• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    2014-06-01 10:19:49YuanLiuYuelingZhangZhaohuiGuLinaHaoJuanDuQianYangSupingLiLiyingWangShileiGong

    Yuan Liu, Yueling Zhang, Zhaohui Gu, Lina Hao, Juan Du, Qian Yang, Suping Li, Liying Wang, Shilei Gong

    1 Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China

    2 Department of Ophthalmology, Hebei Province People’s Hospital, Shijiazhuang, Hebei Province, China

    3 Department of Endoscope Room, First Central Hospital of Baoding, Baoding, Hebei Province, China

    Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    Yuan Liu1, Yueling Zhang1, Zhaohui Gu1, Lina Hao2, Juan Du1, Qian Yang1, Suping Li1, Liying Wang1, Shilei Gong3

    1 Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China

    2 Department of Ophthalmology, Hebei Province People’s Hospital, Shijiazhuang, Hebei Province, China

    3 Department of Endoscope Room, First Central Hospital of Baoding, Baoding, Hebei Province, China

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspase-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.

    nerve regeneration; retinal pigment epithelial cells; peroxynitrite; cholecystokinin

    octapeptide; apoptosis; Fas-associated death domain; Bax; Caspase-8; Bcl-2; neural regeneration

    Liu Y, Zhang YL, Gu ZH, Hao LN, Du J, Yang Q, Li SP, Wang LY, Gong SL. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells. Neural Regen Res. 2014;9(14):1402-1408.

    Introduction

    Retinal pigment epithelial (RPE) cells are a monolayer of cuboidal cells located between the photoreceptors of the neurosensory retina and the choroidal capillary bed. RPE cells are involved in visual signal processing. Age-related macular degeneration is an idiopathic retinal degenerative disease, and is the leading cause of irreversible vision loss among people over the age of 65. RPE cell apoptosis is an important feature of the advanced forms of age-related macular degeneration (Yang et al., 2005; Koyama et al., 2008).

    Oxidative stress may cause RPE cell apoptosis (Sinha et al., 2013). RPE cells are exposed to continual oxidative stress throughout life (Rodriguez and Beconi, 2009; Sankaralingam et al., 2010; Agbani et al., 2011a, b; Guven et al., 2011). Previous investigations on oxidative stress injury caused by oxygen free radicals emphasized the contribution of hydrogen peroxide (Wijeratne et al., 2005), nitric oxide (Jang et al., 2010; Ru et al., 2011) and superoxide anion. Nitric oxide and superoxide react to produce peroxynitrite, which, along with its derivatives, are strong oxidants (Drake et al., 2002; Gebicka and Didik, 2010).

    Cholecystokinin octapeptide (CCK) is a peptide originally discovered in the gastrointestinal tract, and subsequently found in the mammalian brain. The C-terminal sulfated octapeptide fragment of cholecystokinin (CCK-8) constitutes one of the major neuropeptides in the brain. CCK-8 contributes to numerous physiological functions. For example, CCK is involved in the neurobiology of anxiety, depression, psychosis, cognition, nociception and feeding behavior (Noble, 2007; Oz et al., 2007; Merino et al., 2008; Hamamura et al., 2010). In addition, CCK can protect cholinergic neurons against basal forebrain lesion caused by brain injury (Sugaya et al., 1992). In this study, we treated human RPE cells with the oxidative stress inducer peroxynitrite, and evaluated the neuroprotective effects of CCK-8.

    Materials and Methods

    Synthesis of peroxynitrite

    Peroxynitrite was obtained by reacting ice-cold solutions of sodium nitrite (0.6 mol/L) and H2O2(0.7 mol/L) in acidic medium (0.6 mol/L HCl) and rapidly quenching the reaction in NaOH (1.5 mol/L), as described previously (Koppenol et al., 1996; Thiagarajan et al., 2004). The reaction mixture solution was frozen at -20°C, and the peroxynitrite concentrated in the upper layer was collected. Concentration was measured at 302 nm using a molar extinction coefficient of 1,670/mol/cm (Koppenol et al., 1996; Thiagarajan et al., 2004).

    RPE cell culture and intervention

    Human eyes from eight donors (26-56 years of age) were obtained following eyeball rupture in our hospital. The eyes had an intact posterior segment and RPE layers. For RNA extraction, tissues were suspended in RNA preservation solution (Ambion; Austin, TX, USA) and stored at 4°C until processing. The experimental procedures complied with the Declaration of Helsinki.

    For RPE isolation, the anterior segment, iris, lens and vitreous of each eye were carefully extracted. After removal of the tissue punches, posterior poles were cut into quadrants.Each quadrant was rinsed with sterile PBS, and the neural retina was gently teased away from the RPE. After removal of the retina, RPE cells free of choroidal contamination were collected. They were cultured in Dulbecco’s modi fi ed Eagle medium/F-12 human amniotic membrane nutrient mixture (DMEM/F-12; Sigma-Aldrich, St. Louis, MO, USA) with 10% fetal bovine serum (Sigma-Aldrich) in a humidified incubator at 37°C and 5% CO2. The medium was changed every 3 days.

    RPE cells were obtained from the second or third generation, and then divided into control, peroxynitrite and CCK-8 groups. The control group was treated with saline; the peroxynitrite group was treated with peroxynitrite, 16 nmol/L; the CCK-8 group was treated with CCK-8, 10 nmol/L, after addition of peroxynitrite, 16 nmol/L. All changes were observed at 6, 12 and 24 hours after treatment.

    Changes in RPE cell morphology observed by electron microscopy

    Cell samples were fixed in 2.5% glutaraldehyde in PBS, postfixed in 2% buffered osmium tetroxide for 2 hours, and then dehydrated in a graded ethanol series. Specimens were embedded in Epon. Thin sections were cut on an ultra microtome and double stained with uranyl acetate and lead citrate. Electron micrographs were taken on a JEM-2000 electron microscope (JEOL, Tokyo, Japan) operating at 80 kV.

    Assessment of RPE cell apoptosis by detecting DNA laddering

    Agarose gel electrophoresis was used to detect DNA laddering, an indicator of apoptosis, as described previously (Herrmann et al., 1994).

    Assessment of RPE cell apoptosis by fl uorescence activated cell sorting

    RPE cells were collected, washed with PBS, and adjusted to 1 × 106cells/mL. 5 μL Annexin V-FITC and 10 μL propidium iodide (10 μg/mL, Sigma) were added to a 100-μL aliquot of suspended cells, and then incubated for 15 minutes in a dark room at room temperature. 1 × 104cells were collected and analyzed using Cell Quest software 3.0 (Becton Dickinson, San Jose, CA, USA).

