劉猛猛,洪 鷹
(天津大學(xué)機(jī)械工程學(xué)院,天津300072)
基于橢圓運(yùn)動(dòng)方式的小工具拋光去除函數(shù)
劉猛猛,洪 鷹*
(天津大學(xué)機(jī)械工程學(xué)院,天津300072)
為了改進(jìn)傳統(tǒng)的小工具拋光的去除函數(shù)的特性和提高去除效率,在行星和平轉(zhuǎn)動(dòng)拋光方式的基礎(chǔ)上,通過(guò)三轉(zhuǎn)子機(jī)構(gòu),實(shí)現(xiàn)了橢圓式運(yùn)動(dòng)方式;以Preston理論為基礎(chǔ),研究并推導(dǎo)了在這種運(yùn)動(dòng)方式下的材料去除函數(shù);通過(guò)計(jì)算機(jī)模擬得到了去除函數(shù)的面形矩陣,經(jīng)過(guò)優(yōu)化后獲得了最終的拋光參量,得到了與理想的高斯型函數(shù)吻合程度高的去除函數(shù)。結(jié)果表明,仿真加工后,其去除效率優(yōu)于行星式去除函數(shù)?;跈E圓運(yùn)動(dòng)方式的小工具拋光避免了行星和平轉(zhuǎn)動(dòng)拋光方式去除函數(shù)存在的缺陷,有助于提高拋光過(guò)程的去除效率。
光學(xué)制造;去除函數(shù);橢圓運(yùn)動(dòng);仿真加工
隨著激光技術(shù)的發(fā)展,對(duì)高精度大口徑光學(xué)元件需求不斷加大[1]。計(jì)算機(jī)控制表面成型技術(shù)在高精度光學(xué)元件,特別是大口徑元件的實(shí)際加工中得到了廣泛的應(yīng)用,而小工具拋光正是其典型代表。目前,小工具拋光的運(yùn)動(dòng)方式主要有兩種:行星運(yùn)動(dòng)式和平轉(zhuǎn)動(dòng)式。其去除函數(shù)與理想的高斯型去除函數(shù)相比,存在一定的缺陷:去除函數(shù)中心不是單一峰值,甚至出現(xiàn)凹陷,有可能使工件表面出現(xiàn)凸起;曲面不光滑,會(huì)造成中高頻誤差;曲線邊緣處曲線斜率過(guò)于陡峭。而這些缺陷難以通過(guò)調(diào)整其運(yùn)動(dòng)參量而加以改善,以至于小工具拋光技術(shù)在光學(xué)元件加工領(lǐng)域的應(yīng)用受限,發(fā)展緩慢。通過(guò)改變拋光盤(pán)的形狀是改善這種現(xiàn)狀的一種方式[2],但受限于加工條件,難以獲得與理論形狀完全一致的拋光盤(pán);同時(shí)在拋光盤(pán)直徑相同的前提下,減小其有效拋光面積,可以降低去除的效率。因此改變其運(yùn)動(dòng)方式,是一種改善去除函數(shù)特性的有效方法。
作者基于行星運(yùn)動(dòng)方式的相關(guān)理論,在自轉(zhuǎn)與公轉(zhuǎn)之間增加1級(jí)橢圓運(yùn)動(dòng),形成三轉(zhuǎn)子拋光機(jī)構(gòu),并對(duì)其各個(gè)運(yùn)動(dòng)參量進(jìn)行優(yōu)化,獲得了理想的去除函數(shù)。
1.1 行星運(yùn)動(dòng)式拋光技術(shù)相關(guān)理論
去除函數(shù)的理論基礎(chǔ)是Preston方程[3],材料的去除量與拋光盤(pán)、工件間的壓力、速率成正比:
式中,z為某一點(diǎn)的材料去除量;t為時(shí)間;K為比例常數(shù),它由除速度和壓力以外的其它因素決定;v為某點(diǎn)某一瞬時(shí)的速率;p為該點(diǎn)該瞬時(shí)的壓力。則對(duì)于拋光面上任一點(diǎn)其去除函數(shù)為:
式中,R(x,y)為去除函數(shù);T為拋光盤(pán)在任意一個(gè)給定區(qū)域所停留的時(shí)間;Δz(x,y,t)為不移動(dòng)拋光模的材料去除量,是拋光模坐標(biāo)和時(shí)間的函數(shù)。
