• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical investigation of the flow between rotating conical cylinders of two different configurations*

    2014-06-01 12:30:01LIXue李雪ZHANGJingjing張晶晶XULanxi許蘭喜
    關(guān)鍵詞:李雪晶晶

    LI Xue (李雪), ZHANG Jing-jing (張晶晶), XU Lan-xi (許蘭喜)

    Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China,

    E-mail: janemath@126.com

    A numerical investigation of the flow between rotating conical cylinders of two different configurations*

    LI Xue (李雪), ZHANG Jing-jing (張晶晶), XU Lan-xi (許蘭喜)

    Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China,

    E-mail: janemath@126.com

    (Received December 11, 2012, Revised March 3, 2014)

    The flow between two coaxial conical cylinders is numerically studied for two different configurations, with the inner cone rotating and the outer one at rest. It is found that, in one configuration,at least at a small Reynolds number (Re), the pressure is a decreasing function ofzwhile in the other configuration, it is an increasing function ofz. In the first configuration, the pressure curves for differentRehave intersections, while in the second configuration they do not. The gap between two conical cylinders is filled with six pairs of Taylor vortices at about the same Reynolds number and in each pair of vortices in the first configuration, the upper vortex is larger than the bottom one while in the second configuration, the bottom vortex is larger than the upper one.

    rotating conical cylinder, Taylor vortex, Reynolds number, pressure distribution

    Introduction

    The flow between two concentric cylinders commonly referred to as the Taylor Couette flow is one of the most studied problem in fluid mechanics. It is a classical system used to investigate properties of flow driven by rotation. The results were numerous (see Refs.[1-7] and the references therein). The major interests were focussed on the occurrence of toroidal cells known as Taylor vortices.

    The Taylor vortices may also occur in geometries other than between right circular cylinders, e.g., between rotating conical cylinders. In the last two decades, the Taylor vortices in the flow between two coaxial conical cylinders with inner cone rotating and outer one at rest were studied both experimentally and numerically. Wimmer[8]experimentally investigated the occurrence of the Taylor vortices and the influence of the governing parameters on the Taylor vortices. He showed that the laminar basic flow is three-dimen-sional. In Ref.[9], the transition to the turbulence was considered for the flow in a concentric annulus formed by conical cylinders of the same apex angle. The stability of the helical flow in the configuration of Fig.1(b) was experimentally investigated in Ref.[10], and it was found that the helical flow was resulted from a Hopf bifurcation. Noui-Mehidi et al.[11]studied the effect of the cylinder’s wall alignment on the flow. He also considered the bifurcations of the steady vortical structures in the case when the cylindrical walls are not perfectly parallel. Xu et al.[12]showed that the behavior of the flow is dominated by a competition between the meridional flow and the radial flow. It was found that the vortices occur in the direction toward smaller radius. The local minimum values of the velocity and the local maximum values of the pressure are attained at the same point whereas the velocity of the flow takes the local maximum at the point of the inflection for the pressure. Altmeyer et al.[13]studied the effects of the end wall on the transition between the Taylor vortices and the spiral vortices. Zhang et al.[14]analyzed the effects of the end plates on the flow in the configuration of Fig.1(b) and noted that the Taylor vortices filled the gap are in an odd number when the inner cone rotates together with the top end plate, whereas they are always in an even number inour case. However, all previous studies were mainly related to the configuration of Fig.1(b). At the same time, the flows in the configuration of Fig.1(a) were not given a due attention.

    Fig.1 The sketch of two different configurations of coaxial rotating conical cylinders

    Recently, the configuration of Fig.1(a) has caught our interest. A few chemists used the configuretion of Fig.1(a) as a precipitation reactor called the rotating liquid film reactor (RLFR), as the reactor to prepare new functional nano-particles. The gap between two cones is filled with reactants, which are usually considered as a viscous incompressible fluid. It is found that the particles produced in the RLFR are smaller in size and more concentrated in the size distribution, compared with the conventional precipitation reactors[15]. In order to understand the effect of the RLFR on the precipitation, it is necessary to investigate the flow properties in the gap. In order to do that, the configuration of Fig.1(a) should be considered and the flow property should be compared with that in Fig.1(b), which has motivated the study of this paper.

