• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sound Radiation Characteristics of A Submerged Stiffened Cylindrical Shell Subjected to Internal Acoustic Excitations

    2014-06-07 06:01:44GUANShanshanDENGHaihuaCHENMing
    船舶力學(xué) 2014年3期

    GUAN Shan-shan,DENG Hai-hua,CHEN Ming

    (Wuhan Secondly Research Institute of Ship-designing,Wuhan 430064,China)

    Sound Radiation Characteristics of A Submerged Stiffened Cylindrical Shell Subjected to Internal Acoustic Excitations

    GUAN Shan-shan,DENG Hai-hua,CHEN Ming

    (Wuhan Secondly Research Institute of Ship-designing,Wuhan 430064,China)

    A method for calculating the outside sound radiation of an enclosure cylindrical cabin housing machines which produce both internal noise and mechanical forces is proposed.According to Flügge theory and the Helmholtz equation,a‘stiffened cylindrical shell-cavity-outside radiated sound field’coupling equation is presented.To solve this coupling equation,the displacements of the cylinder are expanded in a series of its eigenmodes.The displacements of the cavity are expressed by acoustic modes.And the inside and outside sound pressures are treated as reaction forces on the shell. Then according to the orthonormal relations of modes of the shell,the solution method of the coupling vibration equations expressed by shell’s displacements is given.The sound radiation characteristics of a submerged stiffened cylindrical shell inspirited by harmonious exciting forces are reappeared. The results agree well with the relative reference papers,thus demonstrating the rationality of the theoretical method.Then the effects of the cut-off mode order numbers of the cavity on the calculation accuracy are described.Finally,the influences of different positions of an interior source on acoustic of the shell are obtained,and the comparisons of sound radiation properties of interior sources which have the same phases and different phases are carried out.The theoretical solution and the discussion are favorable for noise reduction of submerged stiffened cylindrical shells.

    finite stiffened cylindrical shell;internal acoustic excitations; sound radiation characteristics;cut-off mode

    1 Introduction

    The sound radiation of a submarine housing machines that produce both noise and vibration is composed by two parts,as shown in Fig.1:the first part is the acoustic by the machine noise itself exciting the structures called‘Airborn Sound’;the second part is the vibro-acoustic of submarine excited by the vibratory force of machines,called‘Structureborn Sound’.The sound radiation of submarine induced by mechanical forces has been decreased in effect with the development and management of silent equipments and isolation technique.So the sound radiation of submerged shells excited by interior air source has received a great deal of attention recently.

    Stiffened cylindrical shells are widely used in many structural applications,such as submarine hulls,torpedoes,and waterborne missiles.The sound radiation of a submerged stiffened cylinder and the characteristics of a three-dimensional acoustical enclosure have been respectively investigated in more detail by many researchers.And the acoustic radiation of shells excited by driving forces in infinity acoustic medium[1-2]and the characteristics and active noise control of the internal sound pressure field surrounded by flexible structures[3-5]have been discussed by a majority of investigation.Yet very little work can be found on the external sound radiation of submerged closed stiffened cylindrical shells excited by acoustic excitations.

    This paper proposes a method to calculate the outside sound radiation of machines in an enclosure submerged cylindrical cabin which produces both internal noise and mechanical forces.According to Flügge theory,the Helmholtz equation and the previous researches[6-7],a‘stiffened cylindrical shell-cavity-outside radiated sound field’coupling equation is described and solved by using the modal superposition principle.The sound radiation characteristics of a submerged stiffened cylindrical shell excited by interior sources are obtained.And the influences of different positions of the interior sources and different phases of sources on the sound radiation of the shell are also analyzed.This discussion is favorable for noise reduction of a hull.

    2 Physics model and theoretical development

    Fig.1 Theoretical model of an engine cabin and the coordinate system

    The physics model is a submerged stiffened cylinder,as shown in Fig.1.It is assumed that the shell is simply supported on two semi-infinite rigid baffles.Junger and Feit[8]showed that mutual reactances were generally negligible.The structure response ranges in linear elastic scopeand the inside and outside fluid are satisfied with linear acoustic conditions.R,h and L denote the radius,the thickness,and the total length of the shell,respectively.l is the spacing of rings.F denotes vibratory forces.Q denotes point sound sources.ρ1and c1are the density and acoustic velocity of the external sound field respectively.ρ2and c2are the density and acoustic velocity of the internal sound field respectively.

    Using a cylindrical coordinate systemz,()θ,u,v and w are the orthogonal components of the shell displacement in the axial,circumferential and radial directions respectively,as shown in Fig.1.

    2.1 Equations of motion for a submerged stiffened cylindrical shell

    The Flügge equation of thin shell is applied to describe the motion of the submerged cylinder.Using deformation harmonious conditions of the interface,the effects of stiffeners are treated as counter forces and counter moments acting on the cylindrical shell.So the solution of acoustic pressure is changed to the solution of coupling vibration equation.The coupling vibration equations of the acoustic-fluid-structure are obtained:

    where[l]is Flügge’s operators(see Ref.[9]).[F]is the generalized force matrix for point excitations applied to the shell.Fr[]is the generalized counter forces martix of rings.Fh[]is the generalized counter forces matrix of longitudinal girders.pin[]andpout[]are the interior and exterior acoustic pressure vector loading on the shell surface respectively.As part of this equation,]and[pout]are already studied by Refs.[6]and[7].Main attention is paid to the acoustic pressure of the cavitypin[]in this paper.