    Expression of Fas-associated death domain (FADD), Bax, caspase-8 and Bcl-2 in RPE cells detected by western blot analysis

    RPE cells were washed twice with cold Hanks’ balanced salt solution and lysed with RIPA buffer (50 mmol/L Tris-HCl, 150 mmol/L NaCl, 1% NP-40, 0.5% deoxycholate and 0.1% SDS, pH 8.0) supplemented with a protease inhibitor cocktail (Roche, Indianapolis, IN, USA). Lysates were cleared by centrifugation. Total protein in the supernatants was measured using Bradford assay (Bio-Rad, Hercules, CA, USA), with bovine serum albumin used to generate the standard curve, according to the manufacturer’s instructions. Protein (30 g) was electrophoresed on a 12.5% SDS-polyacrylamide gel overlaid with a 3.6% polyacrylamide stacking gel. The proteins were transferred to a nitrocellulose membrane (Bio-Rad) with a Mini Trans-Blot apparatus (Bio-Rad), according to the manufacturer’s directions. Mouse anti-human β-actin monoclonal antibody (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) was used as positive control. The filters were blocked in 0.1 mol/L PBS containing 5% skim milk and 0.05% Tween-20 for 1 hour at room temperature. They were then incubated overnight at 4°C with mouse anti-human FADD (1:1,000, Abnova, Taipei, Taiwan, China), Bax (1:800, Abnova) or caspase-8 (1:600, Abnova) monoclonal antibody or rabbit anti-Bcl-2 polyclonal antibody (1:200, Santa Cruz Biotechnology). After fi ve washes in 0.1 mol/L PBS containing 0.05% Tween 20, the fi lters were incubated for 1 hour at room temperature with a horseradish peroxidase-conjugated goat anti-mouse IgG (1:1,000; Cell Signaling, Beverly, MA, USA) and goat anti-rabbit IgG (1:1,000, Cell Signaling), washed, visualized in ECL solution (Amersham Biosciences, Arlington Heights, IL, USA) for 10 minutes, and exposed to fi lm (X-Omat, Fuji, Kanagawa, Japan) for 7 to 10 minutes. Finally, the fi lters were incubated in a stripping buffer (2% SDS, 0.7% 2-mercaptoethanol, 62.5 mmol/L Tris-HCl, pH 6.8) for 30 minutes at 65°C. Protein levels were quanti fi ed by absorbance.

    Expression of caspase-8 and bcl-2 mRNA in RPE cells evaluated with real-time polymerase chain reaction (RTPCR)

    Total RNA was isolated from cultured RPE cells (RNeasy; Qiagen Inc., Valencia, CA, USA) according to the manufacturer’s protocols. After isolation and DNase treatment (DNA-free; Ambion), RNA quantitation was performed (RiboGreen RNA, Molecular Probes, Eugene, OR, USA). Equal amounts of RNA were then used to synthesize fi rststrand cDNAs with a cDNA synthesis kit (iScript; Bio-Rad). RT-PCR for caspase-8 and bcl-2 mRNA was performed with a detection system (iCycler IQ; Bio-Rad). Cycling parameters for caspase-8: denaturation at 94°C for 1 minute; ampli fi cation for 34 cycles at 95°C for 10 seconds, 60°C for 15 seconds and 72°C for 1 minute. Cycling parameters for Bcl-2: denaturation at 95°C for 2 minutes; ampli fi cation for 50 cycles at 95°C for 15 seconds, 60°C for 15 seconds and 72°C for 15 seconds. Primers for RT-PCR are given inTable 1.

    The presence of a single melting temperature peak per primer pair and 2% agarose gel analysis confirmed the identity of the PCR products. Each RT-PCR experiment was repeated at least three times.

    Statistical analysis

    Data were expressed as mean ± SD. Statistical signi fi cance was determined by one-way analysis of variance, followed by the Fisher post hoc test for multiple comparisons. A P <0.05 value was considered statistically signi fi cant difference.

    Results

    Effect of peroxynitrite and CCK-8 on the morphology of RPE cells

    Figure 1 Effect of peroxynitrite and cholecystokinin octapeptide-8 (CCK-8) on the morphology of human retinal pigment epithelial cells (transmission electron microscopy).

    Figure 2 DNA ladder assay for detection of apoptosis in human retinal pigment epithelial cells.

    Table 1 Primers for real-time polymerase chain reaction

    Under the transmission electron microscope, we observed nuclear fragmentation and chromatin marginalization induced by peroxynitrite in RPE cells. Compared with the peroxynitrite group, apoptotic features (loss of microvilli and chromatin condensation, fragmentation and marginalization) were less apparent in the CCK-8 group (Figure 1).

    Effect of peroxynitrite and CCK-8 on apoptosis in RPE cells

    Agarose gel electrophoresis revealed no DNA laddering in the control group, while there was typical DNA laddering in the peroxynitrite group. Compared with the peroxynitrite group, DNA laddering in the CCK-8 group was signi fi cantly weaker (Figure 2).

    Figure 3 Apoptosis in human retinal pigment epithelial cells in each group.

    Fluorescence activated cell sorting analysis showed that the number of apoptotic RPE cells in the peroxynitrite group was increased at 6, 12 and 24 hours compared with the control group (P < 0.05). RPE cell apoptosis in the CCK-8 group was decreased at 6, 12 and 24 hours compared with the peroxynitrite group (P < 0.05;Figure 3).

    Effect of peroxynitrite and CCK-8 on protein levels of FADD, Bax, caspase-8 and Bcl-2 in RPE cells

    Western blot analysis showed that the expression of the apoptosis-related proteins FADD, Bax, caspase-8 and Bcl-2 was up-regulated in a time-dependent manner in the peroxynitrite group compared with the control group (P < 0.01). CCK-8 suppressed the changes induced by peroxynitrite (P <0.01;Figure 4).

    Effect of peroxynitrite and CCK-8 on caspase-8 and bcl-2 mRNA expression in RPE cells

    RT-PCR showed that peroxynitrite markedly upregulated caspase-8 and bcl-2 mRNA expression in the RPE cells, compared with the control group (P < 0.01). CCK-8 suppressed the changes induced by peroxynitrite (P < 0.01;Figure 5).

