• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical study on dispersion of particles from the surface of a circular cylinder placed in a gas flow using discrete vortex method*

    2014-06-01 12:30:01HUANGYuandong黃遠(yuǎn)東
    關(guān)鍵詞:遠(yuǎn)東

    HUANG Yuan-dong (黃遠(yuǎn)東)

    School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

    College of Engineering, Kyung Hee University, Yongin 449-701, Korea, E-mail: huangyd@usst.edu.cn

    HE Wen-rong (何文榮), WU Wen-quan (吳文權(quán))

    School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

    KIM Chang-Nyung

    College of Engineering, Kyung Hee University, Yongin 449-701, Korea

    Industrial Liaison Research Institute, Kyung Hee University, Yongin 449-701, Korea

    A numerical study on dispersion of particles from the surface of a circular cylinder placed in a gas flow using discrete vortex method*

    HUANG Yuan-dong (黃遠(yuǎn)東)

    School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

    College of Engineering, Kyung Hee University, Yongin 449-701, Korea, E-mail: huangyd@usst.edu.cn

    HE Wen-rong (何文榮), WU Wen-quan (吳文權(quán))

    School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

    KIM Chang-Nyung

    College of Engineering, Kyung Hee University, Yongin 449-701, Korea

    Industrial Liaison Research Institute, Kyung Hee University, Yongin 449-701, Korea

    (Received January 28, 2013, Revised May 27, 2013)

    The dispersion of particles emitted from the surface of a circular cylinder placed in a gas flow at the Reynolds number of 200 000 is numerically investigated using the discrete vortex method coupled with a Lagrangian approach for solid particle tracking. The wake vortex patterns, the temporal-spatial distributions and trajectories as well as the dispersion functions for particles with various Stokes numbers (St) ranging from 0.001 to 1.0 are obtained. The numerical results reveal that: (1) Solid particles on the cylinder surface are picked up and then transported away from the cylinder by the wake vortex flow. (2) Solid particles emitted from the cylinder surface always follow the vortices in the cylinder wake, and the response of particles to wake vortices is directly related to their Stokes numbers (particles withSt=0.001, 0.0038, 0.01 can distribute both in the vortex core and around the vortex periphery, whereas those withSt=0.1, 1.0 can not enter the vortex core and congregate mainly around the vortex periphery). (3) The particles move in rolling state in the wake region, and the dispersion intensity of particles in the lateral direction decreases remarkably as the Stokes number of particles is increased from 0.001 to 1.0.

    particle dispersion, circular cylinder, gas flow, wake vortex, discrete vortex method (DVM)

    Introduction

    Particle dispersion in gas flows over a circular cylinder is very common in man-made and natural environments. Because gas flows past a circular cylinder (bluff body) at high Reynolds number are characteri-zed by the evolution of wake vortices, understanding the effect of wake vortices on particle dispersion in the wake of a circular cylinder is crucial for predicting spatial and temporal distributions of particles and for analyzing the erosion of cylinder surface. The numerical studies of particle dispersion in plane mixing layers[1-3], planar jets[4,5], and wake gas flows behind a flat plate[6]and over a backward-facing step[7]have been made extensively, and it was found that the large organized vortex structures have a dominate effect on the dispersion of particles over a range of Stokes numbers. Recently, a few numerical studies have been conducted to investigate particle-laden gas flows past single and multiple circular cylinders[8-12], and it was revealed that the particle dispersion pattern depends strongly on wake vortices and particle’s Stokes number.

    Particle emissions from bluff body surfaces occur widely in engineering practice and in natural environment. For example, particulate matters are released from a bluff body surface during its erosion process in a flow. Also, solid particles already deposited on a bluff body may be picked up again by flows past the bluff body. In the above-mentioned studies[8-12], however, the solid particles were all from the free-stream and the dispersion of particles from the surface of a circular cylinder was not simulated. On the other hand, the dispersion of very small sized particles was not considered in the above-mentioned investigations (i.e., the Brownian force and the Cunningham correction factor to Stokes’ drag law were not taken into account in previous studies).

    The objective of the present work is to investigate numerically the effect of wake vortices on dispersion of different sized particles from the surface of a circular cylinder placed in a gas flow at high Reynolds number. To this end, we study the two-dimensional gas flows past a circular cylinder at the Reynolds number of 200 000. In the numerical procedure, the discrete vortex method with a diffusion velocity model for diffusion of vorticity due to fluid viscosity, which can capture the essential features (such as the formation, development and decay of wake vortices) of the unsteady gas flows, is used to evaluate the unsteady gas flow fields, a Lagrangian approach based on one-way coupling is adopted to track individual solid particles released from the cylinder surface, and a dispersion function is applied to represent the lateral dispersion scale of particles. In the simulations, the changes in particle distribution patterns, particle trajectories and particle dispersion intensity with the Stokes number are all examined.

    1. Basic equations and numerical method

    1.1Unsteady gas flow field

    1.1.1 Governing equations for gas

    We use the discrete vortex method (DVM)[9,13-15]to evaluate the unsteady gas flow fields numerically.

    For a two-dimensional, viscous incompressible flow past a circular cylinder at high Reynolds number, the governing equations in the vorticity-stream function form are given as

    wheretis the time,νthe kinematic viscosity,ωthe vorticity, andψthe stream function.

    The fluid vorticityωis expressed by

    whereuandvare the velocity components in thex- andy-directions, respectively.