    1. Mathematical formulation

    The two different configurations are shown in Fig.1, in which the configuration in Fig.1(b) is just that in Fig.1(a) but upside down. The gap between two cones is filled with a viscous incompressible fluid. The inner cone rotates at the angular velocityΩand the outer one is at rest. For both configurations, we assume that the top and bottom end plates are rigid and the cone’s wall is a no-slip boundary. Then the governing equations (the Navier-Stokes equations) and the boundary conditions are as follows:

    whereu,ρ,pandνare the velocity, the density, the pressure and the kinematic viscosity of the fluid, respectively. ∑top, ∑bottom, ∑innerand ∑outerrepresentR1(R2) andαare the hight of device, the radius of the inner (outer) cone at the thickest end and the cone’s inclination, respectively.

    Parameter definitions: All our numerical results are described in term of following non-dimensional parameters.

    Reynolds number:Re=dR1Ω/ν, aspect ratio the top end plate, the bottom end plate, the inner and outer cone’s walls, respectively,ωis the angular velocity of the cones. We adopt a Cartesian coordinate systemOxyzwithz-axis along the axis of rotation and the gravity in the negativez-direction.H,Γ=H/d, radius ratioη=R1/R2and cone’s inclination angleα.

    2. Outline of the numerical method

    2.1Outlines

    The nonlinear and time dependent Eqs.(1) together with the boundary conditions (2) and the initial conditionsu|t=0=p|t=0=0 are integrated numerically using the finite volumes method. For the convection terms in the equations, a second-order upwind scheme is used to calculate the face values of the various quantities by interpolation from the cell centre values. The central difference quotient is used for the diffusion terms which are always accurate to the second order. The temporal discretization involves integrations of all terms in the differential equations with a time step Δt. The integration of the transient terms is implicit by using a second-order formulation. The SIMPLE algorithm is used to link the pressure and the velocity. The discretized equations are then solved sequentially using a segregated solver. The convergence is achieved when the residual falls below 10-4for the pressure and the three velocity components.

    2.2Convergence and validation

    The grids used for the numerical simulations consist of tetrahedral elements. Extensive grid-refining tests are conducted by varying the element order andthe time step. In order to improve the accuracy and the convergence rate, a hybrid correction technique is used, where four grid levels are adopted to refine sequentially in spatial dimensions. The solution obtained by a coarser grid is interpolated to initialize the solution on a finer grid. Figure 2 shows the convergence of the simulated results by comparing the profiles (normalized by the maximum value in the profiles) of the pressure and the velocity from four grids atRe= 192.5. The profiles with different resolutions essentially merge into one curve, suggesting the independence of the grids on the results. It is worth mentioning that the fourth grid level refinement (Case 4) leads to insignificant changes in the obtained solution, which means the convergence of the present simulated results.

    Fig.2 Convergence studies of the profiles atΓ=12.5,η= 0.8,α=82oandRe=192.5 for the configuration of Fig.1(a). The number of grid points in Cases 1-4 are 224 932, 395 605, 532 698 and 736 806, respectively. The pressure and the velocity are normalized by the maximum value in the profiles.z/dmeans the value ofzin the axial direction is normalized by the width of the gap

    3. Results and discussions

    Numerical simulations of the flows in configuretions of Fig.1(a) and Fig.1(b) are carried out. Figure 3 displays the pressure distribution along the middle line atRe=12.5, 20, 25, 75 and 192.5, where the curves forRe=12.5, 20 and 25 are straight lines, corresponding to the laminar basic flow. The pressure curve fluctuates firstly at aboutRe=75, representing that the basic flow becomes unstable and the first Taylor vortex appears. The curve forRe=192.5 is full of fluctuations, representing that the gap is filled with six pairs of Taylor vortices (see Fig.4). For the configuration of Fig.1(a), it is shown that the pressure curves atRe=12.5, 20 and 25 decline with the increase ofzand the curves intersect while for the configuration of Fig.1(b) the pressure curves rise with the increase ofzand the curves do not intersect. After the basic flow becomes unstable, the declining trends of the pressure for the configuration of Fig.1(a) and the growth trends for the configuration of Fig.1(b) inz-direction remain, but no longer monotonically.

    Fig.3 Pressure distributions along the middle line whenΓ= 12.5,η=0.8,α=82o

    Fig.4 Streamlines of the flows whenΓ=12.5,η=0.8,α=82o. (a) and (c) represent the appearance of the first Taylor vortex, (b) and (d) show that the gap is filled with Taylor vortices

    Fig.5 Sketch of occurrence and size of Taylor vortices in the configuration of Fig.1(a)