行星式運(yùn)動(dòng)機(jī)構(gòu)如圖1所示。拋光盤(pán)的公轉(zhuǎn)電機(jī)角速度為ω1,自轉(zhuǎn)電機(jī)角速度為ω2,偏心距為e,R為拋光盤(pán)半徑,對(duì)于拋光區(qū)域內(nèi)一點(diǎn),與公轉(zhuǎn)中心距離為s,夾角為θ,ω1=dθ/d t。令g=s/R,ρ=e/R,n=ω2/ω1,則隨距離s變化的去除函數(shù)為[4]:
Fig.1 Schematic diagram of planetmotion model
適當(dāng)選取運(yùn)動(dòng)參量,經(jīng)過(guò)優(yōu)化后[5],其歸一化特性曲線如圖2所示。
Fig.2 Performance curve of polishing pad(ρ=0.83,n=8)
1.2 橢圓運(yùn)動(dòng)式去除函數(shù)
在傳統(tǒng)的行星式運(yùn)動(dòng)方式的自轉(zhuǎn)與公轉(zhuǎn)之間增加正弦連桿機(jī)構(gòu)以及十字滑塊,以實(shí)現(xiàn)橢圓運(yùn)動(dòng)方式,其機(jī)構(gòu)簡(jiǎn)圖如圖3所示。
Fig.3 Sketch map ofmechanism
建立簡(jiǎn)化后的數(shù)學(xué)模型,如圖4所示。O為公轉(zhuǎn)中心;O1A為曲柄,長(zhǎng)度為r;橢圓電機(jī)做逆時(shí)針回轉(zhuǎn)運(yùn)動(dòng),角速度為ω3,轉(zhuǎn)角為θ1;AB為滑竿,長(zhǎng)度為l1;BC為橢圓擺桿,長(zhǎng)度與r相等,與x軸夾角為θ2,其上的M點(diǎn)做橢圓運(yùn)動(dòng),是自轉(zhuǎn)中心,與C點(diǎn)的距離為d。
Fig.4 Schematic diagram of ellipsemotion model
此時(shí)M點(diǎn)沿坐標(biāo)軸方向的速度分量vx′,vy′為:
考慮公轉(zhuǎn)運(yùn)動(dòng)后,其速度分量vMx,vMy為:
式中,φ為公轉(zhuǎn)運(yùn)動(dòng)的轉(zhuǎn)角,對(duì)于拋光盤(pán)上任意一點(diǎn)Q(x,y),在任意時(shí)刻的沿坐標(biāo)軸的速度分量vQx,vQy為:
則Q點(diǎn)速度大小為:
當(dāng)拋光盤(pán)在Q點(diǎn)存在材料去除時(shí),應(yīng)滿足(xM-x)2+(yM-y)2≤R2,即:
根據(jù)上式可以確定有效的時(shí)間區(qū)間t1,t2,…,tn∈T,則Q點(diǎn)處歸一化去除函數(shù)為:
基于橢圓運(yùn)動(dòng)方式的去除函數(shù),當(dāng)各個(gè)參量取值不同時(shí)差別較大,需要對(duì)各個(gè)參量進(jìn)行優(yōu)化。對(duì)于給定的曲柄轉(zhuǎn)速以及長(zhǎng)度,決定去除函數(shù)的參量分別是公轉(zhuǎn)電機(jī)角速度ω1,自轉(zhuǎn)電機(jī)角速度ω2,點(diǎn)M與點(diǎn)C的距離d以及拋光盤(pán)的半徑R。適當(dāng)選取各個(gè)參量的取值,獲得較為理想的去除函數(shù)形狀,歸一化處理后作為優(yōu)化程序的初始值,如圖5所示。
理想的去除函數(shù)應(yīng)滿足以下特點(diǎn)[6-7]:(1)具有旋轉(zhuǎn)對(duì)稱(chēng)特性;(2)在中心處具有單個(gè)峰值,而邊緣處去除量為0;(3)中心處和邊緣處斜率為0;(4)連續(xù)光滑。
Fig.5 Initial value of removal function
參量?jī)?yōu)化以上述原則為優(yōu)化條件,對(duì)參量進(jìn)行優(yōu)化。
由于運(yùn)動(dòng)方式基于橢圓運(yùn)動(dòng),因此公轉(zhuǎn)與橢圓運(yùn)動(dòng)的周期比決定了其表面的起伏特性。依據(jù)旋轉(zhuǎn)對(duì)稱(chēng)的原則,對(duì)去除函數(shù)同一半徑上函數(shù)值的均方差為目標(biāo)進(jìn)行優(yōu)化,確定最佳轉(zhuǎn)速比。給定適當(dāng)?shù)娜≈捣秶筮M(jìn)行1維搜索優(yōu)化。優(yōu)化后的公轉(zhuǎn)角速度與橢圓運(yùn)動(dòng)角速度的比值為1∶0.073,均方差由初始的0.0076減小到0.0029。