    The stream functionψis related to the velocity components through

    The discrete vortex method represents the continuous vorticity field as the sum of a large numberNof vortex blobs

    wherer=(x,y),Γiis the strength of theith vortex blob at positionri=(xi,yi), andKσ(ε) is the cutoff function given as

    whereσis the core radius of the vortex blob.

    When the vorticity field is discretized into a set ofNvortex blobs, the velocity field is constructed from the vortex blobs by the following equations derived from the Biot-Savart Law.

    whereu∞andv∞are the free-stream velocity components in thex- andy-directions, respectively

    Fig.1 Distribution of nascent vortex blobs along the circular cylinder surface[9]

    1.1.2 Generation and shedding of discrete vortex blobs from the cylinder surface

    A circular cylinder surface is represented byMcontrol points, which are placed at a very small distanceδfrom the surface. At each control point, a nascent vortex blob is created at each time step (as depicted in Fig.1) to satisfy the zero normal velocity condition.

    The separation points are calculated by using the boundary layer theories. Once the separation points are determined, the nascent vortex blobs at and downstream of the separation points are shed into the wake.

    1.1.3 Diffusion of vorticity due to viscosity

    The diffusion of vorticity due to fluid viscosity is modeled by a diffusion velocity method presented by Ogami and Akamatsu[9]. In this method, the transport equation for a scalar functionF(x,y,t) moving with a fluid velocityV(x,y,t)=[u(x,y,t),v(x,y,t)]in the (x,y)-plane is given by

    The vorticity transport Eq.(1) may be rewritten as

    Through comparing Eqs.(9) and (10), the vorticityωcan be considered as moving with a total velocity of (V+Vd), whereVis the usual convective velocity. Hence the effect of viscosity is to add a diffusion velocity componentVd=(ud,vd)to the motion of each vortex blob, whereudandvdare given by

    By substituting Eq.(5) into Eq.(11), the diffusion velocity (ud,vd) induced at position (x,y) and timetcan be expressed as

    Therefore, in the diffusion velocity method, each vortex blob is transported both by the convection velocity (u,v) obtained from Eqs.(7) and (8) and by the diffusion velocity (ud,vd) calculated from Eqs.(12) and (13), and its strength is kept invariant along its trajectory according to Eq.(10).

    After getting the convection and diffusion velocities of each vortex blob, its position can be determined by integrating the following equation

    whereri=(xi,yi) is the position of theith vortex blob.

    When the position and strength of each vortex blob are known att=t, the flow att=t+Δt(Δtis the size of the time step) can be obtained, because the gas velocity is calculated from Eqs.(7) and (8), and the position of vortex blob is obtained from Eq.(14).

    1.2Lagrangian equation of motion for a particle

    We adopt a Lagrangian approach based on oneway coupling between the continuous gas phase and dispersed particles to simulate the particle motion in unsteady gas flow fields. In this study, the free-stream is clean and the particles are only released from the cylinder surface, thus the impact of particles on airflow as well as the inter-particle collisions can be ignored due to extremely small particle concentrations in the flow field. In the present simulation, the forces acting on a particle are the drag, virtual mass, pressure gradient, Saffman’s lift, and Brownian motion forces (here the Magnus and Basset forces are omitted). And thus the Lagrangian equation of motion for a spherical particle we used is

    wherepρa(bǔ)ndρa(bǔ)re the particle and fluid density, respectively,dpis the particle diameter,μis the dynamic viscosity of the fluid,V=(u,v) andVp=(up,vp) are the instantaneous velocity of the fluid and the particle, respectively,fis the modification factor for the Stokes drag coefficient,φ(t) is a Brownian force per unit mass,iandjare the unit vectors inx- andy-directions, respectively,tis the time, d/ dtis the temporal derivative along the discrete particle trajectory and D/Dtis the temporal derivative along the fluid motion. d/dtand D/Dtcan be written as

    The terms on the right-hand side of Eq.(15) represent, respectively, the drag, virtual mass, pressure gradient, saffman’s lift, and Brownian motion forces. The particle Reynolds number is defined by

    fis related to the particle Reynolds number and is given below

    Cin Eq.(19) is the Cunningham correction factor to Stokes’ drag law, which can be calculated from

    whereλis the molecular mean free path of the gas and is given by

    For small particles the effect of Brownian motion becomes significant[16,17]. To take into account such effects in the simulation of particle motion the Brownian force is modeled as a Gaussian white noise random process, and the amplitudes of the Brownian force components at every time step are evaluated from

    Fig.2 Coordinate system for the numerical simulations

    Equation (15) can be further simplified to give

    Fig.3 Distributions of particles withSt=0.001 and discrete vortex blobs at different time instants (the solid circles represent particles and hollow circles vortex blobs)

    The Stokes number (St) is used widely by various researchers to study particle dispersion in flowing gases, which is defined as the ratio of the response time of the particle to the time scale of the fluid. Let the circular cylinder diameterDbe a characteristic lengthL, the upstream approach velocityV∞be a characteristic velocityU, andT=L/U=D/V∞be the characteristic time. If the time scale of the mean flow,L/U, is used, the Stokes number can be evaluated as

    According to the definition of velocity, we have

    whererp(t) is the location of the particle at timet.

    We first solve the Eq.(26) to get the particle velocity, and then integrate the Eq.(28) to determine the particle position in the unsteady flow field.

    1.3Numerical procedure

    In the numerical simulation, the unsteady gas flow field is first evaluated by using the discrete vortex method, based on the obtained unsteady gas velocity field, the Lagrangian equations of motion for particles are then solved to track the individual solid particles.