    Discussion

    Figure 4 Effect of peroxynitrite and cholecystokinin octapeptide-8 (CCK-8) on protein levels of Fas-associated death domain (FADD), Bax, caspase-8 and bcl-2 in human retinal pigment epithelial cells.

    Figure 5 Effect of peroxynitrite and cholecystokinin octapeptide-8 (CCK-8) on caspase-8 and bcl-2 mRNA expression in human retinal pigment epithelial cells.

    Recently, we demonstrated that Fas/FasL interactions are critical for maintaining immune privilege in the eye. Cell death induced by Fas/FasL is important for the induction of apoptosis in RPE cells (Hao et al., 2010, 2011a, c, d). Because apoptosis in the eye is a rapid, yet tightly modulated process, we examined whether signals in the ocular microenvironment regulate apoptosis in RPE cells. There is very little information on RPE cell signaling through the Fas/ FasL-FADD-caspase-8 pathway, despite being very important for eye diseases such as age-related macular degeneration and proliferative vitreoretinopathy (Kroll et al., 2007; Stone, 2007; Meleth et al., 2011; Querques et al., 2011). Consequently, it is crucial to determine how apoptosis in the eye is regulated by Fas/FasL-FADD-caspase-8 signaling, and whether anti-apoptotic factors can counteract cell death. To better understand the mechanisms regulating apoptosis in the eye, in the present study, we focused on the effects of FADD and caspase-8 signaling in RPE cells.

    It is thought that the relative balance between anti- and pro-apoptotic signaling determines the viability of a cell. RPE cells are critically important for neural retinal function. Thus, RPE cells exposed to oxidative stress are likely to express many anti-apoptotic proteins and genes. Indeed, we found that apoptosis-related proteins and genes were expressed in cultured RPE cells. Expression of FADD, caspase-8 and Bax were upregulated by peroxynitrite. These changes were suppressed by CCK-8. In general, the expression of the apoptosis-related proteins under basal conditions mirrored mRNA expression as determined by RT-PCR. In addition, caspase-8 protein levels paralleled caspase-8 mRNA expres-sion after peroxynitrite stimulation, and Bcl-2 protein levels paralleled bcl-2 mRNA expression after CCK-8 administration. To our knowledge, these data are the first to demonstrate an involvement of FADD and caspase-8 in RPE cell apoptosis. The pattern of FADD and caspase-8 expression under basal conditions and after exposure to peroxynitrite stimulus is very cell type speci fi c.

    Normal cell growth requires a precisely controlled balance between cell death and survival. This involves activation of different types of intracellular signaling cascades within the cell. While some types of signaling proteins promote apoptosis, or programmed cell death, other proteins within the cell can promote survival. Bcl-2 can protect RPE cells from apoptosis in response to several different types of stimuli. We infer one way that Bcl-2 may promote cell survival is by phosphorylating and thereby inhibiting the proapoptotic protein Bad. This leads in turn to the inhibition of effector caspases such as caspase-8. Under these conditions, Bcl-2 inhibits apoptosis early in the caspase cascade, antagonizing the activation of the apoptotic initiator, caspase-8. This inhibition of apoptosis may involve suppression of caspase-8 recruitment to the death domain receptors. This role in regulating initiator caspases is an entirely novel role for the Bcl-2 proteins and suggests a new mechanism by which these proteins promote cell survival.

    Taken together, our fi ndings show that Bcl-2 overexpression suppresses oxidative stress events. Our data suggest that Bcl-2, rather than Bax, is an important endogenous RPE cell anti-apoptotic factor, which is consistent with other reports (Banga et al., 2007; Ploner et al., 2008; Teijido and Dejean, 2010; Willimott and Wagner, 2010; Vogler et al., 2011). Further studies are needed to provide further support for this contention. These results highlight the importance of celltype speci fi city in therapeutic strategies for inducing apoptotic cell death. Members of the Bcl-2 protein family are crucial apoptosis regulators. We evaluated the expression of Bcl-2 mRNA by RT-PCR, which showed that levels were regulated by CCK-8. An increase in Bcl-2 expression prevented RPE cell apoptosis in an oxidative stress model. In addition, we readily detected Bax protein in cultured human RPE cells by western blot analysis. Similarly, other investigators have identi fi ed Bax protein in RPE cells (Letai, 2009; Lalier et al., 2011; Robinson et al., 2011).

    Peroxynitrite upregulated FADD, Bax and caspase-8, indicating that it modulates RPE cell apoptosis (Jung et al., 2009; Hirschberg et al., 2010; Holthoff et al., 2010; Gaupels et al., 2011; Juhász et al., 2011). Oxidative stress-induced RPE cell apoptosis has been proposed as a major pathophysiological mechanism in age-related macular degeneration and proliferative vitreoretinopathy (Agrawal et al., 2007; Coleman et al., 2008). Apoptosis is the result of a cascade of gene expression. Numerous genes have been found to contribute to the regulation of apoptosis. It is thought that apoptosis is regulated by an interaction between gene expression and signaling cascades initiated at the cell surface (Ferrington et al., 2006; Zhou et al., 2010; Hao et al., 2011b; DiBaise et al., 2012). The multifunctional protein FADD and caspase-8 could participate in the mechanisms of RPE cell apoptosis induced by peroxynitrite. The death inducing signaling complex formed by Fas receptor, FADD and caspase-8 is a pivotal trigger of apoptosis. The Fas-FADD death inducing signaling complex represents a receptor platform, which once assembled, initiates apoptosis. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of the death inducing signaling complex. Thus, characterizing the Fas-FADD interaction is crucial for understanding cell death induction. Scott et al. (2009) successfully isolated the human Fas-FADD death domain complex and reported its crystal structure. The complex has a tetrameric arrangement of four FADD death domains bound to four Fas death domains. An opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental death inducing signaling complex assembly, yet allows for assembly and clustering upon a suffi cient stimulus.

    In addition to revealing a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signaling solely by oligomerization and clustering events (álvaro-Bartolomé et al., 2010; Thorenoor et al., 2010). Accumulating evidence suggests that apoptosis plays an important role in numerous pathophysiological processes (Matsuda et al., 2009; Drakos et al., 2011). A better understanding of the molecular mechanisms involved in the pathogenesis of RPE cell death is required to develop new therapeutic approaches.