假設(shè)理想函數(shù)為以四次多項(xiàng)式曲線為母線旋轉(zhuǎn)后得到的曲面[8]。根據(jù)上述原則確定出邊界條件,化簡(jiǎn)后可以得到包含一個(gè)參量的曲線方程,并將其與上一步的去除函數(shù)進(jìn)行擬合,可以得出與上述結(jié)果最為接近的理想去除函數(shù)。得到的四次多項(xiàng)式曲線為:
以理想函數(shù)為逼近目標(biāo),以均方差為優(yōu)化對(duì)象,對(duì)自轉(zhuǎn)速度ω2、距離d和拋光盤(pán)的半徑R進(jìn)行優(yōu)化,使去除函數(shù)逼近理想去處函數(shù)。由于可能存在許多局部最優(yōu)解,優(yōu)化中對(duì)3個(gè)參量分別進(jìn)行1維搜索,選擇其中最敏感的參量替代初值繼續(xù)下一步優(yōu)化,當(dāng)滿足給定的精度要求后則停止。優(yōu)化后公轉(zhuǎn)角速度與自轉(zhuǎn)角速度的比值為1∶5.1691,距離d與曲柄長(zhǎng)度的比值為1∶0.1870,拋光盤(pán)半徑與曲柄長(zhǎng)度的比值為1∶0.4979,均方差由0.029變?yōu)?.028。并再次對(duì)公轉(zhuǎn)速度優(yōu)化,檢驗(yàn)對(duì)其的影響大小,優(yōu)化后的其均方差仍為0.028,影響極小,可將上述優(yōu)化結(jié)果視為最終結(jié)果,如表1所示。其去除函數(shù)如圖6所示,計(jì)算流程圖如圖7所示。
Table 1 Optimized parameters
Fig.6 Final value of removal function
Fig.7 Flow chart
選用正弦面形誤差作為初始面形誤差H(x,y),幅值為2。
式中,λ為正弦頻率參量,取λ=2.5;x,y=[-5,5]。
分別采用橢圓式以及行星式去除函數(shù)進(jìn)行仿真加工,以相同的參量通過(guò)脈沖迭代法計(jì)算駐留時(shí)間[9-11]。圖8為仿真加工結(jié)果。兩種去除函數(shù)均歸一化處理,經(jīng)過(guò)20次迭代后,其面形誤差分別如圖8b和圖8c所示。
Fig.8 Result of simulated processa—sine surface error b—result of planetmotion c—result of ellipse motion
經(jīng)過(guò)行星式運(yùn)動(dòng)的拋光去除函數(shù)仿真加工后,面形誤差均方根值(rootmean square,RMS)值由初始的2.1205減小為0.3184,其峰谷(peak-to-valley,PV)值由3降為0.5833;而橢圓式運(yùn)動(dòng)的拋光函數(shù)經(jīng)仿真加工后,面形誤差的RMS值減小為0.1308,PV值減小為0.5525。不考慮邊緣效應(yīng),從RMS值的變化結(jié)果可以看出,基于橢圓方式的去除函數(shù)在加工時(shí)的收斂效率更高。
對(duì)傳統(tǒng)的行星式拋光技術(shù)進(jìn)行了理論創(chuàng)新,通過(guò)三級(jí)轉(zhuǎn)動(dòng)實(shí)現(xiàn)了基于橢圓運(yùn)動(dòng)方式的小工具拋光,并且獲得了較為理想的去除函數(shù)。與行星式運(yùn)動(dòng)的去除函數(shù)相比,去除函數(shù)更加光滑,沒(méi)有突變,更加接近理想的高斯型去除函數(shù)。
[1] LüBD.Some recentadvances in high-power solid-state lasersand related technologies[J].Laser Technology,1998,22(4):193-198(in Chinese).