    2. Numerical results and its analysis

    2.1Calculating conditions

    We use the above numerical method to simulate

    Fig.4 Distributions of particles withSt=1.0 and discrete vortex blobs at five different time instants (the small solid circles represent particles and small hollow circles vortex blobs)

    Fig.5 Distributions of particles and discrete vortex blobs at timet=20 (the small solid circles represent particles and small hollow circles vortex blobs)

    the particle dispersion in the wake of gas flows over a circular cylinder at high Reynolds number. Figure 2 shows the coordinate system of the numerical simulations. The origin is taken at the center of the fixed cylinder with a non-dimensional diameter of 1.0. Thex- axis is parallel to the undisturbed stream and the flow plane is perpendicular to the gravity. The flow is from left to right, at timet=0 the flow is started with constant non-dimensional velocity of magnitude 1.0 in thex-direction. Thus the gas velocity at position (-∞,0) is (1,0). The kinematic viscosity of the fluid is 1.5×10–5m2/s and the absolute temperature of the fluid is 293 K. The Reynolds number based on the cylinder diameter and the gas velocity upstream of the cylinderV∞is 200 000.pρa(bǔ)ndρa(bǔ)re 2 650 kg/m3and 1.2 kg/m3, respectively. Six different particles for the Stokes numbers,St, of 0.001, 0.0038, 0.01, 0.061, 0.1 and 1.0 are calculated (since PM10 and PM2.5 levels are widely used in assessment of atmospheric quality in environmental science, we also evaluate in this study the dispersion of particles withdp=10μ m (St=0.061) and 2.5μ m(St=0.0038)).

    The circular cylinder surface is represented by the 103 control points with fixed locations, and 103 nascent vortex blobs are created at each time step on the cylinder surface. The maximum number of vortex blobs is 20 000 (i.e., nearly two hundred times the number of the nascent vortex blobs) in the simulation (in a previous study[9], the maximum number of vortex blobs is twenty times that of the nascent vortex blobs). The time step size Δtof the simulation of fluid flow is set to be 0.02, and the total number of time steps is 1 000 (i.e., the simulation runs to timet=20).

    At each time step, as the simulation for the gasphase has been completed, 50 spherical particles of monosize distribution are released randomly from the cylinder surface into the gas flow field (the initial position of each particle is determined by using random numbers and the initial velocity of each particle is set to be zero).

    In order to obtain the particle trajectories, we track 50 spherical particles for each of the four different particles for the Stokes numbers 0.001, 0.01, 0.1 and 1.0. These particles tracked are evenly distributed along the cylinder surface and released at timet=0 into the gas flow field.

    In order to quantitatively study the dispersionscales of particles with different Stokes numbers, the dispersion function in theydirection is used here. The dispersion function is defined as[9,14]

    whereNpis the total number of particles in the cal-

    culating region at timet,Yi(t) is the displacement of theith particle in they- direction from timet-Δttot,Ym(t) is the mean value of particle displacement in theydirection from timet-Δttot.

    2.2Numerical results

    Figure 3 shows the five instantaneous images of the discrete vortex blob pattern and of the distribution of particles with very small Stokes number 0.001. The vortex blob patterns depicted in Fig.3 illustrate that the vortex blobs shed from the cylinder form clusters in the wake region. Due to the flow separation, vortices occur downstream of the separation points on the cylinder surface. Figure 3 reveals clearly that the particles on the cylinder surface are picked up and then transported away from the cylinder by the wake vortex flow. Figure 3 also reveals that in the wake region the particles from the cylinder surface always follow the wake vortices (or the clusters of discrete vortex blobs) and are distributed both in the vortex core and around the vortex periphery.

    Figure 4 shows the five instantaneous images of the discrete vortex blob pattern and of the distribution of particles with intermediate stokes number 1.0. From this figure, it can be observed that in the wake region the particles withSt=1.0 also follow the wake vortices. But unlike the particles with very small Stokes number 0.001, the particles withSt=1.0 can not enter the vortex core and they distribute only around the vortex periphery.

    In order to examine the effects of wake vortices on distribution of particles with various Stokes numbers, at timet=20 the discrete vortex blob pattern and the particle distributions, respectively, for Stokes numbers 0.001, 0.0038, 0.01, 0.061, 0.1 and 1.0 are shown in Fig.5. This figure indicates clearly that the dispersion of particles in the circular cylinder wake is governed by the Stokes number and the structure of wake vortices.

    Due to the very small inertia effects, the particles with very small Stokes numbers 0.001, 0.0038 and 0.01 can distribute both in the vortex core and around the vortex periphery as shown in Figs.5(a) through 5(c).

    Fig.6 Time series of dispersion function of particles with different Stokes numbers

    Fig.7 Trajectories of particles with various Stokes numbers (the particles are released into the gas flow field at timet=0)

    Due to the strong centrifugal force acting on the particle by the vortices, the particles with intermediateStokes numbers (St=0.1, 1.0) cannot enter the vortex core and congregate mainly around the vortex periphery or near the outer boundaries for the clusters of vortex blobs as depicted in Figs.5(e) and 5(f).

    For particles with the Stokes numbers ranging from 0.01 to 1.0, Figs.5(c) through 5(f) shows clearly that the zones around the vortex cores, where few particles exist, are expanded as the Stokes number is increased. This is because the centrifugal force acting on a particle by the wake vortices increases with the Stokes number.

    Figure 6 shows the time series of dispersion function for particles with different Stokes numbers (St=0.001, 0.0038, 0.01, 0.061, 0.1, 1.0). It is evident from this figure that the particle’s dispersion intensity in the lateral direction decreases significantly asStis increased from 0.001 to 1.0 (the dispersion intensity of particles withSt=0.001 is nearly twice that of particles withSt=1.0).