    FADD and its apoptotic partner, caspase-8, have also been implicated in necrosis. FADD is intriguing in that T-cell receptor-induced proliferation is blocked in FADD-defective T cells. FADD appears to help keep T-cell receptor-induced programmed necrotic signaling in check during early phases of T-cell clone expansion (Osborn et al., 2010; Ikner and Ashkenazi, 2011). Death domain complexes are key protein arrangements in the regulation of various cellular signaling events. One of the most prominent death domain complexes fi rst described in the initiation of apoptosis is formed by the transmembrane receptor Fas, the cytosolic adaptor protein FADD and caspase-8, and is referred to as the Fas/FADD/ caspase-8 death inducing signaling complex. The recent structure of the Fas/FADD death domain complex reveals how formation of this signaling platform can be stringently regulated by Fas receptor clustering to form a death domain network (Salvesen and Riedl, 2009; Li et al., 2010; Wang et al., 2010). The formation of the death-inducing signaling complex is a direct indicator of the activation of the Fascaspase-8 signaling pathway. The production of cytokines such as type I interferon is an essential component of innate immunity. A reduction in FADD and TRIM21 (TRIM21 is a member of a large family of proteins that can impart ubiquitin modi fi cation onto its cellular targets) levels leads to higher interferon-α induction, IRF7 phosphorylation, and lower titers of RNA virus in infected cells (García-Fuster et al., 2009; Matsumura et al., 2009; Young et al., 2011).Caspases are a family of aspartate-speci fi c cysteine proteases responsible for the biochemical and morphological changes that occur during the execution phase of apoptosis. The hierarchical ordering of caspases has been clearly established using dATP-activated cell lysates to model the intrinsic pathway induced by initial mitochondrial perturbation. In the model, caspase-9, the initiator caspase, directly processes and activates the effector caspases, caspase-3 and caspase-7. Active caspase-3 then processes caspase-2 and caspase-6, and subsequently, the activated caspase-6 processes caspase-8 and caspase-10. The processing of caspase-2 and caspase-6 occurs within the cytoplasm and active caspase-6 is then responsible for both the processing of caspase-8 and the cleavage of caspase-6 substrates (Inoue et al., 2009). Gene-targeted mice show that caspase-8 is essential for hepatocyte killing (O’Reilly et al., 2004; Kaufmann et al., 2009). Furthermore, L. interrogans-induced apoptosis in macrophages is mediated by caspase-3 and caspase-6 activation through a FADD-caspase-8-dependent pathway, independently of mitochondrial cytochrome c-caspase-9 signaling (Jin et al., 2009).

    The Bax protein is pivotal for the apoptotic process. Bax, which resides in an inactive form in the cytosol of healthy cells, is activated during the early stages of apoptosis and becomes associated with mitochondria through poorly understood mechanisms. A cysteine is present in the loop between the two transmembrane alpha helices of Bax (Letai, 2009; Lalier et al., 2011; Robinson et al., 2011).

    In conclusion, we speculate that CCK-8, along with antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase, protect RPE cells from oxidative stress-induced apoptotic cell death by modulating FADD and caspase-8 signaling.

    Author contributions:All authors were responsible for the study design, implementing the experiment, and evaluating the results. Liu Y drafted the manuscript. All authors approved the final version of the manuscript.

    Con fl icts of interest:None declared.

    Agbani EO, Coats P, Wadsworth RM (2011a) Acute hypoxia stimulates intracellular peroxynitrite formation associated with pulmonary artery smooth muscle cell proliferation. J Cardiovasc Pharmacol 57:584-588.

    Agbani EO, Coats P, Mills A, Wadsworth RM (2011b) Peroxynitrite stimulates pulmonary artery endothelial and smooth muscle cell proliferation: involvement of ERK and PKC. Pulm Pharmacol Ther 24:100-109.

    Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ, Hinton DR (2007) In vivo models of proliferative vitreoretinopathy. Nat Protoc 2:67-77.

    álvaro-Bartolomé M, Esteban S, García-Gutiérrez MS, Manzanares J, Valverde O, García-Sevilla JA (2010) Regulation of Fas receptor/ Fas-asssociated protein with death domain apoptotic complex and associated signalling systems by cannabinoid receptors in the mouse brain. Brit J Pharmacol 160:643-656.

    Banga S, Gao P, Shen X, Fiscus V, Zong WX, Chen L, Luo ZQ (2007) Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A 104:5121-5126.

    Coleman HR, Chan CC, Ferris FL, Chew EY (2008) Age-related macular degeneration. Lancet 372:1835-1845.

    DiBaise JK, Richmond BK, Ziessman HA, Everson GT, Fanelli RD, Maurer AH, Ouyang A, Shamamian P, Simons RJ, Wall LA, Weida TJ, Tulchinsky M (2012) Cholecystokinin-cholescintigraphy in adults: consensus recommendations of an interdisciplinary panel. Clin Nucl Med 37:63-70.

    Drake J, Kanski J, Varadarajan S, Tsoras M, Butter fi eld DA (2002) Elevation of brain glutathione by γ-glutamylcysteine ethyl ester protects against peroxynitrite-induced oxidative stress. J Neurosci Res 68:776-784.

    Drakos E, Leventaki V, Atsaves V, Schlette EJ, Lin P, Vega F, Miranda RN, Claret F-X, Medeiros LJ, Rassidakis GZ (2011) Expression of serine 194-phosphorylated Fas-associated death domain protein correlates with proliferation in B-cell non-Hodgkin lymphomas. Hum Pathol 42:1117-1124.

    Ferrington DA, Tran TN, Lew KL, Van Remmen H, Gregerson DS (2006) Different death stimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells. Exp Eye Res 83:638-650.

    García-Fuster MJ, Clinton SM, Watson SJ, Akil H (2009) Effect of cocaine on Fas-associated protein with death domain in the rat brain: individual differences in a model of differential vulnerability to drug abuse. Neuropsychopharmacology 34:1123-1134.

    Gaupels F, Spiazzi-Vandelle E, Yang D, Delledonne M (2011) Detection of peroxynitrite accumulation in Arabidopsis thaliana during the hypersensitive defense response. Nitric Oxide 25:222-228.

    Gebicka L, Didik J (2010) Oxidative stress induced by peroxynitrite. Postepy Biochem 56:103-106.

    Guven A, Uysal B, Caliskan B, Oztas E, Ozturk H, Korkmaz A (2011) Mercaptoethylguanidine attenuates caustic esophageal injury in rats: a role for scavenging of peroxynitrite. J Pediatr Surg 46:1746-1752.

