• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of different degrees of processed ginger using GC-IMS combined with machine learning

    2024-03-21 05:51:16ShuangLiuHongjingDongMinminZhangWeiGengXiaoWang
    Journal of Pharmaceutical Analysis 2024年1期

    Shuang Liu , Hongjing Dong , Minmin Zhang , Wei Geng , Xiao Wang ,*

    a Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province,Shandong Analysis and Test Center,Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China

    b Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China

    c Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China

    Ginger, the rhizomes of Zingiber officinale Roscoe, was a wellknown edible plant species commonly used in China, which has pungent flavor [1].Ginger has numerous chemical compounds,such as phenolic constituents, volatile compounds (VOCs), and polysaccharides [2].Among them, VOCs are considered one of the effective compounds in ginger due to their functional properties,including anti-inflammatory,antioxidant,and analgesic[3].Ginger has four different degrees of processed products, including fresh ginger(SJ),dried ginger(GJ),baked ginger(PJ),and ginger charcoal(JT), and they have different types and contents of VOCs [4].However, the processing process of ginger is difficult to control as the identification of different degrees of processed ginger mainly depends on the subjective evaluation of the pharmacists, such as appearance color,shape,and texture[4].Compared with subjective evaluation,instrument analysis is more objective and accurate.

    In this study, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and machine learning are employed to analyze VOCs and discriminate different degrees of processed ginger.We commenced by collecting different batches of SJ and making different degrees of processed ginger according to China pharmacopoeia 2020 Edition.The authenticity of these samples was evaluated by traditional Chinese medicine experts.The VOCs from different degrees of processed ginger were analyzed by HSGC-IMS.The analytical conditions are recorded in Table S1.A total of eighty VOCs were identified in the different degrees of processed ginger (Table S2).The abbreviation of VOCs is shown in Table S3.The 3D chromatograms and the top view of GC-IMS 3D chromatograms of VOCs in different degrees of processed ginger are shown in Figs.S1A and B, respectively.

    The heatmap of different degrees of processed ginger was formed based on the peak signal in the top view of 3D chromatograms.As shown in Fig.1, some aldehydes and esters were mainly divided in the blue box,and the higher content of these compounds indicated that they are primarily present in SJ.Some alcohols and acids were mainly divided in the purple box, and the higher content of these compounds indicated that they are primarily present in GJ.The above results may be caused by the oxidation of chemical compounds at high temperatures, wherein more aldehyde compounds are oxidized into acid compounds.Some alcohols,ketones and heterocyclic compounds were mainly divided in the green box,and the higher content of these compounds suggested that they are primarily present in PJ.The above results can be attributed to the Maillard reaction due to the ketones are the products of the fragmentation of hydroxyl and carbonyl groups in the second stage of the Maillard reaction[5].Some esters and ketones were mainly divided in the pink box, and the higher content of these compounds suggested that they are primarily present in JT.In a word,the oxidation and Maillard reaction may occur in the stir-frying process of ginger.

    Additionally, the principal component analysis (PCA) is performed in this work to further understand the differences in the VOCs of different degrees of processed ginger(Fig.S1C).The result of the classification distance suggested that PJ and JT were close to each other, which could be attributed to the bias between subjective judgment results and actual results (subjectively mistaking PJ for JT).Moreover, the classification distance between SJ and other groups was the furthest, which might be related to the types and content of VOCs.

    Fig.1.The heatmap of volatile compounds (VOCs) in the different degrees of processed ginger.

    Subsequently,machine learning algorithms were used to screen indicator compounds and to quickly discriminate different ginger processed products, including partial least squares-discriminant analysis (PLS-DA), ridge regression, and elastic network.The VIP>1, |coef| >0.1239, and coef >0.0734 were set as screening conditions of these algorithms, respectively (Figs.S2A-C).As shown in Fig.S2D, a total of nine indicator compounds were screened, and their content in different degrees of processed ginger was different,which suggested that these indicator compounds could be used for training machine learning models (Figs.S2E and S3).