    The trajectories of particles with four different stokes numbers (St=0.001, 0.01, 0.1, 1.0) are shown in Fig.7, which illustrates clearly that the particles rollingly move in the wake region, and that the particle fluctuations in the lateral direction increase remarkably with the decrease of particle’s Stokes number.

    3. Conclusions

    The dispersion of particles from the surface of a circular cylinder placed in a gas flow at Reynolds number of 200 000 has been numerically studied using the discrete vortex method coupled with a diffusion velocity model and Lagrangian solid particle tracking. The vortex patterns, the distributions and time series of dispersion function for particles with the Stokes numbers 0.001, 0.0038, 0.01, 0.061, 0.1 and 1.0, and the trajectories of particles with Stokes numbers 0.001, 0.01, 0.1 and 1.0 are obtained. The numerical results show that the dispersion of particles released from a cylinder surface is governed by the particle’s Stokes number and the structure of wake vortices: (1) Particles on the cylinder surface are picked up and then transported away from the cylinder by the wake vortex flow. (2) Particles from the cylinder surface always follow the wake vortices in the wake region, and the particles with very small Stokes numbers (such asSt=0.001, 0.0038, 0.01) can distribute both in the vortex core and around the vortex periphery, whereas those with intermediate Stokes numbers (such asSt= 0.1, 1.0) can not enter the vortex core and congregate mainly around the vortex periphery. (3) The zones around the vortex cores, where few particles exist, are expanded as the Stokes number is increased from 0.01 to 1.0. (4) The particles move in rolling state in the wake region, and the particle’s dispersion intensity in the lateral direction decreases remarkably asStis increased from 0.001 to 1.0 (the dispersion intensity of particles withSt=0.001 is nearly twice that of particles withSt=1.0).

    This work is helpful for environmental researchers to analyze and predict the spatial and temporal distributions of particulate matters released from the surface of a bluff body.

    It should be noted that this study is restricted to discussion in two-dimensional flows and further investigations are still needed to simulate particle dispersion in three-dimensional airflows past a circular cylinder.

    [1] YANG X., RIELLY C. and LI L. et al. Modelling of heavy and buoyant particle dispersion in a two-dimensional turbulent mixing layer[J].Powder Technology,2007, 178(3): 151-165.

    [2] NARAYANAN C., LAKAHEL D. and YADIGAROGLU G. Linear stability analysis of particle-laden mixing layers using lagrangian particle tracking[J].Powder Technology,2002, 125(2-3): 122-130.

    [3] JONES W. P., LYRA S. and MARQUIS A. J. Large eddy simulation of a droplet laden turbulent mixing layer[J].International Journal of Heat and Mass Transfer,2010, 31(1): 93-100.

    [4] FAN Q. L., WANG X. L. and ZHANG H. Q. et al. Large eddy simulation of a horizontal particle-laden turbulent planar jet[J].Computational Mechanics,2001, 27(2): 128-137.

    [5] ALMEIDA T. G., JABERI F. A. Direct numerical simulations of a planar jet laden with evaporating droplets[J].International Journal of Heat and Mass Transfer,2006, 49(13-14): 2113-2123.

    [6] UCHIYAMA T., YAGAMI H. Numerical analysis of gas-particle two-phase wake flow by vortex method[J].Powder Technology,2005, 149(2-3): 112-120.

    [7] YU K. F., LAU K. S. and CHAN C. K. Large eddy simulation of particle-laden turbulent flow over a backward-facing step[J].Communications in Nonlinear Science and Numerical Simulation,2004, 9: 251-262.

    [8] CHEN B., WANG C. and WANG Z. et al. Investigation of gas-solid two-phase flow across circular cylinders with discrete vortex method[J].Applied Thermal Engineering,2009, 29(8-9): 1457-1466.

    [9] HUANG Y., WU W. and ZHANG H. Numerical study of particle dispersion in the wake of gas-particle flows past a circular cylinder using discrete vortex method[J].Powder Technology,2006, 162(1): 73-81.

    [10] ZHOU H., MO G. and CEN K. Numerical investigation of dispersed gas-solid two-phase flow around a circular cylinder using lattice Boltzmann method[J].Computers and Fluids,2010, 52: 130-138.

    [11] HUANG Yuan-dong, ZHANG Hong-wu and WU Wenquan. Numerical study of particle distribution in the wake of gas-particle two-phase flows past a circular cylinder at high Reynolds number[J].Journal of Hydrodynamics, Ser. B,2005, 17(3): 283-288.

    [12] LIU L., JI F. and FAN J. et al. Direct numerical simulation of particle dispersion in the flow around a circular cylinder[J].Journal of Thermal Science,2004,13(4): 344-349.

    [13] RICHMOND-BRYANT J., FLYNN M. R. Applying the discrete vortex method in environmental fluid mechanics: A study of the time-averaged near wake behind a circular cylinder[J].Environmental Fluid Mechanics,2004, 4(4): 455-463.

    [14] HUANG Y. Numerical study of particle dispersion in the wake of two tandem square cylinders using discrete vortex method[J].Particulate Science and Technology,2011, 29(6): 526-540.

    [15] UCHIYAMA T., NARUSE M. H. A Numerical method for gas-solid two-phase free turbulent flow using a vortex method[J].Powder Technology,2001, 119(2-3): 206-214.