    Hamamura M, Ozawa H, Ozaki M, Shimazoe T, Terada Y, Fukumaki Y (2010) Repeated administration of methamphetamine blocked cholecystokinin-octapeptide injection-induced c-fos mRNA expression without change in capsaicin-induced junD mRNA expression in rat cerebellum. J Neural Transm 117:1041-1053.

    Hao LN, Zhang YQ, Shen YH, Wang ZY, Wang YH (2011a) Inducible nitric oxide synthase and Fas/FasL with C3 expression of mouse retinal pigment epithelial cells in response to stimulation by peroxynitrite and antagonism of puerarin. Chin Med J (Engl) 124: 2522-2529.

    Hao LN, Zhang XD, Wang M, Yang T, He SZ (2011b) Peroxynitrite-induced expression of inducible nitric oxide synthase and activated apoptosis via nuclear factor-kappa B pathway in retinal pigment epithelial cells and antagonism of cholecystokinin octapeptide-8 in vitro. Int J Ophthalmol 4:474-479.

    Hao LN, He SZ, Shen YH, Zhang YQ, Wang ZY, Wang YH (2011c) Protective effects of puerarin on lens epithelial cells in rat diabetic cataract. Zhonghua Yan Ke Za Zhi 47:320-326.

    Hao LN, Zhang YQ, Shen YH, Wang ZY, Wang YH, Zhang HF, He SZ (2010) Effect of puerarin on retinal pigment epithelial cells apoptosis induced partly by peroxynitrite via Fas/FasL pathway. Int J Ophthalmol 3:283-287.

    Hao LN, Zhang YQ, Shen YH, Li MQ, Yang T, Zhao ZH, Wang ZY, Wang YH, He SZ (2011d) Toxicity of endogenous peroxynitrite and effects of puerarin on transplanted retinal pigment epithelial sheets in the subretinal space in mice. Int J Ophthalmol 4:250-254.

    Herrmann M, Lorenz HM, Voll R, Grünke M, Woith W, Kalden JR (1994) A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 22:5506-5507.

    Hirschberg K, Radovits T, Korkmaz S, Loganathan S, Z?llner S, Seidel B, Páli S, Barnucz E, Merkely B, Karck M, Szabó G (2010) Combined superoxide dismutase mimetic and peroxynitrite scavenger protects against neointima formation after endarterectomy in association with decreased proliferation and nitro-oxidative stress. Eur J Vasc Endovasc Surg 40:168-175.

    Holthoff JH, Woodling KA, Doerge DR, Burns ST, Hinson JA, Mayeux PR (2010) Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem Pharmacol 80:1260-1265.

    Ikner A, Ashkenazi A (2011) TWEAK induces apoptosis through a death-signaling complex comprising receptor-interacting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J Biol Chem 286:21546-21554.

    Inoue S, Browne G, Melino G, Cohen GM (2009) Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ 16:1053-1061.

    Jang HY, Ji SJ, Kim YH, Lee HY, Shin JS, Cheong HT, Kim JT, Park IC, Kong HS, Park CK, Yang BK (2010) Antioxidative effects of astaxanthin against nitric oxide-induced oxidative stress on cell viability and gene expression in bovine oviduct epithelial cell and the developmental competence of bovine IVM/IVF embryos. Reprod Domest Anim 45:967-974.

    Jin D, Ojcius DM, Sun D, Dong H, Luo Y, Mao Y, Yan J (2009) Leptospira interrogans induces apoptosis in macrophages via caspase-8- and caspase-3-dependent pathways. Infect Immun 77:799-809.

    Juhász L, Kiss A, Nyes? E, Kovács M, Seprényi G, Kaszaki J, Végh A (2011) Is there a trigger role of peroxynitrite in the anti-arrhythmic effect of ischaemic preconditioning and peroxynitrite infusion? Eur J Pharmacol 667:306-313.

    Jung M, Hotter G, Vi?as JL, Sola A (2009) Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury. Toxicol Appl Pharmacol 234:236-246.

    Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, Cretney E, Smyth MJ, Silke J, Hakem R, Bouillet P, Mak TW, Dixit VM, Strasser A (2009) Fatal hepatitis mediated by tumor necrosis factor TNFalpha requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 30:56-66.

    Koppenol WH, Kissner R, Beckman JS (1996) Syntheses of peroxynitrite: to go with the fl ow or on solid grounds? Methods Enzymol 269: 296-302.

    Koyama Y, Matsuzaki S, Gomi F, Yamada K, Katayama T, Sato K, Kumada T, Fukuda A, Matsuda S, Tano Y, Tohyama M (2008) Induction of amyloid beta accumulation by ER calcium disruption and resultant upregulation of angiogenic factors in ARPE19 cells. Invest Ophthalmol Vis Sci 49:2376-2383.

    Kroll P, Rodrigues EB, Hoerle S (2007) Pathogenesis and classi fi cation of proliferative diabetic vitreoretinopathy. Ophthalmologica 221:78-94.

    Lalier L, Cartron PF, Olivier C, Logé C, Bougras G, Robert JM, Oliver L, Vallette FM (2011) Prostaglandins antagonistically control Bax activation during apoptosis. Cell Death Differ 18:528-537.

    Letai A (2009) Puma strikes Bax. J Cell Biol 185:189-191.

    Li P, Jayarama S, Ganesh L, Mordi D, Carr R, Kanteti P, Hay N, Prabhakar BS (2010) Akt-phosphorylated mitogen-activated kinase-activating death domain protein (MADD) inhibits TRAIL-induced apoptosis by blocking Fas-associated death domain (FADD) association with death receptor 4. J Biol Chem 285:22713-22722.

    Matsuda N, Yamamoto S, Takano KI, Kageyama SI, Kurobe Y, Yoshihara Y, Takano Y, Hattori Y (2009) Silencing of Fas-associated death domain protects mice from septic lung in fl ammation and apoptosis. Am J Respir Crit Care Med 179:806-815.

    Matsumura Y, Shimada K, Tanaka N, Fujimoto K, Hirao Y, Konishi N (2009) Phosphorylation status of Fas-associated death domain-containing protein regulates telomerase activity and strongly correlates with prostate cancer outcomes. Pathobiology 76:293-302.

    Meleth AD, Wong WT, Chew EY (2011) Treatment for atrophic macular degeneration. Curr Opin Ophthalmol 22:190-193.

    Merino B, Somoza B, Ruiz-Gayo M, Cano V (2008) Circadian rhythm drives the responsiveness of leptin-mediated hypothalamic pathway of cholecystokinin-8. Neurosci Lett 442:165-168.