    2.2 Equations of motion for a cylindrical-shaped cavity

    The cylindrical-shaped cavity contains some harmonic point sound sources.is the number of the sources.The acoustic pressure inside the cavity satisfies the non-homogeneous wave equation.According to the continuity of velocities on the different parts of the cavity walls,the equation of pincan be expressed as follows[3]:

    where Qk(z,θ,r,t)is the volume velocity distributed function of the k3th point sound source.

    3k3values from 1 tois the serial number of the harmonic sources.And pincan be given by pin(z,θ,r,t)=pin(z,θ,r) e-jωt.ω is the angular frequency.

    According to the Green function and Gauss integral theory,pincan be expressed as a Kirchholff-Helmholtz integral expression based on Eq.(2)[10]:

    where →r=(z,θ,r)is the coordinate vector of an arbitrary point in the cavity.)and →rsare the sound pressure and the coordinate vector of an arbitrary point on the walls of the cavity, respectively.r→k3is the position coordinate vector of the k3th sound source,and r→k3=zk3,θk3,rk3

    (). S is the surface of the walls. Gcr→,r→κ,()ωwhich is the Green’s function of the cavity satisfies the Neumann boundary condition.It can be expressed as follows:

    where φn~r→()and ωn~are the mode shape and the angular frequency of the n~th order mode of the cavity,respectively.is the volume of the closed cylindrical-shaped cavity.

    2.3 Solution to the coupling equation

    This finite-shell satisfies the simply-supported boundary condition.General solutions to the equations of motion for the cylindrical shell can be assumed as:

    where 0≤z≤L,0≤θ≤2π,m=1:∞,n=0:∞.m is the longitudinal half-mode number.n is thecircumferential mode number.kmis the axial wavenumber,km=mπ/L,contains the unknown wave amplitudes of the(m,n) th order mode of the shell.

    23

    The interior pressure is the sum of two componentsSubstituting Eqs.(6)and(7)into Eq.(5)yields:

    couplemnn~are the coupling coefficients which express the relationship of them,()nth order mode of the shell and the)th order mode of the cavity.

    According to the orthonormal relations of modes of the shell,Eq.(1)is multiplied by a orthogonal transform matrixsulting in:

    where,D=R2(1-ν2)/(Eh),p=1:∞,q=0:∞,are the decoupling expressions of Pin1and Pin2after orthogonal transforming,respectively.

    The structure-cavity coupling analysis can be achieved by solving Eq.(11)composed by max(m)×max(n)×3 equations.Thereforecan be obtained and three main characteristic parameters of acoustic radiation will be used in the next analysis,which are defined as follows:

    The outside acoustic power:

    The mean square radial velocity of the shell:

    The radiant efficiency of the shell:

    where Vr(z,θ,R)is the radial velocity of the shell surface.Vr*(z,θ,R)is the conjugate complex quantity of Vrz,θ,()R.

    Fig.2 Acoustic radiated power level

    2.4 Validation of the analytical method for a force driving

    A submerged cylinder excited by a unit force is examined.To confirm the validity of the analytical method presented in this work,results in Refs.[1-2]are represented here.The acoustic power levels of the shell are shown in Fig.(2).A small difference is observed,thus the rationality of the theoretical solution method is demonstrated.

    3 Numerical results

    The stiffened cylinder in water used in the numerical study is L/R=3.0,R/h=115.38,L/l= 15.The ring-stiffeners’type is Γ22a.The shell and the stiffening beams are of the same material with Young’s modulus E=2.1×1011N·m-2,Poisson’s ratio ν=0.3 and density ρs=7 800 kg·m-3.

    The material property of exterior sound field:ρ1=1.0×103kg/m3,c1=1 500 m/s.

    The material property of interior sound field:ρ2=1.29 kg/m3,c2=340 m/s.

    The driving unit internal source is applied at(L/2,0°,R/2).

    3.1 The coupling relationship between the interior sound field and the shell

    The structure-cavity coupled coefficients couplemnn~are given in Tab.1.Clustered coupling characteristics of the coupled structure-cavity can be seen obviously,that is,the values of couplemnn~depend on the even or odd quality of m,n,nˉ1and nˉ2.

    Tab.1 Coupled coefficients couplemnn~of the structure-cavity

    continue Tab.1

    3.2 The radiation impedance of the shell to the internal sound field About the interior sound field,we have:

    Figs.3(a)and 3(b)present the values of the R)andof the shell corresponding to m=p=1,n=q=2,ˉn=1:7.And Figs.2(c)and 2(d)present the values of the R3and Iof the shell corresponding to m=p=2,n=q=2,ˉn=1:7.These results show that1the values of the Rand Irapidly decrease with the increase of the frequency. For high frequenciestends to 0,that is the effect of high rank modes of the cavity on the acoustic characteristics of the shell can be ignored.