    The phenomena in Fig.3 can be explained as follows: The laminar basic flow is driven by the imbalance of centrifugal forces in the gap. On the inner cone the circumferential velocity depends on thez-coordinate while on the outer cone it is always zero. Therefore, for the configuration of Fig.1(a), the circumferential velocity of the fluid in the gap decreases with the increase of radial and axial coordinates. This leads to a negative change rate of the centrifugal forces in bothr-direction andz-direction. Despite the negative change rate of the centrifugal forces in ther-direction, the change rate of the pressure inr-direction is always positive, because the fluid in the gap is thrown to the outside. Hence, for the configuration of Fig.1(a) the pressure along the middle line is a decreasing function ofz, at least for small Reynolds numbers. For large Reynolds numbers, the falling trend of the pressure remains, but no longer monotonic. However, for the configuration of Fig.1(b), a negative change rate of the centrifugal forces in ther-direction and a positive change rate of the centrifugal forces inz-direction are found, and as the results, the pressure along the middle line is an increasing function ofz, at least for smallRe. For large Reynolds numbers the growth trend of the pressure remains, but no longer monotonic. Upon increasing the Reynolds numbers, the centrifugal forces progressively dominate the viscous forces. Therefore, with increasing thez-coordinate, the centrifugal forces for the configuration of Fig.1(a) decrease more and more rapidly. As the result, the pressure inz-direction for a larger Reynolds number falls more rapidly than for a smaller Reynolds number, and the intersection of pressure curves occurs, as demonstrated in Fig.3(a). Similarly, for the configuration of Fig.1(b), the growth rate of the centrifugal forces inz-direction for a larger Reynolds number is greater than that for a smaller Reynolds number. As a result, for a larger Reynolds number the pressure increases more rapidly than for a smaller Reynolds number. Therefore, the pressure curves in Fig.3(b) have no intersection. The centrifugal force attains its maximum at the bottom. Therefore, the fluid at the bottom of the configuration of Fig.1(a) is deflected outwards and moves up in a spiral to the top in the vicinity of the outer cone then returns to the bottom near the inner cone, also in a spiral form, as shown in Fig.5(a). The basic flow is a large loop between the cone's surfaces. Our numerical calculations also show that the first Taylor vortex appears at the bottom of the configuration of Fig.1(a) and at the top of the configuration of Fig.1(b), at about the same Reynolds numberRe= 75. With a further increase of the Reynolds number another pair of vortices is generated, in the direction towards the smaller radius. At aboutRe=192.5 the gap is finally filled with six pairs of vortices, as displayed in Fig.4. If the vortex rotates in the direction of the basic flow it is stretched. If it rotates in the opposite direction it is compressed. As a consequence, in each pair of vortices, the top vortex is larger than the bottom one, as shown in Fig.5. However, for the configuration of Fig.1(b), in each pair of vortices, the top vortex is smaller than the bottom one, as is confirmed by Wimmer's experiment. For the configuration of Fig.1(a), there is no experiment result in this regard.

    4. Conclusion

    This work studies the flows in two different configurations of Fig.1(a) and Fig.1(b), focussing on the pressure distribution and the instability of the basic flow as well as the transition to Taylor vortices. A comparison of the pressure distribution and the behavior of the Taylor vortices is made. The results are summarized as follows: For the configuration of Fig.1(a) and at smallRethe pressure is a decreasing function ofz, for largeRethe declining trend inz-direction remains, but no longer monotonic. For the configuration of Fig.1(b), the pressure is an increasing function ofzat smallRe, for largeRethe growth trend inz-direction remains, but no longer monotonic. For the configuration of Fig.1(a), the pressure curves at differentRehave intersections while for the configuration of Fig.1(b) they do not. This shows that the declining rate of the pressure for the configuration of Fig.1(a) and the growth rate of the pressure for the configuration of Fig.1(b) is higher for a largerRethan for a smallerRe. At aboutRe=192.5 the gap of both configurations of Fig.1(a) and Fig.1(b) is filled with six pairs of Taylor vortices and in each pair of vortices in the configuration of Fig.1(a), the upper vortex is larger than the bottom one while in the configuration of Fig.1(b), the bottom vortex is larger than the upper one.

    [1] DONG S. Direct numerical simulation of turbulent Taylor-Couette flow[J].Journal of Fluid Mechanics,2007, 587: 373-393.

    [2] DONG S. Turbulent flow between counter-rotating concentric cylinders: a direct numerical simulation study[J].Journal of Fluid Mechanics,2008, 615: 371-399.

    [3] DUBRULLE B., DAUCHOT O. and DAVIAUD F. et al. Stability and turbulent transport in Taylor-Couette flow from analysis of experimental data[J].Physics of Fluids,2005, 17(9): 095103.

    [4] BURIN M. J., SCHARTMAN E. and JI H. Local measurements of turbulent angular momentum transport in circular Couette flow[J].Experiments in Fluids,2010, 48(5): 763-769.