    Secondly,as shown in Table S4,based on the screened indicator compounds,ten machine learning algorithms were used to predict different degrees of processed ginger.Machine learning algorithms can predict four possible results: true positive (TP), true negative(TN), false positive (FP), and false negative (FN).Predicted results including precision, recall,F1 score,and accuracy are calculated to evaluate model performance based on the number of predicted outcomes in each of the four categories,as defined by the following formulas:

    Before analysis,the data are divided into training set and testing set by random sampling process in a ratio of 8:2 (Table S5).Then,four performance metrics, namely precision, recall, F1 score, and accuracy, were assessed (Table S6).The accuracy of all machine learning algorithms was over 0.91,indicating that they all had good classification ability.Additionally, most machine learning models had good performance in classifying SJ and GJ.The top three machine learning algorithms(support vector machine with the linear kernel(SVM-L),logistic regression(LR)and quadratic discriminant analysis (QDA)) achieved high prediction accuracy due to their mathematical properties.Meanwhile, SVM-L tended to have a simpler decision boundary,which could make it easier to interpret and implement in practical applications.LR was a linear model that provides coefficients associated with each feature,allowing for easy interpretation.QDA required relatively few computational resources for training and prediction.Therefore, the influence of factors such as model complexity, interpretability and required computational resources were considered,these models were wellsuited for developing a prediction model to classify the different degrees of processed ginger.As shown in Fig.S4, the confusion matrix was displayed.The results of these machine learning algorithms showed satisfactory classification results, whereas some misclassifications occurred between PJ and JT in the confusion matrix.The results of these machine learning models were acceptable and they could be applied in the prediction of different degrees of processed ginger.

    Finally,the testing set was used to verify the predicted ability of these models.The confusion matrix of the predicted results for these models in the testing set is shown in Fig.S5.Similarly,some misclassifications also occurred between PJ and JT in the confusion matrix,which could be attributed to misclassification of the model for PJ and JT in the training set, leading to misclassification of the model for PJ and JT in the testing set.More data might be needed to assist the model in predicting these two classes and optimize the model.Furthermore, another reason was that PJ and JT were very similar in some features,which were not obvious and were difficult to distinguish.This behavior could be explained by the results of PCA.The accuracy of models in testing set is listed in Table 1.The SVM-L, LR, and QDA also showed high accuracy.These behaviors indicated that these machine learning models had high stability,reliability, and reproducibility, making them suitable for different degrees of processed ginger.

    In summary, this study identified different degrees of processed ginger based on HS-GC-IMS and machine learning.A total of eighty VOCs were identified using HS-GC-IMS.Among them,nine VOCs,such as hydroxyacetone and 2-hexanol,were regarded as indicator compounds.Additionally,based on the nine indicator compounds, ten machine learning models for identification of processed degrees showed good prediction ability.Among them,SVM-L, LR and QDA models can accurately identify different degrees of processed ginger, with accuracies of 0.9412, 0.9706, and 0.9412 in testing set, respectively.Meanwhile, these models showed many advantages,such as easy interpretation,low model complexity and few computational resources.Overall, threemodels, including SVM-L, LR and QDA, had obvious potential applications in the identification of different degrees of processed ginger.Meanwhile, the HS-GC-IMS combined with machine learning offers a simple, quick, and low-cost strategy for discriminating different degrees of processed ginger.

    Table 1 The accuracy of ten machine learning algorithms in testing set.

    CRediT author statement

    Shuang Liu: Methodology, Visualization, Writing - Original draft preparation, Reviewing and Editing;Hongjing Dong: Resources, Project administration;Minmin Zhang: Data curation,Writing - Reviewing and Editing;Wei Geng: Formal analysis, Resources;Xiao Wang: Project administration, Supervision.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This research was predominantly funded by Key R&D Program of Shandong Province (Program No.: 2021CXGC010508), Science,Education and Industry Integration Innovation Pilot Project from Qilu University of Technology (Shandong Academy of Sciences)(Project No.: 2022JBZ02-04), The new innovative team of Jinan(Project No.: 202228020), Shandong Province Taishan Scholar Program(Project No.:tstp20221138).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2023.10.005.