    [16] JAFARI S., SALMANZADEH M. and RAHNAMA M. et al. Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice Boltzmann method[J].Journal of Aerosol Science,2010 41(2): 198-206.

    [17] AFROUZI H. H., FARHADI M. and MEHRIZI A. A. Numerical simulation of microparticles transport in a concentric annulus by lattice Boltzmann method[J].Advanced Powder Technology,2013, 24(3): 575-584.

    10.1016/S1001-6058(14)60043-3

    * Project supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 10ZZ95), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Grant No. J50502).

    Biography: HUANG Yuan-dong (1965-), Male, Ph. D.,

    Professor

    Corresponging author: KIM Chang-Nyung,

    E-mail: cnkim@khu.ac.kr

    猜你喜歡
    遠(yuǎn)東
    遠(yuǎn)東正大檢驗(yàn)集團(tuán)有限公司
    王遠(yuǎn)東:扎根技術(shù)一線 用行動踐行入黨誓詞
    關(guān)于遠(yuǎn)東宏信廣場電梯系統(tǒng)安裝的探討
    2020遠(yuǎn)東無損檢測新技術(shù)論壇順利召開
    無損檢測(2020年12期)2020-12-26 06:33:50
    論20世紀(jì)前后遠(yuǎn)東俄僑文化及其對哈爾濱的影響
    2Analysis of the Usage of Domestictio and Foreignization inChinese Poetry Translation
    歐洲、遠(yuǎn)東藥用植物著作簡介IV
    遠(yuǎn)東戰(zhàn)役中的和平天使
    二戰(zhàn)期間美國對蘇聯(lián)出兵遠(yuǎn)東態(tài)度的變化
    軍事歷史(2002年3期)2002-08-21 02:07:42
    三十年代香港在英國遠(yuǎn)東戰(zhàn)略中的地位與作用
    軍事歷史(1998年4期)1998-08-21 08:02:34
    av网站免费在线观看视频 | 欧美高清成人免费视频www| 老女人水多毛片| 韩国高清视频一区二区三区| 亚洲国产精品成人久久小说| 亚洲精品影视一区二区三区av| 偷拍熟女少妇极品色| 国产亚洲最大av| 高清日韩中文字幕在线| 国产av在哪里看| 亚洲精品乱码久久久久久按摩| 夫妻性生交免费视频一级片| 亚洲精华国产精华液的使用体验| 又黄又爽又刺激的免费视频.| 久久久久久久久久久丰满| 欧美zozozo另类| 久久久久久久午夜电影| 菩萨蛮人人尽说江南好唐韦庄| 国产国拍精品亚洲av在线观看| 亚洲综合色惰| 国产 一区精品| 国产精品无大码| 亚洲激情五月婷婷啪啪| 夜夜看夜夜爽夜夜摸| 日日摸夜夜添夜夜添av毛片| 中文资源天堂在线| 久久久欧美国产精品| 99久久精品一区二区三区| 日日啪夜夜爽| 97精品久久久久久久久久精品| 少妇猛男粗大的猛烈进出视频 | 亚洲av国产av综合av卡| av.在线天堂| 国产精品1区2区在线观看.| av福利片在线观看| 日韩在线高清观看一区二区三区| 最近最新中文字幕大全电影3| 国产91av在线免费观看| 九九爱精品视频在线观看| 极品少妇高潮喷水抽搐| 亚洲av在线观看美女高潮| 18禁动态无遮挡网站| 干丝袜人妻中文字幕| 非洲黑人性xxxx精品又粗又长| 成人av在线播放网站| 一本久久精品| 免费观看的影片在线观看| 欧美zozozo另类| 欧美性猛交╳xxx乱大交人| 精品午夜福利在线看| 成人国产麻豆网| 亚洲熟女精品中文字幕| eeuss影院久久| 亚洲精品日韩av片在线观看| 91午夜精品亚洲一区二区三区| freevideosex欧美| 成人毛片60女人毛片免费| 欧美日韩一区二区视频在线观看视频在线 | 在线a可以看的网站| 精品少妇黑人巨大在线播放| 亚洲,欧美,日韩| 亚洲精品一区蜜桃| 午夜久久久久精精品| 国产大屁股一区二区在线视频| 成人午夜精彩视频在线观看| 人人妻人人看人人澡| 97超碰精品成人国产| 99久久九九国产精品国产免费| 伦理电影大哥的女人| 日本熟妇午夜| 亚洲最大成人中文| 三级经典国产精品| 欧美日韩一区二区视频在线观看视频在线 | 99久久精品国产国产毛片| 国产精品一区www在线观看| 水蜜桃什么品种好| 国产精品国产三级国产专区5o| 在线免费观看不下载黄p国产| 晚上一个人看的免费电影| 国产精品一二三区在线看| 欧美成人午夜免费资源| 国产 一区 