    [5] BILSON M., BREMHORST K. Direct numerical simulation of turbulent Taylor-Couette flow[J].Journal of Fluid Mechanics,2007, 579: 227-270.

    [6] WANG Jia-song. Flow around a circular cylinder using a finite-volume TVD scheme based on a vector transformation approch[J].Journal of Hydrodynamics,2010, 22(2): 221-228.

    [7] RAPLEY S., EASTWICK C. and SIMMONS K. Computational investigation of torque on coaxial rotating cones[J].Journal of Fluids Engineering,2008, 130(6): 061102.

    [8] WIMMER M. Taylor vortices at different geometries[J].Physics of Rotating Fluids,2000, 549: 194-212.

    [9] NOUI-MEHIDI M. N. Transition in the flow between conical cylinders[J].Experiments in Fluids,2001, 30(1): 84-87.

    [10] NOUI-MEHIDI M. N., OHMURA N. and KATAOKA K. Dynamics of the helical flow between rotating conical cylinders[J].Journal of Fluids and Structures,2005, 20(3): 331-344.

    [11] NOUI-MEHIDI M. N., OHMURA N. and NISHIYAMAET K. et al. Effect of wall alignment in a very short rotating annulus[J].Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2): 613-621.

    [12] XU X., WEN P. and XU L. et al. Occurrence of Taylor vortices in the flow between two rotating conical cylinders[J].Communications in Nonlinear Science and Numerical Simulation, 2010, 15(5): 1228-1239.

    [13] ALTMEYER S., HOFFMANN C. H. and HEISE M. et al. End wall effects on the transitions between Taylor vortices and spiral vortices[J].Physical Review E,2010, 81(6): 066313.

    [14] ZHANG Y., XU L. and LI D. Numerical computation of end plate effect on Taylor vortices between rotating conical cylinders[J].Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 235-241.

    [15] GUO S., EVANS D. G. and LI D. et al. Experimental and numerical investigation of the precipitation of barium salfate in a rotating liquid film reactor[J].AIChE Journal,2009, 55(8): 2024-2034.