    3.3 The influence of the cut-off mode order of the cavity on the calculation accuracy

    A majority of investigation have discussed the effect of the cut-off mode orders of the shell on the calculation accuracy of‘Structureborn Sound’.From Fig.4(a)and(b),when theshell of this paper is excited by a force,max( m,n)=(25,25)is enough for calculation accuracy of‘Structureborn Sound’as the frequency range from 5 Hz to 300 Hz.So this chapter primarily discusses the effect of the cut-off mode orders of the cavity on the calculation accuracy of the‘Airborn Sound’.

    Fig.4 The effect of the cut-off mode orders of the shell on the calculation accuracy of‘Structureborn Sound’

    Fig.5(a)shows the acoustic radiated power levels and mean square radial velocities of the shell as max(ˉn1,ˉn2,ˉn3)are(4,4,4),(8,8,8),(15,15,15)and(25,25,25).It can be seen that the levels as(15,15,15)and(25,25,25)have small difference.Then Fig.5(b) gives the levels as max(ˉn1,ˉn2,ˉn3)are(15,15,15),(15,4,4)and(4,4,4),respectively.Through analysis and comparing the performance,it can be seen that the effect of the maximal value of longitudinal mode of the cavity ˉn1is bigger than maximal values of ˉn2and ˉn3on the calculation accuracy.And for this cylinder,max(15,4,4)can satisfy the calculation accuracy of the‘Airborn Sound’as the frequency range from 5 Hz to 300 Hz.

    Deservedly with the frequency increases,the maximal values ofm,()nof the shell and maximal values ofof the cavity must increase jointly to satisfy the calculation accuracy.

    Fig.5 The effect of the cut-off mode orders)of the cavity on the calculation accuracy of the‘Airborn Sound’

    4 The influence of the internal sound sources on vibro-acoustic characteristics of the submerged cylinder

    4.1 The influence of the position of an internal point sound source on vibro-acoustic characteristics of the submerged cylinder

    (1)The influence of the radial position of an internal point sound source

    Figs.6(a),(b)and(c)present the mean square radial velocity,the radiant efficiency and the acoustic power level of the cylinder excited by a unit internal source whose positions are(L/2,0,0),(L/2,0,R/4),(L/2,0,R/2)and(L/2,0,R-),respectively at the frequency range from 10~300 Hz.R-denotes the source very close to the inner surface of the shell.The influ-ence of the radial position of the internal source on the mean square radial velocity is greater than that on the acoustic power level.And as the frequency increases,the influence on the mean square radial velocity gradually decreases.Figs.6(a)and(b)present the external sound pressure of the outside surface of the shell at x=L/2.

    Due to the locationL/2,0,()0 is the modal node of the radial mode and the axial mode, when the source is located at this place,the number of peaks of the curves is less than that at other places,and except few frequencies the radiant efficiencies are higher and the mean square radial velocities are smaller.When the source is located atL/2,0,()0,the external sound pressure are well-proportioned both at the frequency of 30 Hz and 100 Hz.And when the source is located atL/2,0,R-()which is close to the inner surface of the shell,the mean square radial velocities are bigger than those at other places.Figs.7(a)shows that for the same angles when the source is located atL/2,0,R-()the external sound pressures mostly take bigger values than those at other positions,and when it is located atL/2,0,()0the external sound pressures mostly take smaller values.

    Fig.6 The shell excited by an internal point sound source at different radial positions

    Fig.7 Directivity patterns of the outside surface of the shell at x=L/2

    (2)The influence of the axial position of an internal point sound source

    Figs.8(a),(b)and(c)present the mean square radial velocity,the acoustic power level and the radiant efficiency of the cylinder excited by a unit internal point sound source whose coordinates(z,θ,r)are(L/2,0,R/2)and(L/4,0,R/2),respectively at the frequency range from10~300 Hz.The influence of the axial position of the internal source on the mean square radial velocity and the acoustic power level is small,and the influence gradually decreases with the frequency increases.From Fig.8(c),the effect of the axial position on the radiant efficiency is notable as f<100 Hz.

    Fig.8 The shell excited by the internal point sound source with different axial positions

    4.2 Vibro-acoustic characteristics of the cylinder excited by internal multi-sources

    Two cases are discussed:one case is the shell containing two unit radial symmetrical internal sources with coordinatesrespectively,as shown in Fig.9(a).The other case is the shell containing two unit internal sources with coordinates(L/4,0,R/2)and(3/4L,0,R/2)respectively which are symmetric to the central section of the cylinder,as shown in Fig.9(b).

    Fig.9 Two internal point sound sources in the cavity

    (1)Two unit radial symmetrical point sound sources

    Vibro-acoustic characteristics of the cylinder excited by two radial symmetrical unit sources with the same phases and opposite phases at the frequency range from 10~300 Hz are compared in Figs.10(a),(b)and(c).For f<150 Hz,the maximal peak values of the mean square radial velocity and the acoustic power level of the cylinder excited by two sources with opposite phases are bigger than the case with same phases.And for f>150 Hz,the effect of the sources’phases on vibro-acoustic characteristics of the cylinder is not notable.