    草草在线视频免费看| 一二三四中文在线观看免费高清| 国产麻豆成人av免费视频| 国产av在哪里看| 内地一区二区视频在线| 婷婷六月久久综合丁香| 午夜福利在线观看免费完整高清在| 大香蕉97超碰在线| 偷拍熟女少妇极品色| 美女被艹到高潮喷水动态| 乱系列少妇在线播放| 高清在线视频一区二区三区 | 亚洲av中文av极速乱| 久久精品夜色国产| 亚洲欧美日韩卡通动漫| 日韩大片免费观看网站 | 亚洲国产高清在线一区二区三| 久久久久久久久中文| 亚洲av成人精品一区久久| 亚洲高清免费不卡视频| 日韩成人av中文字幕在线观看| 一边亲一边摸免费视频| 久久亚洲精品不卡| 久久久午夜欧美精品| 九九在线视频观看精品| 国产午夜精品论理片| 午夜免费男女啪啪视频观看| 99久久成人亚洲精品观看| 中文字幕亚洲精品专区| 中文字幕熟女人妻在线| 日日撸夜夜添| 亚洲欧洲国产日韩| 日本黄大片高清| 国产午夜精品论理片| 狂野欧美白嫩少妇大欣赏| 日韩高清综合在线| 69人妻影院| 男女边吃奶边做爰视频| 亚洲国产欧洲综合997久久,| 国产精品久久久久久精品电影| 亚洲成人精品中文字幕电影| 在线观看av片永久免费下载| 中文亚洲av片在线观看爽| www.av在线官网国产| 亚洲性久久影院| 亚洲在久久综合| 日本与韩国留学比较| 男人舔奶头视频| 久久欧美精品欧美久久欧美| 久久久午夜欧美精品| 久久99蜜桃精品久久| 亚洲欧美日韩无卡精品| 97人妻精品一区二区三区麻豆| 永久免费av网站大全| 国产免费一级a男人的天堂| 日本免费一区二区三区高清不卡| 插逼视频在线观看| 国产午夜福利久久久久久| 国产精品1区2区在线观看.| 久久久久久久久久久免费av| 欧美激情国产日韩精品一区| 中国美白少妇内射xxxbb| 午夜视频国产福利| 18+在线观看网站| kizo精华| 麻豆一二三区av精品| 99热这里只有是精品50| 亚洲精品乱码久久久v下载方式| 男人狂女人下面高潮的视频| 女人被狂操c到高潮| 韩国av在线不卡| 亚洲成人久久爱视频| 97热精品久久久久久| 美女cb高潮喷水在线观看| 最近手机中文字幕大全| 亚洲国产最新在线播放| 91久久精品国产一区二区成人| 国产精品精品国产色婷婷| 一二三四中文在线观看免费高清| 最后的刺客免费高清国语| 久久久色成人| 2021少妇久久久久久久久久久| 亚洲综合精品二区| 精品一区二区三区视频在线| 久久久久网色| 久久人人爽人人片av| 麻豆乱淫一区二区| 免费在线观看成人毛片| 欧美成人精品欧美一级黄| 国产在视频线在精品| 久久这里有精品视频免费| 波多野结衣巨乳人妻| 久久亚洲国产成人精品v| 国产午夜精品一二区理论片| 亚洲人成网站在线观看播放| 麻豆一二三区av精品| 女人久久www免费人成看片 | 久久久久久久久久黄片| 高清日韩中文字幕在线| 少妇丰满av| 欧美精品国产亚洲| 日韩欧美三级三区| 岛国毛片在线播放| 亚洲av成人精品一区久久| 一级爰片在线观看| 亚洲av中文字字幕乱码综合| 色5月婷婷丁香| 免费无遮挡裸体视频| 欧美日韩综合久久久久久| 男的添女的下面高潮视频| 人妻夜夜爽99麻豆av| 一区二区三区高清视频在线| 欧美又色又爽又黄视频| 看非洲黑人一级黄片| 久久久成人免费电影| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久久av| a级毛片免费高清观看在线播放| 少妇裸体淫交视频免费看高清| 乱人视频在线观看| 久久99热这里只频精品6学生 | 国产精品蜜桃在线观看| 老司机福利观看| av线在线观看网站| 国产亚洲av片在线观看秒播厂 | 一本一本综合久久| 亚洲国产色片| 国产成人aa在线观看| 免费看日本二区| 又爽又黄a免费视频| 