    10.1016/S1001-6058(14)60049-4

    * Biography: LI Xue (1979-), Female, Ph. D. Candidate

    XU Lan-xi,

    E-mail: xulx@mail.buct.edu.cn

    猜你喜歡
    李雪晶晶
    巧算最小表面積
    紅霉素眼膏 用途知多少
    保健與生活(2022年7期)2022-04-08 21:33:36
    Digging for the past
    炎熱的夏天
    Manipulation parameter optimization in Liu’s back tuina therapy for kids’ cough variant asthma in remission stage
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    藝術(shù)百家:李雪
    李雪、曹葉青、馮彩、崔一文作品
    銀億股份:于無聲處聽驚雷
    眾癥時代(二)
    大型黄色视频在线免费观看| 窝窝影院91人妻| 男人的好看免费观看在线视频| 亚洲精品久久国产高清桃花| 亚洲av第一区精品v没综合| 91av网站免费观看| 在线观看美女被高潮喷水网站 | 午夜福利欧美成人| 婷婷精品国产亚洲av在线| 日本熟妇午夜| 午夜精品一区二区三区免费看| 久久草成人影院| 在线观看免费午夜福利视频| 国产成人影院久久av| 日日干狠狠操夜夜爽| 99国产精品一区二区蜜桃av| 88av欧美| 亚洲国产看品久久| 草草在线视频免费看| av国产免费在线观看| 精华霜和精华液先用哪个| 亚洲自拍偷在线| 久久久国产欧美日韩av| 久久欧美精品欧美久久欧美| 亚洲真实伦在线观看| 亚洲精品在线观看二区| 国产一区二区三区视频了| 夜夜看夜夜爽夜夜摸| 三级男女做爰猛烈吃奶摸视频| 国产亚洲精品久久久久久毛片| 白带黄色成豆腐渣| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区免费观看 | 成人av在线播放网站| 久久久久九九精品影院| a级毛片a级免费在线| 成人特级av手机在线观看| 美女黄网站色视频| 亚洲乱码一区二区免费版| 999精品在线视频| 99视频精品全部免费 在线 | 成人特级av手机在线观看| 国产精品久久久久久精品电影| 成人国产一区最新在线观看| 成年女人看的毛片在线观看| 熟女电影av网| 黄色日韩在线| 不卡av一区二区三区| 99热精品在线国产| 性欧美人与动物交配| 午夜福利视频1000在线观看| cao死你这个sao货| 51午夜福利影视在线观看| 久久久久久国产a免费观看| 久久亚洲精品不卡| 国产高潮美女av| 一个人看视频在线观看www免费 | 黄色丝袜av网址大全| 国产精品久久电影中文字幕| 又爽又黄无遮挡网站| 一级作爱视频免费观看| 一本久久中文字幕| 欧美zozozo另类| 国产精品美女特级片免费视频播放器 | 高清在线国产一区| 观看免费一级毛片| 亚洲一区二区三区不卡视频| av在线蜜桃| 国产精品久久久久久精品电影| 免费大片18禁| 日本 欧美在线| 国产日本99.免费观看| 亚洲国产精品久久男人天堂| 看免费av毛片| 国产精品野战在线观看| 网址你懂的国产日韩在线| 身体一侧抽搐| 亚洲成人精品中文字幕电影| 国产精品久久久av美女十八| 国产伦精品一区二区三区视频9 | 美女大奶头视频| 欧美一区二区精品小视频在线| 好男人电影高清在线观看| 国产精品一区二区精品视频观看| 国产精品乱码一区二三区的特点| 国产欧美日韩精品一区二区| 怎么达到女性高潮| 天堂影院成人在线观看| 国产激情久久老熟女| 99热6这里只有精品| 麻豆av在线久日| 久久久久久国产a免费观看| 国产精品一区二区三区四区久久| 1024香蕉在线观看| 欧美在线黄色| 人人妻人人澡欧美一区二区| 国产高潮美女av| 日本黄色视频三级网站网址| 成年版毛片免费区| 99久久99久久久精品蜜桃| 日韩大尺度精品在线看网址| av黄色大香蕉| 日韩欧美在线二视频| 亚洲第一欧美日韩一区二区三区| 午夜激情欧美在线| 久久久色成人| 嫁个100分男人电影在线观看| 91久久精品国产一区二区成人 | 午夜福利在线观看免费完整高清在 | 久久久久国产一级毛片高清牌| 免费在线观看亚洲国产| 可以在线观看的亚洲视频| 精品欧美国产一区二区三| 亚洲五月天丁香| 成在线人永久免费视频| 一个人免费在线观看的高清视频| 国产精品九九99| 亚洲熟妇熟女久久| 国产成年人精品一区二区| 久久久成人免费电影| 国产精品av视频在线免费观看| 巨乳人妻的诱惑在线观看| 亚洲成人精品中文字幕电影| 2021天堂中文幕一二区在线观| 大型黄色视频在线免费观看| 