    Noble F (2007) Pharmacology of CCKRs and SAR studies of peptidic analog ligands. Curr Top Med Chem 7:1173-1179.

    O’Reilly LA, Divisekera U, Newton K, Scalzo K, Kataoka T, Puthalakath H, Ito M, Huang DC, Strasser A (2004) Modi fi cations and intracellular traf fi cking of FADD/MORT1 and caspase-8 after stimulation of T lymphocytes. Cell Death Differ 11:724-736.

    Osborn SL, Diehl G, Han SJ, Xue L, Kurd N, Hsieh K, Cado D, Robey EA, Winoto A (2010) Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc Natl Acad Sci U S A 107:13034-13039.

    Oz M, Yang KH, Shippenberg TS, Renaud LP, O’Donovan MJ (2007) Cholecystokinin B-type receptors mediate a G-protein-dependent depolarizing action of sulphated cholecystokinin ocatapeptide (CCK-8s) on rodent neonatal spinal ventral horn neurons. J Neurophysiol 98:1108-1114.

    Ploner C, Rainer J, Niederegger H, Eduardoff M, Villunger A, Geley S, Ko fl er R (2008) The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 22:370-377.

    Querques G, Coscas F, Forte R, Massamba N, Sterkers M, Souied EH (2011) Cystoid macular degeneration in exudative age-related macular degeneration. Am J Ophthalmol 152:100-107.

    Robinson KS, Clements A, Williams AC, Berger CN, Frankel G (2011) Bax inhibitor 1 in apoptosis and disease. Oncogene 30:2391-2400.

    Rodriguez PC, Beconi MT (2009) Peroxynitrite participates in mechanisms involved in capacitation of cryopreserved cattle. Anim Reprod Sci 110:96-107.

    Ru XC, Liang KY, Lei WH, Tan YN, Xia Q (2011) Bicyclol protects rat thoracic aorta from superoxide anion-induced inhibition of vascular relaxation. Zhongguo Ying Yong Sheng Li Xue Za Zhi 27:81-85.

    Salvesen GS, Riedl SJ (2009) Structure of the Fas/FADD complex: a conditional death domain complex mediating signaling by receptor clustering. Cell Cycle 8:2723-2727.

    Sankaralingam S, Lalu MM, Xu Y, Davidge ST (2010) Effect of peroxynitrite scavenging on endothelial cells stimulated by plasma from women with preeclampsia: a proteomic approach. Hypertens Pregnancy 29:419-428.

    Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457:1019-1022.

    Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157-1180.

    Stone EM (2007) Macular degeneration. Annu Rev Med 58:477-490.

    Sugaya K, Takahashi M, Kubota K (1992) Cholecystokinin protects cholinergic neurons against basal forebrain lesion. Jpn J Pharmacol 59:125-128.

    Teijido O, Dejean L (2010) Upregulation of Bcl2 inhibits apoptosisdriven BAX insertion but favors BAX relocalization in mitochondria. FEBS Lett 584:3305-3310.

    Thiagarajan G, Lakshmanan J, Chalasani M, Balasubramanian D (2004) Peroxynitrite reaction with eye lens proteins: alpha-crystallin retains its activity despite modi fi cation. Invest Ophthalmol Vis Sci 45:2115-2121.

    Thorenoor N, Lee JH, Lee SK, Cho SW, Kim YH, Kim KS, Lee C (2010) Localization of the death effector domain of Fas-associated death domain protein into the membrane of Escherichia coli induces reactive oxygen species-involved cell death. Biochemistry 49:1435-1447.

    Vogler M, Hamali HA, Sun XM, Bampton ET, Dinsdale D, Snowden RT, Dyer MJ, Goodall AH, Cohen GM (2011) BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood 117:7145-7154.

    Wang L, Yang JK, Kabaleeswaran V, Rice AJ, Cruz AC, Park AY, Yin Q, Damko E, Jang SB, Raunser S, Robinson CV, M SR, Walz T, Wu H (2010) The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 17:1324-1329.

    Wijeratne SS, Cuppett SL, Schlegel V (2005) Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. J Agric Food Chem 53:8768-8774.

    Willimott S, Wagner SD (2010) Post-transcriptional and post-translational regulation of Bcl2. Biochem Soc Trans 38:1571-1575.

    Yang P, Wiser JL, Peairs JJ, Ebright JN, Zavodni ZJ, Bowes Rickman C, Jaffe GJ (2005) Human RPE expression of cell survival factors. Invest Ophthalmol Vis Sci 46:1755-1764.

    Young JA, Sermwittayawong D, Kim HJ, Nandu S, An N, Erdjument-Bromage H, Tempst P, Coscoy L, Winoto A (2011) Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production. J Biol Chem 286:6521-6531.

    Zhou Z, Wu M, Barrett RP, McClellan SA, Zhang Y, Hazlett LD (2010) Role of the Fas pathway in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 51:2537-2547.

    Copyedited by Patel B, Norman C, Yu J, Yang Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.137596

    Lina Hao, M.D., Department of Ophthalmology, Hebei Province People’s Hospital, Shijiazhuang, Hebei Province, China, 75765892@qq.com.