欧美 日韩| 最近最新中文字幕大全电影3| 亚洲三级黄色毛片| 可以在线观看毛片的网站| 亚洲精华国产精华液的使用体验| 亚洲,欧美,日韩| 精品酒店卫生间| 最近中文字幕2019免费版| 一级毛片黄色毛片免费观看视频| 亚洲av日韩在线播放| 亚洲av国产av综合av卡| 亚洲精品日韩av片在线观看| 亚洲国产精品专区欧美| 国产男人的电影天堂91| 亚洲最大成人av| 91精品伊人久久大香线蕉| 丰满少妇做爰视频| 在现免费观看毛片| 国产精品美女特级片免费视频播放器| 久久精品夜色国产| 日本黄色片子视频| 蜜桃久久精品国产亚洲av| 成人午夜精彩视频在线观看| 久久久久久久久久成人| 国内精品一区二区在线观看| 你懂的网址亚洲精品在线观看| 纵有疾风起免费观看全集完整版 | 麻豆国产97在线/欧美| 少妇裸体淫交视频免费看高清| 午夜亚洲福利在线播放| 18禁在线无遮挡免费观看视频| 日韩亚洲欧美综合| 日韩中字成人| 看非洲黑人一级黄片| 亚洲av成人av| 69av精品久久久久久| 国产亚洲精品久久久com| 能在线免费观看的黄片| 蜜桃亚洲精品一区二区三区| 午夜久久久久精精品| 亚洲精品一二三| 国产精品久久久久久久电影| 精品一区二区三区人妻视频| 国产亚洲5aaaaa淫片| 亚洲国产av新网站| 国产男人的电影天堂91| 超碰av人人做人人爽久久| 春色校园在线视频观看| 亚洲成人久久爱视频| 久久久久久久国产电影| 免费人成在线观看视频色| 岛国毛片在线播放| 国产爱豆传媒在线观看| 少妇丰满av| 麻豆国产97在线/欧美| 国产免费视频播放在线视频 | 国产男女超爽视频在线观看| 国产黄色免费在线视频| 最新中文字幕久久久久| 高清av免费在线| 两个人视频免费观看高清| 精品一区二区三区视频在线| 日本黄色片子视频| 国产成人a区在线观看| 一个人看视频在线观看www免费| 身体一侧抽搐| 国产精品av视频在线免费观看| 一级a做视频免费观看| 国产免费视频播放在线视频 | 国产女主播在线喷水免费视频网站 | xxx大片免费视频| 我要看日韩黄色一级片| 18禁裸乳无遮挡免费网站照片| 成年免费大片在线观看| 男女那种视频在线观看| 少妇高潮的动态图| 精品一区二区三区人妻视频| eeuss影院久久| 久久久久久久午夜电影| 在线观看免费高清a一片| 国产麻豆成人av免费视频| 亚洲天堂国产精品一区在线| 久久亚洲国产成人精品v| 我的老师免费观看完整版| 少妇被粗大猛烈的视频| 久久人人爽人人爽人人片va| 午夜福利视频精品| 国产视频内射| 免费少妇av软件| 国产白丝娇喘喷水9色精品| 男女啪啪激烈高潮av片| 我的女老师完整版在线观看| 69人妻影院| 麻豆乱淫一区二区| 精品国内亚洲2022精品成人| 网址你懂的国产日韩在线| 婷婷色麻豆天堂久久| 少妇的逼好多水| 一区二区三区乱码不卡18| 一级av片app| 日韩一区二区视频免费看| 夫妻性生交免费视频一级片| 免费观看a级毛片全部| 国产视频首页在线观看| 国内精品宾馆在线| 亚洲图色成人| 久久久久久久久久成人| 只有这里有精品99| 色哟哟·www| 久久国内精品自在自线图片| 亚洲久久久久久中文字幕| 中国美白少妇内射xxxbb| 精品熟女少妇av免费看| 亚洲国产精品sss在线观看| 综合色av麻豆| 中文乱码字字幕精品一区二区三区 | 日本熟妇午夜| 国产亚洲5aaaaa淫片| 97在线视频观看| 能在线免费看毛片的网站| 九九爱精品视频在线观看| 搞女人的毛片| 日韩精品青青久久久久久| 亚州av有码| 丰满少妇做爰视频| 免费黄网站久久成人精品| 内射极品少妇av片p| av播播在线观看一区| 国产亚洲午夜精品一区二区久久 | 国产人妻一区二区三区在| 欧美极品一区二区三区四区| 久久久久久久久中文| 精品一区二区三区人妻视频| 日韩不卡一区二区三区视频在线| 天美传媒精品一区二区| 秋霞在线观看毛片| 可以在线观看毛片的网站| 夜夜看夜夜爽夜夜摸| 在线观看一区二区三区| av在线播放精品| 日本黄色片子视频| 在线播放无遮挡| 亚洲精品亚洲一区二区| 国国产精品蜜臀av免费| 禁无遮挡网站| 九九爱精品视频在线观看| 黄色配什么色好看| 亚洲精品成人久久久久久| 免费人成在线观看视频色| 国产白丝娇喘喷水9色精品| 欧美最新免费一区二区三区| 老师上课跳d突然被开到最大视频| 91久久精品电影网| 久久综合国产亚洲精品| 精品午夜福利在线看| 特级一级黄色大片| 黄色一级大片看看| 日产精品乱码卡一卡2卡三| 国产高清国产精品国产三级 | 亚洲真实伦在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久电影网| 日本免费a在线| 99热这里只有是精品在线观看| 国产精品不卡视频一区二区| 日韩一本色道免费dvd| 国产亚洲最大av| 日韩 亚洲 欧美在线| 天堂网av新在线| 天堂中文最新版在线下载 | 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲一区二区精品| 国产在线男女| 男的添女的下面高潮视频| 精品午夜福利在线看| 亚洲四区av| 亚洲人成网站高清观看| 黄色日韩在线| 婷婷六月久久综合丁香| 久久6这里有精品| 亚洲成人一二三区av| 国产午夜精品论理片| 亚洲精品自拍成人| 亚洲av免费在线观看| 