成人综合一区亚洲| 18+在线观看网站| 伦精品一区二区三区| 在线a可以看的网站| 精品熟女少妇av免费看| 又粗又爽又猛毛片免费看| 亚洲国产精品sss在线观看| 婷婷六月久久综合丁香| 爱豆传媒免费全集在线观看| 色综合站精品国产| 日韩av在线大香蕉| 天天躁日日操中文字幕| 午夜福利在线观看吧| 色视频www国产| 国产av一区在线观看免费| 97超碰精品成人国产| 精品酒店卫生间| 日本黄色视频三级网站网址| 蜜臀久久99精品久久宅男| 久久精品夜夜夜夜夜久久蜜豆| www日本黄色视频网| 免费av毛片视频| 国产视频首页在线观看| 嫩草影院精品99| 99在线视频只有这里精品首页| 久久精品国产99精品国产亚洲性色| 男人狂女人下面高潮的视频| 午夜精品一区二区三区免费看| 国产精品不卡视频一区二区| 国产精品99久久久久久久久| 久久久久国产网址| 两个人的视频大全免费| 热99在线观看视频| 超碰av人人做人人爽久久| 听说在线观看完整版免费高清| av卡一久久| 国产在视频线精品| 简卡轻食公司| 亚洲不卡免费看| 一级毛片aaaaaa免费看小| 日韩成人伦理影院| 国产精品国产高清国产av| ponron亚洲| 看非洲黑人一级黄片| 日本猛色少妇xxxxx猛交久久| 色综合站精品国产| 99国产精品一区二区蜜桃av| 在现免费观看毛片| 亚洲av电影不卡..在线观看| 大又大粗又爽又黄少妇毛片口| 内射极品少妇av片p| 1000部很黄的大片| 自拍偷自拍亚洲精品老妇| 亚洲精品乱久久久久久| 欧美一区二区国产精品久久精品| 日日摸夜夜添夜夜爱| 91精品国产九色| 成人一区二区视频在线观看| 国产精品国产高清国产av| 欧美精品一区二区大全| 成人国产麻豆网| 国产视频首页在线观看| 午夜老司机福利剧场| 国产人妻一区二区三区在| 亚洲人成网站在线播| 亚洲在线自拍视频| 亚洲国产精品合色在线| 男的添女的下面高潮视频| 免费av毛片视频| 日韩强制内射视频| 国模一区二区三区四区视频| 成人鲁丝片一二三区免费| 国产日韩欧美在线精品| 国产成人一区二区在线| 欧美三级亚洲精品| 亚洲怡红院男人天堂| 国产一区二区在线av高清观看| 在线观看美女被高潮喷水网站| 日韩av在线大香蕉| 欧美色视频一区免费| 99久久成人亚洲精品观看| 国产亚洲av片在线观看秒播厂 | 国产真实乱freesex| 欧美另类亚洲清纯唯美| 大又大粗又爽又黄少妇毛片口| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 久久99热这里只有精品18| 欧美一区二区亚洲| 久久久色成人| 日本黄色片子视频| 精品国内亚洲2022精品成人| 中文亚洲av片在线观看爽| 汤姆久久久久久久影院中文字幕 | 国产精品99久久久久久久久| 人妻夜夜爽99麻豆av| 国产精品,欧美在线| 欧美性感艳星| 日本欧美国产在线视频| 欧美3d第一页| 国产淫语在线视频| 看十八女毛片水多多多| 日韩av在线免费看完整版不卡| 色吧在线观看| 日韩成人av中文字幕在线观看| 中文乱码字字幕精品一区二区三区 | 久久久久性生活片| 乱码一卡2卡4卡精品| 九九爱精品视频在线观看| 久久久久久久久中文| 永久免费av网站大全| 亚洲怡红院男人天堂| 精品免费久久久久久久清纯| av女优亚洲男人天堂| 亚洲国产精品久久男人天堂| 免费看光身美女| 亚洲精品久久久久久婷婷小说 | 国产精华一区二区三区| 别揉我奶头 嗯啊视频| 国产伦在线观看视频一区| 国产精品一区二区性色av| 免费电影在线观看免费观看| 免费搜索国产男女视频| 热99re8久久精品国产| 日韩欧美国产在线观看| 亚洲在久久综合| 亚洲国产精品sss在线观看| 亚洲精品国产成人久久av| 