    Fig.10 The shell excited by two radial symmetrical unit point sound sources

    Fig.11 Directivity patterns of the outside surface of the shell at x=L/2 excited by two unit radial symmetrical sources

    Directivity patterns at x=L/2 of the outside surface pressure of the shell cylinder at 30 Hz and 100 Hz are given in Fig.11.Except that the angles of-π/2 and π/2,the difference of the outside surface pressure in the two cases is slight.

    (2)Two unit point sound sources which are symmetric to the central section of the cylinder

    Vibro-acoustic characteristics of the cylinder excited by two unit point sound sources which are symmetric to the central section of the cylinder at the frequency range from 10~300 Hz are compared in Figs.12(a),(b)and(c).For f<75 Hz,the values of the curves in the case of opposite phases are clearly bigger than the case of same phases.For f=58 Hz,the mean square radial velocity difference between the two cases can achieve 70 dB,and the outside acoustic power level difference can achieve 40 dB.The Fig.12(c)shows that at one or two frequencies, the values of radiant efficiencies are very high in the case of opposite phases.

    Fig.12 The shell excited by two unit sources which are symmetric to the central section of the cylinder

    5 Conclusions

    According to Flügge theory,the Helmholtz equation and a previous method for calculating the sound radiation of machines in an enclosure finite cylindrical shell,which produces both internal noise and forces,have been introduced.The effect of the cut-off mode orders of the cavity on the calculation accuracy is described.Then the influences of different positions of the interior source on acoustic of the stiffened cylindrical shell are obtained,and the comparisons of sound radiation properties of interior sources which have the same phases and different phases are carried out.The results of the present study are summarized as follows:

    (1)The structure-cavity shows cluster coupling behavior.The structure modes of the shell selectively couple with some acoustic modes of the cavity.

    (2)The effect of the longitudinal mode order nˉ1of the cavity on the calculation accuracy is greater than nˉ2and nˉ3.Deservedly with the frequency increases the cut-off mode orders of the shell and the cavity must increase jointly to satisfy the calculation accuracy.

    (3)The influence of the positions of the internal point sound source on the acoustic power level of the shell is small.The influence of the radial positions on the mean square radial velocity of the shell is greater than that of the axial positions,and with the frequency increases the influence gradually decreases.

    (4)The influence of the phases of the two radial symmetrical unit sources on the vibroacoustic characteristics of the cylinder is smaller than that of the phases of two axial unit sources which are symmetric to the central section of the cylinder.But also with the frequency increases,the influence gradually decreases.

    The discussion is favorable for noise reduction of submerged stiffened cylindrical shells.

    [1]Laulagnet B,Guyader J L.Modal analysis of a shell’s acoustic radiation in light and heavy fluids[J].J Sound Vib,1989, 131(3):397-415.

    [2]Laulagnet B,Guyader J L.Sound radiation by finite cylindrical ring stiffened shells[J].J Sound Vib,1990,138(2):173-191.

    [3]Dowell E H,Gorman G F,Smith D.A.Acoustoelasticity:General theory,acoustic natural modes and forced response to sinusoidal excitation,including comparisons with experiment[J].J Sound Vib,1977,52(4):519-542.

    [4]Nelson P A,Curtis A R D,Elliott S J,Bullmore A J.The active minimization of harmonic enclosed sound fields,part I: Theory[J].J Sound and Vib,1987,117(1):1-13.

    [5]Chen Ke’an,Ma Yuanliang,Sun Jingcai.Active noise control within enclosed space surrounded by flexible structure[J]. Acta Acoustic,1994,19(6):434-443.

    [6]Chen Meixia,Luo DongPing,Chen Xianing.Analysis of sound radiation characteristics of complex double shells[J].Acta Acoustic,2004,29(3):209-215.

    [7]Luo Dongping,Zhang Yuhong.Analysis of vibratical characteristics of ring-stiffened cylindrical shells[J].Ship Building of China,1989(1):64-74.

    [8]Junger M C,Feit D.Sound,structures and their interaction[M].MIT,Combrige,MA,1986.

    [9]Flügge W.Stresses in shells[M].Berlin:Springer,1960.

    [10]Frank Fahy.Sound and structural vibration:Radiation,transmission and response[M].Academic Press,London,1985.

    [11]Morse P M.Theoretical acoustics[M].New York:Mc Graw-Hill,1968.

    TB53 U661.44Document code:A

    10.3969/j.issn.1007-7294.2014.03.011

    1007-7294(2014)03-0328-16

    date:2013-11-18

    Biography:GUAN Shan-shan(1982-),female,engineer of Wuhan Secondly Research Institite of Ship-designing, E-mail:saraguan@163.com;DENG Hai-hua(1979-),senior engineer.