日本欧美国产在线视频| 亚洲av成人精品一区久久| 身体一侧抽搐| 少妇的逼好多水| 狂野欧美白嫩少妇大欣赏| 午夜视频国产福利| 天天躁夜夜躁狠狠久久av| 亚洲内射少妇av| 五月天丁香电影| 精品一区二区三卡| 国产午夜福利久久久久久| 日韩欧美三级三区| 在现免费观看毛片| 午夜精品一区二区三区免费看| 九九在线视频观看精品| 久久99热这里只有精品18| 亚洲最大成人av| 国产视频内射| 国产一区二区三区综合在线观看 | 舔av片在线| 99热这里只有是精品在线观看| 97超碰精品成人国产| 2021天堂中文幕一二区在线观| 欧美日韩视频高清一区二区三区二| 青春草国产在线视频| 久久久久久久久中文| 男女边摸边吃奶| 久久久久久久午夜电影| 最近的中文字幕免费完整| 国产亚洲精品av在线| 午夜福利在线在线| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 亚洲最大成人中文| 成人国产麻豆网| 欧美xxxx黑人xx丫x性爽| 伊人久久国产一区二区| 免费观看在线日韩| 久久久久久久久大av| 亚洲精品国产av成人精品| 国产高清三级在线| 三级国产精品欧美在线观看| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产| 亚洲国产日韩欧美精品在线观看| 久久99精品国语久久久| 欧美性猛交╳xxx乱大交人| 男人狂女人下面高潮的视频| 看免费成人av毛片| 最新中文字幕久久久久| 一区二区三区免费毛片| av在线老鸭窝| 国内少妇人妻偷人精品xxx网站| 日韩强制内射视频| 国产精品一二三区在线看| 黄色配什么色好看| 日韩制服骚丝袜av| 男人和女人高潮做爰伦理| 日韩成人伦理影院| 国产 一区精品| 毛片一级片免费看久久久久| 国产乱人偷精品视频| 亚洲国产高清在线一区二区三| 天堂√8在线中文| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| 精华霜和精华液先用哪个| 亚洲国产最新在线播放| 一级爰片在线观看| 男女边摸边吃奶| 日日摸夜夜添夜夜爱| 国产高清三级在线| 男女边摸边吃奶| 国产综合精华液| 99久久人妻综合| 永久免费av网站大全| 久久精品久久精品一区二区三区| 特大巨黑吊av在线直播| 一个人看的www免费观看视频| 美女黄网站色视频| 国产精品久久久久久精品电影小说 | 久久久久免费精品人妻一区二区| 在线观看一区二区三区| 亚洲精品国产av成人精品| 国产免费又黄又爽又色| 中文字幕av成人在线电影| 久久综合国产亚洲精品| 欧美高清性xxxxhd video| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 美女高潮的动态| 老司机影院毛片| 国产av不卡久久| 国产精品国产三级国产专区5o| 国产精品一区二区三区四区免费观看| 亚洲怡红院男人天堂| 一本一本综合久久| 中国美白少妇内射xxxbb| 国产一区二区三区av在线| av卡一久久| 联通29元200g的流量卡| 国产精品国产三级专区第一集| 免费观看无遮挡的男女| 国产精品麻豆人妻色哟哟久久 | 婷婷色综合www| 国产欧美日韩精品一区二区| 日本午夜av视频| 免费观看的影片在线观看| 人人妻人人看人人澡| 哪个播放器可以免费观看大片| 能在线免费看毛片的网站| 美女被艹到高潮喷水动态| 亚洲国产精品sss在线观看| 国产在视频线精品| 99久久精品一区二区三区| 神马国产精品三级电影在线观看| 女人十人毛片免费观看3o分钟| 免费黄频网站在线观看国产| 日韩av在线免费看完整版不卡| 国产高清有码在线观看视频| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 日日摸夜夜添夜夜爱| 国产免费又黄又爽又色| 2022亚洲国产成人精品| 性色avwww在线观看| 看黄色毛片网站| 婷婷六月久久综合丁香| 中文乱码字字幕精品一区二区三区 | 你懂的网址亚洲精品在线观看| 色哟哟·www| 中文字幕免费在线视频6| 国产高潮美女av| 久久99热这里只频精品6学生| 亚洲av在线观看美女高潮| 日韩精品青青久久久久久| 欧美zozozo另类| 成人一区二区视频在线观看| 日本午夜av视频| 国产精品一区www在线观看| 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看| 极品教师在线视频| 一区二区三区高清视频在线| 久久综合国产亚洲精品| 国产一区有黄有色的免费视频 | 听说在线观看完整版免费高清| 精品久久久久久久久久久久久| 91久久精品电影网| 性插视频无遮挡在线免费观看| 成人午夜精彩视频在线观看| 最新中文字幕久久久久| 精品人妻熟女av久视频| 99久久九九国产精品国产免费| 国产av不卡久久| 亚洲人成网站在线播| 午夜福利网站1000一区二区三区| 欧美性感艳星| 国产精品麻豆人妻色哟哟久久 | 色视频www国产| 最近中文字幕2019免费版| 美女xxoo啪啪120秒动态图| 国产综合懂色| 只有这里有精品99| 亚洲最大成人手机在线| 免费av观看视频| 久久久久久伊人网av| 美女高潮的动态| 精品一区二区三区人妻视频| 欧美zozozo另类| 日韩一区二区视频免费看| www.