亚洲国产色片| 真实男女啪啪啪动态图| 波野结衣二区三区在线| 欧美日本亚洲视频在线播放| 一边亲一边摸免费视频| 国产亚洲av嫩草精品影院| 国产乱人偷精品视频| 国产午夜精品论理片| 久久99蜜桃精品久久| or卡值多少钱| 国产精品嫩草影院av在线观看| 观看免费一级毛片| 免费av不卡在线播放| 日本色播在线视频| 搡老妇女老女人老熟妇| 99热全是精品| 国产欧美日韩精品一区二区| 麻豆久久精品国产亚洲av| 亚洲av免费在线观看| 国产精品久久视频播放| 中文字幕免费在线视频6| 日韩成人伦理影院| 午夜福利在线在线| 丰满乱子伦码专区| 亚洲国产色片| 青春草视频在线免费观看| 久久热精品热| 色综合站精品国产| 成年免费大片在线观看| 国产亚洲精品av在线| 日本五十路高清| 成人漫画全彩无遮挡| 久久精品夜色国产| 日日摸夜夜添夜夜添av毛片| 久久久亚洲精品成人影院| 国产精品人妻久久久影院| 欧美成人a在线观看| 亚洲国产精品久久男人天堂| 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| av在线播放精品| 亚洲欧美精品综合久久99| 黄色日韩在线| 久久久成人免费电影| 91精品伊人久久大香线蕉| 中文字幕亚洲精品专区| 欧美日韩国产亚洲二区| 亚洲自拍偷在线| a级毛片免费高清观看在线播放| 国产精品美女特级片免费视频播放器| 夜夜爽夜夜爽视频| 成人毛片a级毛片在线播放| 变态另类丝袜制服| 午夜激情福利司机影院| 成年版毛片免费区| 国产伦精品一区二区三区视频9| 亚洲婷婷狠狠爱综合网| 国产在线一区二区三区精 | 亚洲精品aⅴ在线观看| 国产精品日韩av在线免费观看| 久久精品国产亚洲网站| 国产又色又爽无遮挡免| 人人妻人人澡欧美一区二区| 深爱激情五月婷婷| 欧美成人免费av一区二区三区| 少妇熟女aⅴ在线视频| 国产不卡一卡二| 欧美成人a在线观看| 亚洲精品一区蜜桃| 小说图片视频综合网站| 国产精品国产三级国产av玫瑰| 少妇熟女欧美另类| 国产精品久久久久久精品电影小说 | 精品久久国产蜜桃| 毛片一级片免费看久久久久| 中文在线观看免费www的网站| 老司机影院毛片| 久久精品久久久久久噜噜老黄 | 又爽又黄a免费视频| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利高清视频| 高清av免费在线| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 寂寞人妻少妇视频99o| 亚洲欧洲日产国产| 桃色一区二区三区在线观看| 联通29元200g的流量卡| 男人舔奶头视频| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 99久久精品一区二区三区| 美女大奶头视频| 日韩欧美精品免费久久| 国产精品麻豆人妻色哟哟久久 | 91精品一卡2卡3卡4卡| 日本午夜av视频| 日韩高清综合在线| 99热精品在线国产| 久久久久久九九精品二区国产| 国国产精品蜜臀av免费| av女优亚洲男人天堂| 人人妻人人看人人澡| 日韩av在线免费看完整版不卡| 一级毛片电影观看 | 男女那种视频在线观看| 午夜福利网站1000一区二区三区| 日本猛色少妇xxxxx猛交久久| 男人狂女人下面高潮的视频| 色综合色国产| 亚洲国产欧美在线一区| 亚洲成人久久爱视频| 麻豆成人av视频| 久久久久精品久久久久真实原创| 99国产精品一区二区蜜桃av| 久久久久久久久久久丰满| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 久久人人爽人人片av| 日韩国内少妇激情av| 亚洲av.av天堂| 