    男人和女人高潮做爰伦理| 99热这里只有是精品在线观看| 哪里可以看免费的av片| 国产一区二区三区视频了| 久久国产精品人妻蜜桃| 日本欧美国产在线视频| 欧美性猛交黑人性爽| av国产免费在线观看| 亚洲国产高清在线一区二区三| 欧美黑人巨大hd| 99久久精品热视频| 亚洲综合色惰| 日本免费一区二区三区高清不卡| 联通29元200g的流量卡| 国产单亲对白刺激| 少妇的逼好多水| 国产一区二区三区视频了| 成人综合一区亚洲| 日本 欧美在线| 精品一区二区免费观看| 国产一级毛片七仙女欲春2| 国产色婷婷99| 好男人在线观看高清免费视频| 久久人人爽人人爽人人片va| 麻豆成人av在线观看| 国产又黄又爽又无遮挡在线| 最后的刺客免费高清国语| 丰满人妻一区二区三区视频av| 免费无遮挡裸体视频| av在线老鸭窝| 亚洲人与动物交配视频| 深夜精品福利| 国产主播在线观看一区二区| 日本黄色视频三级网站网址| 亚洲国产日韩欧美精品在线观看| 国产av一区在线观看免费| 国产中年淑女户外野战色| 一级毛片久久久久久久久女| 99热只有精品国产| 亚洲欧美日韩无卡精品| 三级国产精品欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 男女那种视频在线观看| 很黄的视频免费| 男人和女人高潮做爰伦理| 亚洲欧美日韩卡通动漫| 亚洲自偷自拍三级| www日本黄色视频网| 波多野结衣高清无吗| 麻豆成人av在线观看| 久久精品国产亚洲av涩爱 | 国产综合懂色| 男人狂女人下面高潮的视频| 好男人在线观看高清免费视频| av在线天堂中文字幕| 免费电影在线观看免费观看| 亚洲自拍偷在线| 99久久久亚洲精品蜜臀av| 三级男女做爰猛烈吃奶摸视频| 亚洲在线观看片| 久久精品国产99精品国产亚洲性色| 精品欧美国产一区二区三| 琪琪午夜伦伦电影理论片6080| 亚洲精品成人久久久久久| 国产免费一级a男人的天堂| 欧美日韩国产亚洲二区| 国产 一区 欧美 日韩| 日韩欧美精品免费久久| 精品久久久久久久久av| 亚洲乱码一区二区免费版| 在线a可以看的网站| 国产综合懂色| 欧美中文日本在线观看视频| 69av精品久久久久久| 午夜a级毛片| 两个人的视频大全免费| 国产伦在线观看视频一区| 人妻久久中文字幕网| 免费在线观看成人毛片| 一本久久中文字幕| 久久久精品欧美日韩精品| 久久精品国产清高在天天线| 在线观看一区二区三区| 人人妻人人澡欧美一区二区| 人妻夜夜爽99麻豆av| 两个人的视频大全免费| 亚洲国产高清在线一区二区三| 国产老妇女一区| 熟妇人妻久久中文字幕3abv| 亚洲成av人片在线播放无| 免费人成在线观看视频色| 欧美高清性xxxxhd video| 精品日产1卡2卡| 国产欧美日韩精品亚洲av| 成人av一区二区三区在线看| 国产精品1区2区在线观看.| 黄色日韩在线| 欧美+亚洲+日韩+国产| 97碰自拍视频| 国产一区二区三区视频了| 身体一侧抽搐| 永久网站在线| 成年女人看的毛片在线观看| 不卡一级毛片| 国产一区二区三区视频了| 人妻夜夜爽99麻豆av| 1000部很黄的大片| 国内少妇人妻偷人精品xxx网站| 成人毛片a级毛片在线播放| 12—13女人毛片做爰片一| 99久久久亚洲精品蜜臀av| 日韩欧美国产一区二区入口| 人妻夜夜爽99麻豆av| 日本黄大片高清| 少妇熟女aⅴ在线视频| 国产高清不卡午夜福利| 男女之事视频高清在线观看| 精品久久久久久久久av| 国产精品国产高清国产av| 欧美高清性xxxxhd video| 国产精品永久免费网站| 精品99又大又爽又粗少妇毛片 | 12—13女人毛片做爰片一| 人妻夜夜爽99麻豆av| 1000部很黄的大片| 国产精品综合久久久久久久免费| 日韩欧美 国产精品| 日韩人妻高清精品专区| 日韩欧美国产一区二区入口| 午夜免费成人在线视频| 中文字幕av成人在线电影| 一进一出抽搐gif免费好疼| 不卡一级毛片| 日韩精品青青久久久久久| 亚洲精品亚洲一区二区| 亚洲精品亚洲一区二区| 色在线成人网| 深夜a级毛片| 亚洲精品成人久久久久久| 午夜影院日韩av| 国产av在哪里看| 日本与韩国留学比较| 热99在线观看视频| 18禁黄网站禁片免费观看直播| 亚洲专区中文字幕在线| 亚洲 国产 在线| 国产免费一级a男人的天堂| 三级男女做爰猛烈吃奶摸视频| 国产精品1区2区在线观看.| 亚洲精品一卡2卡三卡4卡5卡| av天堂中文字幕网| 在线天堂最新版资源| 国产视频一区二区在线看| 波野结衣二区三区在线| 亚洲av五月六月丁香网| 国产精品1区2区在线观看.