日本免费一区二区三区高清不卡| 久久久久久九九精品二区国产| 999精品在线视频| 国产精品综合久久久久久久免费| 日韩欧美 国产精品| 97碰自拍视频| 999久久久国产精品视频| 我的老师免费观看完整版| 成人av一区二区三区在线看| 国产精品综合久久久久久久免费| 大型黄色视频在线免费观看| 亚洲精品一区av在线观看| www日本黄色视频网| 国产蜜桃级精品一区二区三区| 一进一出好大好爽视频| 国产精品九九99| 观看美女的网站| 高清毛片免费观看视频网站| 女警被强在线播放| 欧美中文日本在线观看视频| 色av中文字幕| 国产在线精品亚洲第一网站| 窝窝影院91人妻| 少妇的逼水好多| 国产精品亚洲美女久久久| 亚洲欧美日韩东京热| 日韩精品中文字幕看吧| 此物有八面人人有两片| 欧美av亚洲av综合av国产av| 国产伦精品一区二区三区视频9 | 国产精品99久久99久久久不卡| 悠悠久久av| 国产精品av视频在线免费观看| 精品国产乱码久久久久久男人| 舔av片在线| 成人无遮挡网站| 成熟少妇高潮喷水视频| 国产成+人综合+亚洲专区| 日本与韩国留学比较| 国产亚洲欧美在线一区二区| bbb黄色大片| 成人精品一区二区免费| 日本免费一区二区三区高清不卡| 亚洲中文av在线| 美女 人体艺术 gogo| 男女那种视频在线观看| 欧美激情久久久久久爽电影| 日韩欧美精品v在线| 嫩草影院精品99| 三级毛片av免费| 亚洲人成网站高清观看| 十八禁人妻一区二区| av视频在线观看入口| 亚洲精品色激情综合| 国产爱豆传媒在线观看| 亚洲 欧美一区二区三区| 99热这里只有是精品50| 国产毛片a区久久久久| 国产99白浆流出| 午夜a级毛片| 亚洲欧美日韩卡通动漫| 无人区码免费观看不卡| 午夜日韩欧美国产| 18禁观看日本| 无遮挡黄片免费观看| 国产精品久久久久久精品电影| 免费电影在线观看免费观看| 午夜福利免费观看在线| 国产成人精品久久二区二区91| 在线观看午夜福利视频| x7x7x7水蜜桃| 一本精品99久久精品77| 亚洲av成人一区二区三| 亚洲欧美日韩东京热| av福利片在线观看| 伊人久久大香线蕉亚洲五| 搡老岳熟女国产| 美女高潮喷水抽搐中文字幕| 90打野战视频偷拍视频| 日本免费a在线| 麻豆av在线久日| 久99久视频精品免费| 欧美丝袜亚洲另类 | 这个男人来自地球电影免费观看| 欧美日韩福利视频一区二区| 色综合欧美亚洲国产小说| 国产精品电影一区二区三区| 国内精品一区二区在线观看| 每晚都被弄得嗷嗷叫到高潮| 国内揄拍国产精品人妻在线| АⅤ资源中文在线天堂| 欧美激情在线99| 午夜精品久久久久久毛片777| 欧美丝袜亚洲另类 | 国产成人啪精品午夜网站| 国产成人av激情在线播放| 亚洲国产日韩欧美精品在线观看 | 久久精品亚洲精品国产色婷小说| 又黄又爽又免费观看的视频| 三级国产精品欧美在线观看 | 日韩有码中文字幕| 成年女人毛片免费观看观看9| 级片在线观看| 超碰成人久久| 老汉色∧v一级毛片| 久久国产乱子伦精品免费另类| 亚洲美女视频黄频| 波多野结衣高清作品| 亚洲精华国产精华精| 99久久国产精品久久久| 成人三级做爰电影| 99精品在免费线老司机午夜| 国产成人精品久久二区二区免费| 国产毛片a区久久久久| 嫩草影视91久久| 欧美黄色片欧美黄色片| 嫩草影院精品99| 亚洲精品久久国产高清桃花| 久久久国产成人精品二区| 国产在线精品亚洲第一网站| 无限看片的www在线观看| 国产亚洲av高清不卡| 亚洲精品在线观看二区| 久久久成人免费电影| 最近视频中文字幕2019在线8| 欧美黑人巨大hd| 97超级碰碰碰精品色视频在线观看| 国产高清三级在线| 欧美绝顶高潮抽搐喷水| 91av网一区二区| 91在线精品国自产拍蜜月 | 亚洲精品久久国产高清桃花| 欧美国产日韩亚洲一区| 久久久久免费精品人妻一区二区| 欧美日韩黄片免| 色吧在线观看| 亚洲精华国产精华精| 国产高清videossex| 亚洲午夜理论影院| 亚洲一区二区三区色噜噜| www日本黄色视频网| 九九热线精品视视频播放| 国产精品久久视频播放| 欧美3d第一页| 国产成人精品久久二区二区免费| 国产99白浆流出| av欧美777| 欧美性猛交黑人性爽| 日韩高清综合在线| 久久草成人影院| 成人欧美大片| 国产亚洲av高清不卡| 在线视频色国产色| 国产亚洲欧美在线一区二区| 成人无遮挡网站| 又爽又黄无遮挡网站| 啦啦啦韩国在线观看视频| 岛国视频午夜一区免费看| 久久久久久国产a免费观看| 又大又爽又粗| 国产成人欧美在线观看| 国产av麻豆久久久久久久| 国产精品亚洲一级av第二区| 人人妻人人澡欧美一区二区| 日本精品一区二区三区蜜桃| 亚洲欧美日韩卡通动漫| 国产成人一区二区三区免费视频网站| 淫妇啪啪啪对白视频| 白带黄色成豆腐渣| 啦啦啦免费观看视频1| 舔av片在线| 成人性生交大片免费视频hd| 