99在线视频只有这里精品首页| 看黄色毛片网站| 欧美日韩精品成人综合77777| 一级毛片我不卡| 最近最新中文字幕大全电影3| 永久免费av网站大全| 久久久精品94久久精品| 成人鲁丝片一二三区免费| 国产黄片美女视频| 国产成人精品婷婷| 久久99热6这里只有精品| 黄色一级大片看看| 国产精品,欧美在线| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 久久99热这里只有精品18| 国产美女午夜福利| 久久亚洲国产成人精品v| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 午夜免费男女啪啪视频观看| 97人妻精品一区二区三区麻豆| 99久国产av精品国产电影| 欧美高清成人免费视频www| 26uuu在线亚洲综合色| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看| 麻豆国产97在线/欧美| 色视频www国产| 在线观看66精品国产| 高清av免费在线| 啦啦啦啦在线视频资源| 精品不卡国产一区二区三区| 狂野欧美激情性xxxx在线观看| 国产91av在线免费观看| 三级国产精品欧美在线观看| 免费大片18禁| 国产亚洲av片在线观看秒播厂 | 日本一本二区三区精品| 汤姆久久久久久久影院中文字幕 | 久久99蜜桃精品久久| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| 26uuu在线亚洲综合色| 久久久久网色| 两性午夜刺激爽爽歪歪视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 男人舔女人下体高潮全视频| 亚洲欧美中文字幕日韩二区| 两性午夜刺激爽爽歪歪视频在线观看| 黑人高潮一二区| 国产精品伦人一区二区| 寂寞人妻少妇视频99o| 91在线精品国自产拍蜜月| av在线老鸭窝| 国产精品福利在线免费观看| 在线免费十八禁| 三级经典国产精品| 国产一区二区亚洲精品在线观看| 女的被弄到高潮叫床怎么办| 一区二区三区高清视频在线| 亚洲欧美日韩卡通动漫| 成人综合一区亚洲| 免费观看a级毛片全部| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久国内精品自在自线图片| 亚洲,欧美,日韩| 亚洲精品日韩在线中文字幕| 久久久色成人| 国产老妇女一区| 一个人免费在线观看电影| 免费一级毛片在线播放高清视频| 亚洲伊人久久精品综合 | 国产精品国产高清国产av| 国产av不卡久久| 亚洲在线观看片| 国产成人免费观看mmmm| 狂野欧美白嫩少妇大欣赏| 国产精品国产高清国产av| 成人三级黄色视频| 精品无人区乱码1区二区| 中文天堂在线官网| 男女视频在线观看网站免费| 久久久久免费精品人妻一区二区| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 97人妻精品一区二区三区麻豆| 99热6这里只有精品| 我的老师免费观看完整版| 亚洲国产最新在线播放| 天天一区二区日本电影三级| 国产一区二区亚洲精品在线观看| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 在现免费观看毛片| 色网站视频免费| 国产黄片视频在线免费观看| 国产精品电影一区二区三区| av国产免费在线观看| 人妻少妇偷人精品九色| 国产白丝娇喘喷水9色精品| 丰满乱子伦码专区| 国产日韩欧美在线精品| 欧美日韩精品成人综合77777| 久99久视频精品免费| 日本黄色视频三级网站网址| 男女视频在线观看网站免费| 亚洲无线观看免费| 国国产精品蜜臀av免费| 