[2] CHEN H N,WANG JL,LIX L,etal.Modeling and approximation of Gaussian-like removal function in dual-rotor polishing technology of optics elements[J].Acta Photonica Sinica,2013,42(3):1-6(in Chinese).
[3] XIN Q M,SUN Y N,XIE J H.Modern optical manufacturing technique[M].Beijing:National Defense Industry Press,1997:8-14(in Chinese).
[4] WANGQD,LIU M C,ZHANGH X.Removing function of polishing pad in computer controlled optical polishing[J].Optical Technique,2000,26(1):32-34(in Chinese).
[5] WANG Q D,YU JCh,ZHANG F.Polishing performance comparison of small polishing pad worked in differentmotion model in computer controlled optical polishing[J].Optics and Precision Engineering,1999,7(5):73-79(in Chinese).
[6] SHANGW J.Model building and simulation of computer control deterministic grinding and polishing[D].Changsha:National U-niversity of Defense Technology,2005:8-10(in Chinese).
[7] WENZEL D J,MCFALLSD S.An optimalmaterial removal strategy for automated repair of aircraft canopies[C]//Robotics and Automation,1989.Scottsdale,Arizona,USA:IEEE,1989:370-376.
[8] LIAM.Study on removing characteristics and technology of polishing of a small tool in computer control[D].Changsha:National University of Defense Technology,2003:16-26(in Chinese).
[9] ZHOU X Sh.Study on techniques in computer-controlled grinding and polishing for large andmedium aspheric surfaces[D].Changsha:National University of Defense Technology,2007:43-60(in Chinese).
[10] LUO L L,HE JG,WANG Y J,etal.Large-scale dwell time algorithm for computer controlled optical surfacing[J].High Power Laser and Particle Beams,2011,23(12):3208-3212(in Chinese).
[11] SHIF,DAIY F,PENG X Q,etal.Dwell time algorithm based on vector for MRF process of optics[J].Journal of National University of Defense Technology,2009,31(2):103-106(in Chinese).
Removal function of small tool polish based on ellipsemotion
LIU Mengmeng,HONG Ying
(School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)
In order to improve the property and the efficiency of traditional removal function of small tool polish,ellipse motion method was achieved through three-rotor movement on the basis of planetmotion.Then,a new removal function was investigated and deduced based on the assumption of Preston.At last,the surfacematrix of removal function was calculated by computer and after optimization.The final parameters and the removal function which was close to the ideal Gaussian function were obtained.The results show the removal efficiency of ellipse motion is better than planetary removal’s.Removal function based on ellipsemotion can avoid the defectof previous function of planetmotion and increase the removal efficiency during polishing process.
optical fabrication;removal function;ellipsemotion;simulated process
O439
A
10.7510/jgjs.issn.1001-3806.2014.03.027
1001-3806(2014)03-0406-05
國(guó)家科技重大專(zhuān)項(xiàng)課題資助項(xiàng)目(2013ZX04006-207)
劉猛猛(1989-),男,碩士研究生,現(xiàn)在主要從事小工具拋光系統(tǒng)的開(kāi)發(fā)研究。
*通訊聯(lián)系人。E-mail:hying1122@126.com
2013-07-31;
2013-08-18