| 免费av不卡在线播放| 亚洲av五月六月丁香网| 网址你懂的国产日韩在线| 日本黄色视频三级网站网址| 国产女主播在线喷水免费视频网站 | 麻豆av噜噜一区二区三区| 能在线免费观看的黄片| 乱系列少妇在线播放| 亚洲一区高清亚洲精品| 久久精品国产99精品国产亚洲性色| 成人二区视频| 国产久久久一区二区三区| 久久久久久久亚洲中文字幕| 日韩大尺度精品在线看网址| 日韩一区二区视频免费看| 欧美日韩国产亚洲二区| 国产白丝娇喘喷水9色精品| 国产黄片美女视频| 白带黄色成豆腐渣| 小说图片视频综合网站| 国产女主播在线喷水免费视频网站 | 国产精品福利在线免费观看| av中文乱码字幕在线| 一a级毛片在线观看| eeuss影院久久| 国产精品av视频在线免费观看| 亚州av有码| 午夜福利欧美成人| 亚洲成人免费电影在线观看| 日韩中文字幕欧美一区二区| 国产一级毛片七仙女欲春2| 久久久成人免费电影| 亚洲国产欧洲综合997久久,| 亚洲av成人av| 国产欧美日韩精品亚洲av| 九色成人免费人妻av| 听说在线观看完整版免费高清| 精品免费久久久久久久清纯| 少妇猛男粗大的猛烈进出视频 | 日本精品一区二区三区蜜桃| 88av欧美| 校园人妻丝袜中文字幕| 最近中文字幕高清免费大全6 | 好男人在线观看高清免费视频| 久久99热6这里只有精品| 天堂影院成人在线观看| 联通29元200g的流量卡| 不卡视频在线观看欧美| 国产午夜福利久久久久久| 日韩人妻高清精品专区| 亚洲真实伦在线观看| 日韩精品有码人妻一区| 99在线人妻在线中文字幕| 免费大片18禁| 男人的好看免费观看在线视频| 午夜激情欧美在线| 99久久成人亚洲精品观看| 成人精品一区二区免费| 成人国产综合亚洲| 色哟哟哟哟哟哟| 国产精品久久久久久亚洲av鲁大| 午夜免费成人在线视频| 久久人人精品亚洲av| 他把我摸到了高潮在线观看| 亚洲熟妇熟女久久| 黄色视频,在线免费观看| 天美传媒精品一区二区| 亚洲精品久久国产高清桃花| 无人区码免费观看不卡| 国产综合懂色| 欧美日本视频| 99久久九九国产精品国产免费| 欧美日韩黄片免| 亚洲 国产 在线| 少妇被粗大猛烈的视频| 香蕉av资源在线| 天堂√8在线中文| 观看美女的网站| 亚洲va在线va天堂va国产| 麻豆国产av国片精品| 午夜激情福利司机影院| 中出人妻视频一区二区| 国内久久婷婷六月综合欲色啪| 观看免费一级毛片| 午夜日韩欧美国产| 国产乱人伦免费视频| 久久热精品热| 久久婷婷人人爽人人干人人爱| 久久精品影院6| 欧美性猛交╳xxx乱大交人| 亚洲国产精品成人综合色| 久久午夜亚洲精品久久| 一级av片app| 欧美潮喷喷水| 国产精品1区2区在线观看.| 最好的美女福利视频网| 国产精品一及| 欧美性感艳星| 久久九九热精品免费| 在线免费观看不下载黄p国产 | 2021天堂中文幕一二区在线观| 在线观看一区二区三区| 精品久久久久久久久av| 夜夜爽天天搞| 日本一二三区视频观看| 日韩 亚洲 欧美在线| 一级av片app| 欧美国产日韩亚洲一区| av专区在线播放| 小蜜桃在线观看免费完整版高清| 婷婷亚洲欧美| 亚洲成人久久性| 人人妻,人人澡人人爽秒播| 少妇被粗大猛烈的视频| 一区福利在线观看| 长腿黑丝高跟| 国产精品精品国产色婷婷| 最后的刺客免费高清国语| 成人av在线播放网站| 蜜桃亚洲精品一区二区三区| 99久久成人亚洲精品观看| 大又大粗又爽又黄少妇毛片口| 天堂av国产一区二区熟女人妻| 伦理电影大哥的女人| av在线蜜桃| av在线观看视频网站免费| 日本 av在线| 九色成人免费人妻av| 两个人视频免费观看高清| 久久九九热精品免费| 欧美成人免费av一区二区三区| 欧美潮喷喷水| av在线亚洲专区| 日韩,欧美,国产一区二区三区 | 欧美日韩瑟瑟在线播放| 一级黄色大片毛片| 欧美三级亚洲精品| 99国产极品粉嫩在线观看| 色吧在线观看| 欧美一区二区亚洲| 成人性生交大片免费视频hd| 日本在线视频免费播放| 国产精品乱码一区二三区的特点| 夜夜看夜夜爽夜夜摸| 欧美+亚洲+日韩+国产| 日日撸夜夜添| 日本爱情动作片www.在线观看 | 欧美一区二区亚洲| 国产真实乱freesex| 久久国产精品人妻蜜桃| 久久久久免费精品人妻一区二区| 国产一级毛片七仙女欲春2| 日本色播在线视频| 国产一区二区三区在线臀色熟女| 天天躁日日操中文字幕| 91精品国产九色| 国产亚洲精品综合一区在线观看| 午夜福利在线观看免费完整高清在 | 91av网一区二区| 精品国产三级普通话版| 床上黄色一级片| 亚洲欧美清纯卡通| 亚洲av电影不卡..