signals,the simulation results and the real-time data analysis have verified the effectiveness of the algorithm,which satisfies the needs of practical application.
harmonic;inter-harmonic;Toeplitz;leastsquare;rotational invariance techniques;array signal processing;conjugate matrix
TM935
A
1674-2974(2014)08-0078-06
2014- 03- 17
國(guó)家自然科學(xué)基金資助項(xiàng)目(50977003)
羅日成(1969-),男,湖南隆回人,長(zhǎng)沙理工大學(xué)副教授,博士
?通訊聯(lián)系人,E-mail:luorich@126.com