    http://www.nrronline.org/

    Accepted: 2014-05-24

    日韩不卡一区二区三区视频在线| 国产成人一区二区在线| 大又大粗又爽又黄少妇毛片口| 97超碰精品成人国产| 亚洲,欧美,日韩| 99国产精品免费福利视频| 亚洲精品456在线播放app| 欧美成人精品欧美一级黄| 秋霞伦理黄片| 99精国产麻豆久久婷婷| 久久久午夜欧美精品| 观看av在线不卡| 亚洲天堂av无毛| 少妇人妻 视频| 久久久国产一区二区| 国产高清国产精品国产三级| 视频中文字幕在线观看| 丝袜美足系列| 国语对白做爰xxxⅹ性视频网站| 春色校园在线视频观看| 国产成人aa在线观看| 亚洲人与动物交配视频| 啦啦啦啦在线视频资源| 99热全是精品| 男男h啪啪无遮挡| 亚洲精品av麻豆狂野| av电影中文网址| 青春草国产在线视频| 亚洲精品国产av蜜桃| 国产免费又黄又爽又色| 一区二区日韩欧美中文字幕 | 亚洲国产成人一精品久久久| 熟妇人妻不卡中文字幕| 十八禁高潮呻吟视频| 国产成人精品一,二区| 全区人妻精品视频| 熟女电影av网| 亚洲国产精品一区二区三区在线| 日韩一本色道免费dvd| 午夜av观看不卡| 亚洲av男天堂| 中文字幕最新亚洲高清| 一二三四中文在线观看免费高清| 国产成人免费无遮挡视频| 亚洲国产精品专区欧美| 亚洲国产欧美在线一区| 中文字幕最新亚洲高清| 啦啦啦视频在线资源免费观看| 丰满少妇做爰视频| 中文乱码字字幕精品一区二区三区| 亚洲精品第二区| 婷婷成人精品国产| 乱码一卡2卡4卡精品| av视频免费观看在线观看| 黄色配什么色好看| .国产精品久久| 亚洲精品aⅴ在线观看| 国产精品偷伦视频观看了| 日本wwww免费看| 亚洲av福利一区| 亚洲,一卡二卡三卡| 高清欧美精品videossex| 99热6这里只有精品| 中文字幕制服av| 日日啪夜夜爽| 亚洲丝袜综合中文字幕| 考比视频在线观看| 国产精品.久久久| 午夜福利网站1000一区二区三区| 街头女战士在线观看网站| 色吧在线观看| 亚洲精品色激情综合| 欧美性感艳星| av国产精品久久久久影院| 女性被躁到高潮视频| 人人妻人人添人人爽欧美一区卜| 嫩草影院入口| 狂野欧美白嫩少妇大欣赏| 乱码一卡2卡4卡精品| 久久婷婷青草| 欧美日韩综合久久久久久| 久久99精品国语久久久| 最近最新中文字幕免费大全7| 久久综合国产亚洲精品| 色婷婷久久久亚洲欧美| 在线免费观看不下载黄p国产| 久久久久久人妻| 日韩欧美一区视频在线观看| 中国美白少妇内射xxxbb| 亚洲成色77777| 你懂的网址亚洲精品在线观看| 精品人妻偷拍中文字幕| 哪个播放器可以免费观看大片| 中国三级夫妇交换| 亚洲精品国产色婷婷电影| 热re99久久国产66热| 丝袜脚勾引网站| 狠狠精品人妻久久久久久综合| 国产免费又黄又爽又色| 亚洲成人av在线免费| 亚洲欧美精品自产自拍| 婷婷色麻豆天堂久久| 美女国产视频在线观看| 男女国产视频网站| 丝袜美足系列| 欧美 日韩 精品 国产| 日韩一区二区视频免费看| videosex国产| 男的添女的下面高潮视频| 国产精品成人在线| 一级毛片 在线播放| 多毛熟女@视频| 午夜91福利影院| 99九九线精品视频在线观看视频| 一区二区三区免费毛片| 下体分泌物呈黄色| 国产乱人偷精品视频| 国产成人一区二区在线| 成年美女黄网站色视频大全免费 | 曰老女人黄片| 亚洲国产欧美日韩在线播放| 精品一区二区三卡| 久久鲁丝午夜福利片| 22中文网久久字幕| av福利片在线| 欧美少妇被猛烈插入视频| 久久国产亚洲av麻豆专区| 亚洲国产精品成人久久小说| 女的被弄到高潮叫床怎么办| 亚洲精品久久成人aⅴ小说 | 精品国产一区二区久久| 制服人妻中文乱码| 一级毛片我不卡| 国产精品久久久久久久久免| 中文字幕人妻熟人妻熟丝袜美| 麻豆成人av视频| 亚洲欧美精品自产自拍| 日本wwww免费看| 搡老乐熟女国产| 下体分泌物呈黄色| 日本欧美视频一区| 国产免费一级a男人的天堂| 日本猛色少妇xxxxx猛交久久| 曰老女人黄片| 人妻 亚洲 视频| 国产成人精品久久久久久| videos熟女内射| 欧美变态另类bdsm刘玥| 久久热精品热| 欧美少妇被猛烈插入视频| 亚洲欧美日韩另类电影网站| 18+在线观看网站| 蜜臀久久99精品久久宅男| av一本久久久久| 亚洲五月色婷婷综合| 国产不卡av网站在线观看| freevideosex欧美| 制服人妻中文乱码| 久久久精品区二区三区| 国产毛片在线视频| 免费高清在线观看视频在线观看| 国产精品三级大全| av女优亚洲男人天堂| 黄色欧美视频在线观看| 满18在线观看网站| 精品久久蜜臀av无| 国内精品宾馆在线| 欧美一级a爱片免费观看看| 成年美女黄网站色视频大全免费 | 欧美精品高潮呻吟av久久| 九九在线视频观看精品| 七月丁香在线播放| 校园人妻丝袜中文字幕| 丝袜脚勾引网站| 少妇精品久久久久久久| 人体艺术视频欧美日本| 99热网站在线观看| 精品少妇内射三级| 黑人巨大精品欧美一区二区蜜桃 | 在线看a的网站| 日韩大片免费观看网站| 日韩欧美精品免费久久| 熟妇人妻不卡中文字幕| 国产男女超爽视频在线观看| 极品人妻少妇av视频| 亚洲综合精品二区| 在线观看人妻少妇| 亚洲精品一二三| 亚洲国产精品999| 久久久久久久久久人人人人人人| 欧美日本中文国产一区发布| 高清黄色对白视频在线免费看| 亚洲熟女精品中文字幕| 久久久久久久久大av| 国产精品一区二区在线不卡| 午夜免费鲁丝| 人妻人人澡人人爽人人| 亚洲国产欧美日韩在线播放| 99久久精品一区二区三区| 美女脱内裤让男人舔精品视频| 男人操女人黄网站| 午夜激情久久久久久久| 精品国产国语对白av| 久久99热6这里只有精品| 久久精品熟女亚洲av麻豆精品| 色94色欧美一区二区| 在线观看免费日韩欧美大片 | 91精品国产九色| 亚洲丝袜综合中文字幕| 国产免费福利视频在线观看| 国产一区二区在线观看日韩| 搡老乐熟女国产| 色婷婷久久久亚洲欧美| 丝袜喷水一区| 国产熟女欧美一区二区| 国产伦精品一区二区三区视频9| xxxhd国产人妻xxx| 麻豆精品久久久久久蜜桃| 国产又色又爽无遮挡免| 美女大奶头黄色视频| 精品久久国产蜜桃| a 毛片基地| 精品视频人人做人人爽| 边亲边吃奶的免费视频| 一级a做视频免费观看| 欧美xxxx性猛交bbbb| 国产午夜精品一二区理论片| 国产精品 国内视频| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 