在线观看| 搡老熟女国产l中国老女人| 人人妻人人澡欧美一区二区| 欧美一区二区国产精品久久精品| 精品欧美国产一区二区三| 级片在线观看| 国产精品98久久久久久宅男小说| 91av网一区二区| 免费观看人在逋| 18禁黄网站禁片午夜丰满| 窝窝影院91人妻| 久久久久久九九精品二区国产| 我的女老师完整版在线观看| 免费搜索国产男女视频| 国产精品久久电影中文字幕| 伦理电影大哥的女人| 在线观看一区二区三区| 日本a在线网址| 韩国av在线不卡| 在线国产一区二区在线| 国内少妇人妻偷人精品xxx网站| 美女黄网站色视频| 毛片女人毛片| 亚洲第一电影网av| 亚洲经典国产精华液单| 欧美bdsm另类| 狠狠狠狠99中文字幕| 在线看三级毛片| 在线国产一区二区在线| 此物有八面人人有两片| 少妇的逼好多水| 99久久精品国产国产毛片| av在线老鸭窝| 成年女人看的毛片在线观看| 亚洲精品色激情综合| 亚洲七黄色美女视频| 日本黄色片子视频| 国产亚洲精品av在线| 嫩草影视91久久| 无遮挡黄片免费观看| 亚洲中文字幕一区二区三区有码在线看| 美女被艹到高潮喷水动态| 亚洲第一电影网av| 一个人免费在线观看电影| 黄色女人牲交| 88av欧美| 中亚洲国语对白在线视频| 欧美3d第一页| av在线亚洲专区| 久久人人精品亚洲av| 观看美女的网站| 久久99热6这里只有精品| 国产精品电影一区二区三区| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久av| 国产成人av教育| 18+在线观看网站| 在线观看av片永久免费下载| 亚洲一级一片aⅴ在线观看| 日韩亚洲欧美综合| 窝窝影院91人妻| 日韩一本色道免费dvd| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 天堂av国产一区二区熟女人妻| 午夜福利在线在线| 偷拍熟女少妇极品色| 欧美成人免费av一区二区三区| 国产白丝娇喘喷水9色精品| 黄片wwwwww| 国模一区二区三区四区视频| 一本精品99久久精品77| 全区人妻精品视频| 丰满的人妻完整版| 一本一本综合久久| 免费人成在线观看视频色| 此物有八面人人有两片| 免费看美女性在线毛片视频| 老司机福利观看| 婷婷精品国产亚洲av| 免费电影在线观看免费观看| 日韩高清综合在线| 亚洲欧美日韩高清在线视频| 国产高潮美女av| 成人特级av手机在线观看| 亚洲av电影不卡..在线观看| 在线观看免费视频日本深夜| 国产精品,欧美在线| 久久久久久久久久久丰满 | 天美传媒精品一区二区| 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| 欧美zozozo另类| 国产精品永久免费网站| 亚洲中文字幕日韩| 天堂√8在线中文| 美女高潮的动态| 不卡视频在线观看欧美| 我的女老师完整版在线观看| 狂野欧美白嫩少妇大欣赏| 人妻制服诱惑在线中文字幕| 日韩中字成人| 亚洲va在线va天堂va国产| 真人做人爱边吃奶动态| 亚洲乱码一区二区免费版| 久久午夜福利片| 天堂网av新在线| av中文乱码字幕在线| 免费人成视频x8x8入口观看| 中文在线观看免费www的网站| 亚洲 国产 在线| av视频在线观看入口| 亚洲av成人精品一区久久| 久久欧美精品欧美久久欧美| 久久亚洲真实| 成人一区二区视频在线观看| 成人三级黄色视频| 美女cb高潮喷水在线观看| 可以在线观看毛片的网站| 男人舔奶头视频| 丝袜美腿在线中文| 亚洲欧美日韩高清在线视频| 国产一区二区三区av在线 | 国产高清不卡午夜福利| 国产av不卡久久| 99久国产av精品| 国产极品精品免费视频能看的| 制服丝袜大香蕉在线| 99热这里只有是精品50| 大型黄色视频在线免费观看| 嫩草影院入口| 亚洲中文日韩欧美视频| www.