成人18禁在线播放| 成人高潮视频无遮挡免费网站| 亚洲 国产 在线| 精品乱码久久久久久99久播| 中亚洲国语对白在线视频| 桃色一区二区三区在线观看| 脱女人内裤的视频| 国产精品久久久久久久电影 | 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产| 两个人视频免费观看高清| 欧美色欧美亚洲另类二区| 精品国产乱子伦一区二区三区| 午夜两性在线视频| 亚洲av成人av| 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 欧美一区二区国产精品久久精品| 国产成人av教育| 免费一级毛片在线播放高清视频| 色哟哟哟哟哟哟| 亚洲精品美女久久久久99蜜臀| 欧美色视频一区免费| 少妇的逼水好多| 好男人电影高清在线观看| 亚洲精品美女久久av网站| 日本一二三区视频观看| 久久人妻av系列| 99视频精品全部免费 在线 | 亚洲人与动物交配视频| 中文字幕av在线有码专区| 麻豆久久精品国产亚洲av| 一进一出好大好爽视频| 亚洲国产欧美一区二区综合| 欧美另类亚洲清纯唯美| 亚洲欧美日韩东京热| 欧美av亚洲av综合av国产av| 99国产综合亚洲精品| 国产97色在线日韩免费| 欧美日韩国产亚洲二区| 巨乳人妻的诱惑在线观看| 亚洲九九香蕉| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 欧美一区二区精品小视频在线| 九色成人免费人妻av| 操出白浆在线播放| 成人欧美大片| 日韩免费av在线播放| 老汉色av国产亚洲站长工具| 日本一二三区视频观看| 国产精品一区二区免费欧美| 身体一侧抽搐| 国产一区二区激情短视频| 麻豆成人午夜福利视频| 精品一区二区三区av网在线观看| 精品国产亚洲在线| 床上黄色一级片| 国产成人aa在线观看| 在线国产一区二区在线| 午夜影院日韩av| 免费看十八禁软件| www.熟女人妻精品国产| 欧美日韩精品网址| 久久这里只有精品中国| 欧美乱妇无乱码| 亚洲无线观看免费| 美女午夜性视频免费| 免费搜索国产男女视频| 亚洲第一电影网av| 一区二区三区激情视频| 天天添夜夜摸| 一本精品99久久精品77| 国产乱人视频| 亚洲黑人精品在线| 免费在线观看日本一区| 久久欧美精品欧美久久欧美| 免费大片18禁| 精品久久久久久成人av| 国产极品精品免费视频能看的| 琪琪午夜伦伦电影理论片6080| 一级作爱视频免费观看| 99久久99久久久精品蜜桃| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 蜜桃久久精品国产亚洲av| 欧美不卡视频在线免费观看| 国产蜜桃级精品一区二区三区| 三级毛片av免费| 欧美日韩瑟瑟在线播放| 欧美一区二区国产精品久久精品| 狂野欧美白嫩少妇大欣赏| 亚洲成av人片在线播放无| 久久人人精品亚洲av| 亚洲av第一区精品v没综合| svipshipincom国产片| 熟女电影av网| 国产成人福利小说| 国产视频内射| 亚洲最大成人中文| 午夜a级毛片| 嫁个100分男人电影在线观看| 精品久久久久久久久久免费视频| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕| 久久午夜亚洲精品久久| 日日夜夜操网爽| 久久精品aⅴ一区二区三区四区| 嫁个100分男人电影在线观看| 真人做人爱边吃奶动态| avwww免费| 好男人在线观看高清免费视频| 欧美乱色亚洲激情| 久久久成人免费电影| 欧美日韩福利视频一区二区| 国产亚洲精品av在线| 巨乳人妻的诱惑在线观看| 桃红色精品国产亚洲av| 99国产精品99久久久久| 久久婷婷人人爽人人干人人爱| 最新在线观看一区二区三区| 男人舔女人的私密视频| 99在线视频只有这里精品首页| 好看av亚洲va欧美ⅴa在| 亚洲美女视频黄频| 最近在线观看免费完整版| 国产精品亚洲美女久久久| 午夜免费观看网址| 国产成人aa在线观看| 一个人看视频在线观看www免费 | 91字幕亚洲| 日本a在线网址| 国产综合懂色| 成人三级黄色视频| 俄罗斯特黄特色一大片| 午夜成年电影在线免费观看| 亚洲电影在线观看av| 国产精品精品国产色婷婷| 久久午夜综合久久蜜桃| 日韩成人在线观看一区二区三区| 麻豆成人午夜福利视频| 日本黄色视频三级网站网址| 亚洲精华国产精华精| h日本视频在线播放| 亚洲精品中文字幕一二三四区| 看片在线看免费视频| 少妇丰满av| 久久性视频一级片| 国产午夜精品论理片| 日韩欧美三级三区| 欧美中文日本在线观看视频| 中文亚洲av片在线观看爽| 色综合站精品国产| 老司机福利观看| 三级国产精品欧美在线观看 | 久久久精品大字幕| 亚洲自拍偷在线| 一本久久中文字幕| 变态另类丝袜制服| av视频在线观看入口| 