色视频.com| 久久99热6这里只有精品| 精品熟女少妇av免费看| 成人综合一区亚洲| av线在线观看网站| 麻豆久久精品国产亚洲av| 午夜亚洲福利在线播放| 天堂影院成人在线观看| 亚洲成色77777| 一级片'在线观看视频| 国产精品国产三级国产专区5o| 人人妻人人看人人澡| 少妇丰满av| 国产精品一区www在线观看| 亚洲色图av天堂| 床上黄色一级片| 中文字幕免费在线视频6| 亚洲激情五月婷婷啪啪| 亚洲欧美清纯卡通| 天天一区二区日本电影三级| 七月丁香在线播放| 美女高潮的动态| 纵有疾风起免费观看全集完整版 | 亚洲人与动物交配视频| 国产高清不卡午夜福利| 免费大片18禁| 亚洲人成网站高清观看| 欧美日韩精品成人综合77777| 最近的中文字幕免费完整| 日韩国内少妇激情av| 日本猛色少妇xxxxx猛交久久| 色尼玛亚洲综合影院| 久久国产乱子免费精品| 2021少妇久久久久久久久久久| 亚洲在久久综合| 国产精品一区二区三区四区久久| 熟妇人妻不卡中文字幕| 婷婷色麻豆天堂久久| 国产精品嫩草影院av在线观看| 欧美+日韩+精品| 高清日韩中文字幕在线| 国产一级毛片在线| av网站免费在线观看视频 | 亚洲av不卡在线观看| 日日啪夜夜撸| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 夫妻午夜视频| 久久精品国产鲁丝片午夜精品| 亚洲精品,欧美精品| 国产淫片久久久久久久久| 夜夜看夜夜爽夜夜摸| 国产黄色小视频在线观看| 国产又色又爽无遮挡免| 国产成年人精品一区二区| 亚洲不卡免费看| 亚洲真实伦在线观看| 五月天丁香电影| 网址你懂的国产日韩在线| 免费看美女性在线毛片视频| 可以在线观看毛片的网站| 我的女老师完整版在线观看| 晚上一个人看的免费电影| 国内少妇人妻偷人精品xxx网站| 春色校园在线视频观看| 色综合色国产| 嫩草影院新地址| 亚洲精华国产精华液的使用体验| 亚洲国产欧美在线一区| 久久精品国产亚洲av天美| 亚洲真实伦在线观看| 在线免费观看不下载黄p国产| 国产永久视频网站| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看| 亚洲国产精品成人综合色| 国产成人freesex在线| 18禁在线播放成人免费| 国产精品不卡视频一区二区| 男女边吃奶边做爰视频| 亚洲在线观看片| 国产成年人精品一区二区| 免费黄频网站在线观看国产| 久久久久久久久大av| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 91精品国产九色| 2021天堂中文幕一二区在线观| 亚洲成人久久爱视频| 国产女主播在线喷水免费视频网站 | 国产中年淑女户外野战色| 国产永久视频网站| 精品欧美国产一区二区三| 国产免费福利视频在线观看| 大香蕉97超碰在线| 精品熟女少妇av免费看| 18禁裸乳无遮挡免费网站照片| 亚洲色图av天堂| 毛片一级片免费看久久久久| 黄色一级大片看看| 免费观看无遮挡的男女| 国产毛片a区久久久久| 免费观看性生交大片5| 熟妇人妻久久中文字幕3abv| 免费大片18禁| 91狼人影院| 青春草亚洲视频在线观看| 国产亚洲精品av在线| 中国国产av一级| 国产亚洲精品av在线| 亚洲av电影在线观看一区二区三区 | 中文乱码字字幕精品一区二区三区 | 九九久久精品国产亚洲av麻豆| 丝瓜视频免费看黄片| 菩萨蛮人人尽说江南好唐韦庄| 国产乱人偷精品视频| 久久久久久久久大av| 丝袜喷水一区| 国产一区亚洲一区在线观看| 青春草视频在线免费观看| xxx大片免费视频| 精品一区二区三卡| 亚洲18禁久久av| 欧美97在线视频| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| 亚洲av成人av| a级一级毛片免费在线观看| 九色成人免费人妻av| 国产探花在线观看一区二区| 777米奇影视久久| 国产免费又黄又爽又色| 国产亚洲91精品色在线| 免费人成在线观看视频色| 麻豆国产97在线/欧美| 国产在线男女| or卡值多少钱| 欧美+日韩+精品| 亚洲aⅴ乱码一区二区在线播放| 女人久久www免费人成看片| 色播亚洲综合网| 国产精品一区二区在线观看99 | 嘟嘟电影网在线观看| 五月伊人婷婷丁香| 九九爱精品视频在线观看| 一级毛片 在线播放| 午夜精品一区二区三区免费看| 九色成人免费人妻av| 成人午夜精彩视频在线观看| 亚洲精品国产成人久久av| kizo精华| 超碰av人人做人人爽久久| 天天一区二区日本电影三级| 久久韩国三级中文字幕| 最近中文字幕2019免费版| 美女cb高潮喷水在线观看| 精品熟女少妇av免费看| 在线免费十八禁| 在线观看av片永久免费下载| 韩国av在线不卡| 免费观看a级毛片全部| 亚洲人成网站在线播| 免费av毛片视频| 久久久a久久爽久久v久久| 亚洲国产欧美在线一区| 成人一区二区视频在线观看| 夫妻午夜视频| 中文资源天堂在线| 日本免费a在线| 99久久九九国产精品国产免费| 亚洲精品影视一区二区三区av| 欧美日韩综合久久久久久| 免费观看的影片在线观看| 久久久久久九九精品二区国产| 三级国产精品片| 日本色播在线视频| 直男gayav资源| 亚洲精品乱久久久久久| 亚洲丝袜综合中文字幕|