色视频.com| 麻豆精品久久久久久蜜桃| 女同久久另类99精品国产91| 舔av片在线| 十八禁国产超污无遮挡网站| 无遮挡黄片免费观看| 给我免费播放毛片高清在线观看| 国产伦一二天堂av在线观看| 亚洲av美国av| 久久99热6这里只有精品| 久久精品91蜜桃| 日韩欧美免费精品| 男女那种视频在线观看| 色在线成人网| 久久久色成人| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 亚洲av不卡在线观看| 在线观看av片永久免费下载| 色精品久久人妻99蜜桃| 亚洲国产日韩欧美精品在线观看| 内地一区二区视频在线| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 日本 欧美在线| 九色国产91popny在线| 欧美日韩精品成人综合77777| 人妻少妇偷人精品九色| 欧美激情国产日韩精品一区| АⅤ资源中文在线天堂| 亚洲图色成人| 人人妻人人澡欧美一区二区| 久久九九热精品免费| 黄色一级大片看看| 欧美性猛交黑人性爽| 蜜桃亚洲精品一区二区三区| 免费观看在线日韩| 日韩av在线大香蕉| 日韩在线高清观看一区二区三区 | 毛片一级片免费看久久久久 | 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 中文字幕av在线有码专区| 97超视频在线观看视频| 99热这里只有精品一区| 中文字幕av成人在线电影| 18禁裸乳无遮挡免费网站照片| 91狼人影院| 国产一区二区激情短视频| 欧洲精品卡2卡3卡4卡5卡区| 午夜影院日韩av| 久99久视频精品免费| 欧美三级亚洲精品| 亚洲黑人精品在线| 日日摸夜夜添夜夜添av毛片 | 尤物成人国产欧美一区二区三区| 国产 一区精品| 免费在线观看成人毛片| 国产高潮美女av| www.www免费av| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 久久久久精品国产欧美久久久| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器| 国产熟女欧美一区二区| 免费搜索国产男女视频| 内射极品少妇av片p| 琪琪午夜伦伦电影理论片6080| 亚洲人成网站高清观看| 热99在线观看视频| 又爽又黄无遮挡网站| 中文字幕av成人在线电影| 国产精品嫩草影院av在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 99热这里只有是精品在线观看| 精品一区二区三区人妻视频| 最近最新免费中文字幕在线| 免费看光身美女| 嫩草影院精品99| 欧美潮喷喷水| 欧美黑人欧美精品刺激| 亚洲国产精品久久男人天堂| 久久人人精品亚洲av| 国产精品一区www在线观看 | 欧美成人a在线观看| 欧美+日韩+精品| 亚洲无线在线观看| 国产亚洲91精品色在线| 成年免费大片在线观看| 一进一出抽搐gif免费好疼| 久久九九热精品免费| 九九在线视频观看精品| 国产精品久久视频播放| 一级黄色大片毛片| 亚洲精品久久国产高清桃花| 伊人久久精品亚洲午夜| 免费大片18禁| 尾随美女入室| 欧美一区二区国产精品久久精品| 午夜精品一区二区三区免费看| 91麻豆精品激情在线观看国产| 亚洲不卡免费看| 一级a爱片免费观看的视频| 99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| 一级黄色大片毛片| 91久久精品国产一区二区成人| 日本熟妇午夜| 国产伦人伦偷精品视频| 欧美绝顶高潮抽搐喷水| 天美传媒精品一区二区| av在线亚洲专区| 亚洲最大成人av| 国产成人a区在线观看| 国产精品一及| 观看免费一级毛片| 国产精品免费一区二区三区在线| 亚洲精品乱码久久久v下载方式| 男女下面进入的视频免费午夜| 99热这里只有是精品在线观看| 日日啪夜夜撸| 久久久国产成人免费| 国产一区二区三区视频了| 久久久久九九精品影院| 国产一区二区三区视频了| 亚洲欧美清纯卡通| 成人特级黄色片久久久久久久| 成人无遮挡网站| 麻豆成人av在线观看| 97热精品久久久久久| 又紧又爽又黄一区二区| 18禁裸乳无遮挡免费网站照片| 麻豆成人av在线观看| 春色校园在线视频观看| 在线a可以看的网站| 久久久久国内视频| 女同久久另类99精品国产91| 99riav亚洲国产免费| 亚洲国产高清在线一区二区三| 男插女下体视频免费在线播放| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看 | 久久久久久久久大av| 国产 一区 欧美 日韩| 亚洲国产欧洲综合997久久,| 精品国内亚洲2022精品成人| 国产精品日韩av在线免费观看| 天堂av国产一区二区熟女人妻| 久久久精品欧美日韩精品| 国产成人一区二区在线| 日本a在线网址| 黄色一级大片看看| 久久午夜福利片| 亚洲国产高清在线一区二区三| 午夜精品在线福利| 午夜福利高清视频| 在线免费观看不下载黄p国产 | 国产麻豆成人av免费视频| 亚洲精品亚洲一区二区| 免费在线观看成人毛片| 精品久久久久久,| 99热这里只有精品一区|