国产在视频线在精品| 亚洲国产精品sss在线观看| 中文乱码字字幕精品一区二区三区 | 美女cb高潮喷水在线观看| 欧美激情国产日韩精品一区| 久久人人爽人人爽人人片va| 中文字幕制服av| 亚洲精品乱码久久久久久按摩| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品av在线| 一边亲一边摸免费视频| 精品国内亚洲2022精品成人| 国产av不卡久久| 久久久精品大字幕| 国产精品人妻久久久影院| 精品久久久久久久久久久久久| 3wmmmm亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 亚洲成人中文字幕在线播放| 久久久久性生活片| 欧美精品一区二区大全| 亚洲婷婷狠狠爱综合网| 色综合色国产| 舔av片在线| 日韩视频在线欧美| 亚洲怡红院男人天堂| 成人鲁丝片一二三区免费| 边亲边吃奶的免费视频| av卡一久久| 亚洲,欧美,日韩| 中国国产av一级| 在线播放无遮挡| 一级二级三级毛片免费看| 日韩成人伦理影院| 综合色av麻豆| 中文资源天堂在线| 免费看美女性在线毛片视频| 中国美白少妇内射xxxbb| 免费看美女性在线毛片视频| av在线亚洲专区| 久久久精品欧美日韩精品| 高清视频免费观看一区二区 | 精品午夜福利在线看| 亚洲不卡免费看| 日韩中字成人| 成人二区视频| 国产三级在线视频| 色视频www国产| av在线观看视频网站免费| 免费黄色在线免费观看| 欧美一区二区精品小视频在线| videossex国产| 久久久久国产网址| 我要看日韩黄色一级片| 黄色欧美视频在线观看| 日日撸夜夜添| av线在线观看网站| 日本色播在线视频| 免费在线观看成人毛片| 日本与韩国留学比较| 建设人人有责人人尽责人人享有的 | a级一级毛片免费在线观看| 最近视频中文字幕2019在线8| 麻豆成人av视频| 亚洲av熟女| 看免费成人av毛片| 六月丁香七月| av天堂中文字幕网| 国产亚洲av嫩草精品影院| 欧美不卡视频在线免费观看| 美女xxoo啪啪120秒动态图| 国产激情偷乱视频一区二区| 国产欧美另类精品又又久久亚洲欧美| 亚洲av电影不卡..在线观看| 2022亚洲国产成人精品| 午夜爱爱视频在线播放| 国产极品精品免费视频能看的| av国产久精品久网站免费入址| 九草在线视频观看| 国产黄色小视频在线观看| 在线播放无遮挡| 国产视频首页在线观看| 99久久精品一区二区三区| 丰满乱子伦码专区| 国产精品人妻久久久久久| 我要看日韩黄色一级片| 久久鲁丝午夜福利片| 男女视频在线观看网站免费| 欧美三级亚洲精品| 99久国产av精品国产电影| 成年女人看的毛片在线观看| 国产精品一区www在线观看| ponron亚洲| 建设人人有责人人尽责人人享有的 | 一级毛片电影观看 | 欧美区成人在线视频| 毛片一级片免费看久久久久| 99久久九九国产精品国产免费| 日日摸夜夜添夜夜爱| 国内精品一区二区在线观看| 欧美成人a在线观看| 亚洲最大成人中文| 久久精品久久精品一区二区三区| 国产精品乱码一区二三区的特点| 女的被弄到高潮叫床怎么办| 亚洲精品自拍成人| 秋霞在线观看毛片| 欧美日韩在线观看h| 中文字幕免费在线视频6| 男女下面进入的视频免费午夜| 国产精品蜜桃在线观看| av免费观看日本| 免费黄网站久久成人精品| 只有这里有精品99| 少妇人妻精品综合一区二区| 久久久午夜欧美精品| 麻豆av噜噜一区二区三区| 黄片wwwwww| av黄色大香蕉| 爱豆传媒免费全集在线观看| 成人美女网站在线观看视频| 国产精品一区二区三区四区久久| 国产色婷婷99| 精品午夜福利在线看| 中文字幕久久专区| 成人特级av手机在线观看| 亚洲欧美成人精品一区二区|