男女那种视频在线观看| 女人高潮潮喷娇喘18禁视频| 少妇裸体淫交视频免费看高清| 啦啦啦观看免费观看视频高清| 美女午夜性视频免费| 黄色片一级片一级黄色片| 国语自产精品视频在线第100页| a级毛片a级免费在线| 国产aⅴ精品一区二区三区波| 男人舔女人的私密视频| 精品久久久久久久末码| 波多野结衣巨乳人妻| 最新中文字幕久久久久 | 久久人妻av系列| 亚洲自拍偷在线| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 亚洲国产中文字幕在线视频| 欧美又色又爽又黄视频| a在线观看视频网站| 欧美乱色亚洲激情| 麻豆国产97在线/欧美| 亚洲男人的天堂狠狠| 亚洲 国产 在线| 在线观看午夜福利视频| 欧美乱色亚洲激情| 亚洲精品粉嫩美女一区| 在线播放国产精品三级| 午夜影院日韩av| 美女cb高潮喷水在线观看 | 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 久久久成人免费电影| 久久精品国产99精品国产亚洲性色| 午夜福利高清视频| 黄片大片在线免费观看| 亚洲午夜精品一区,二区,三区| 欧美一区二区国产精品久久精品| 久久午夜综合久久蜜桃| 欧美在线黄色| av片东京热男人的天堂| 我的老师免费观看完整版| 久久精品91无色码中文字幕| 成人高潮视频无遮挡免费网站| a级毛片a级免费在线| 亚洲欧美日韩高清在线视频| 国内揄拍国产精品人妻在线| 免费看日本二区| 神马国产精品三级电影在线观看| tocl精华| 欧美日韩精品网址| 亚洲欧美一区二区三区黑人| 黑人操中国人逼视频| 成在线人永久免费视频| 国产熟女xx| 国产精品自产拍在线观看55亚洲| 国产激情偷乱视频一区二区| 琪琪午夜伦伦电影理论片6080| 天堂av国产一区二区熟女人妻| 久久天堂一区二区三区四区| 亚洲男人的天堂狠狠| 午夜影院日韩av| 欧美色欧美亚洲另类二区| 好男人电影高清在线观看| 国产真实乱freesex| 国产精品98久久久久久宅男小说| 久久久久久久精品吃奶| 两性午夜刺激爽爽歪歪视频在线观看| 天天添夜夜摸| 日韩欧美在线乱码| 亚洲精品国产精品久久久不卡| 国产在线精品亚洲第一网站| 老汉色∧v一级毛片| 给我免费播放毛片高清在线观看| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品自产拍在线观看55亚洲| 中文字幕av在线有码专区| 亚洲中文av在线| 国产av麻豆久久久久久久| 日韩三级视频一区二区三区| 真实男女啪啪啪动态图| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 久久国产精品人妻蜜桃| 国产精品一及| 亚洲第一电影网av| 亚洲片人在线观看| 91麻豆av在线| 国产精品久久久av美女十八| 色视频www国产| 视频区欧美日本亚洲| 成人精品一区二区免费| 久久久久久久午夜电影| 丁香六月欧美| 久久精品综合一区二区三区| 国产激情偷乱视频一区二区| 亚洲精品粉嫩美女一区| 一级毛片高清免费大全| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 色吧在线观看| 国产 一区 欧美 日韩| 免费电影在线观看免费观看| 国产aⅴ精品一区二区三区波| 国产91精品成人一区二区三区| 日本三级黄在线观看| 99久久精品热视频| 国产精品 欧美亚洲| 久久久成人免费电影| 日韩欧美国产在线观看| 18禁国产床啪视频网站| 欧美大码av| 在线免费观看的www视频| 国产精品一区二区免费欧美| 国产精品一区二区三区四区久久| 午夜精品一区二区三区免费看| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 亚洲人成网站高清观看| 亚洲国产欧洲综合997久久,| 精品国产乱子伦一区二区三区| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 长腿黑丝高跟| 亚洲 欧美一区二区三区| 国产精品九九99| 日韩欧美在线乱码| 国产精品女同一区二区软件 | 少妇的逼水好多| 嫩草影院精品99| 国产伦一二天堂av在线观看| 一夜夜www| 曰老女人黄片| 午夜福利在线观看吧| 黄色成人免费大全| www.www免费av| 三级国产精品欧美在线观看 | 欧美日韩黄片免| 亚洲人成电影免费在线| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 一a级毛片在线观看| 高清在线国产一区| 欧美黑人欧美精品刺激| 脱女人内裤的视频| 久久久久久国产a免费观看| 韩国av一区二区三区四区| 国产黄色小视频在线观看| 网址你懂的国产日韩在线| 桃红色精品国产亚洲av| 国产爱豆传媒在线观看| 日本黄色片子视频|