在线观看一区二区三区激情| 99视频精品全部免费 在线| 哪个播放器可以免费观看大片| 久久影院123| 青春草国产在线视频| 99国产精品免费福利视频| 国产 一区精品| 国产高清有码在线观看视频| 欧美 日韩 精品 国产| 日韩熟女老妇一区二区性免费视频| 日韩制服骚丝袜av| 插阴视频在线观看视频| 高清在线视频一区二区三区| 国产高清不卡午夜福利| 十分钟在线观看高清视频www| 久久97久久精品| av线在线观看网站| 插逼视频在线观看| av又黄又爽大尺度在线免费看| 一本大道久久a久久精品| 一级爰片在线观看| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 一级黄片播放器| 十八禁网站网址无遮挡| 少妇被粗大猛烈的视频| 91精品国产国语对白视频| 丝袜喷水一区| 亚洲精品aⅴ在线观看| 国产片内射在线| a级毛色黄片| 性高湖久久久久久久久免费观看| 成人国产麻豆网| 亚洲婷婷狠狠爱综合网| 国产高清三级在线| 两个人的视频大全免费| 免费久久久久久久精品成人欧美视频 | 高清在线视频一区二区三区| 久久久久久久久久人人人人人人| 国产欧美日韩综合在线一区二区| 人妻人人澡人人爽人人| 国产成人精品一,二区| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 丝袜脚勾引网站| 欧美激情 高清一区二区三区| 91aial.com中文字幕在线观看| 91久久精品国产一区二区成人| 涩涩av久久男人的天堂| 久久99一区二区三区| 久久人人爽人人爽人人片va| 97精品久久久久久久久久精品| 国产伦理片在线播放av一区| 久久久亚洲精品成人影院| 久久久精品94久久精品| 99热这里只有是精品在线观看| 日韩熟女老妇一区二区性免费视频| 美女国产视频在线观看| av电影中文网址| 赤兔流量卡办理| a级毛片在线看网站| 久久久久久久精品精品| 最近的中文字幕免费完整| 80岁老熟妇乱子伦牲交| 国产精品一国产av| 国模一区二区三区四区视频| 在线观看免费视频网站a站| 免费人妻精品一区二区三区视频| 亚洲精品久久午夜乱码| 国产亚洲精品第一综合不卡 | 日本免费在线观看一区| 精品午夜福利在线看| 国产亚洲一区二区精品| 女性生殖器流出的白浆| 免费不卡的大黄色大毛片视频在线观看| 美女国产高潮福利片在线看| 国产精品人妻久久久久久| 26uuu在线亚洲综合色| 日韩欧美精品免费久久| 国产淫语在线视频| 日韩av在线免费看完整版不卡| 天堂8中文在线网| 新久久久久国产一级毛片| 中文天堂在线官网| 成人18禁高潮啪啪吃奶动态图 | 夫妻性生交免费视频一级片| 又粗又硬又长又爽又黄的视频| 国产亚洲一区二区精品| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 亚洲精品中文字幕在线视频| 最近中文字幕2019免费版| 丰满乱子伦码专区| 亚洲成人一二三区av| 成人亚洲欧美一区二区av| 夫妻午夜视频| 国产69精品久久久久777片| 国产精品.久久久| 国产精品国产三级国产av玫瑰| 秋霞在线观看毛片| 久久精品人人爽人人爽视色| 2018国产大陆天天弄谢| 国产乱来视频区| 最近中文字幕2019免费版| 精品久久蜜臀av无| 少妇 在线观看| 大香蕉久久网| 国产精品人妻久久久影院| 久久精品久久久久久久性| 精品国产一区二区三区久久久樱花| 亚洲欧洲日产国产| 亚洲精品456在线播放app| av.在线天堂| 欧美日韩视频高清一区二区三区二| 精品人妻一区二区三区麻豆| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| 久热这里只有精品99| 最新中文字幕久久久久| 亚洲四区av| 亚洲在久久综合| 各种免费的搞黄视频| 日韩一区二区三区影片| 成人免费观看视频高清| 国产精品免费大片| 特大巨黑吊av在线直播| 在线看a的网站| av在线播放精品| 久久狼人影院| 久久99蜜桃精品久久| 人妻人人澡人人爽人人| kizo精华| 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 高清视频免费观看一区二区| 亚洲精品乱久久久久久| 麻豆乱淫一区二区| 亚洲av二区三区四区| av一本久久久久| 精品99又大又爽又粗少妇毛片| 免费观看在线日韩| 菩萨蛮人人尽说江南好唐韦庄| 亚洲婷婷狠狠爱综合网| 日韩精品免费视频一区二区三区 | 欧美日韩综合久久久久久| av天堂久久9| 新久久久久国产一级毛片| 免费高清在线观看视频在线观看| 一级毛片我不卡| 亚洲国产精品999| 一级毛片 在线播放| 久久精品久久久久久久性| av.在线天堂| 9色porny在线观看| 丁香六月天网| 一区二区三区精品91| 性色avwww在线观看| 久热这里只有精品99| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 国产成人精品福利久久| 有码 亚洲区| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 在线观看免费视频网站a站| 欧美人与性动交α欧美精品济南到 | 国产精品久久久久成人av| 在线精品无人区一区二区三| 亚洲综合色网址| 亚洲不卡免费看| 只有这里有精品99| 免费观看的影片在线观看| 久久久久久久久久成人| 一级片'在线观看视频| 亚洲成人一二三区av| 在线看a的网站| 男男h啪啪无遮挡| kizo精华| 五月玫瑰六月丁香| 中文字幕制服av| 这个男人来自地球电影免费观看 | 成人黄色视频免费在线看| 午夜福利影视在线免费观看| 少妇的逼水好多| av免费在线看不卡| 在线观看www视频免费| 成年美女黄网站色视频大全免费 | 精品人妻熟女毛片av久久网站| 啦啦啦在线观看免费高清www| 成人二区视频| 国产女主播在线喷水免费视频网站| 91精品国产国语对白视频| 熟女av电影| 2018国产大陆天天弄谢| 高清毛片免费看| 亚洲美女黄色视频免费看| 精品一区二区三区视频在线| 久久精品人人爽人人爽视色| 在线观看国产h片| 国产色婷婷99| 人人妻人人澡人人看| 韩国av在线不卡| 日本免费在线观看一区| 日日爽夜夜爽网站| 亚洲精品一二三| 亚洲精品乱久久久久久| 国产爽快片一区二区三区| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 亚洲精品美女久久av网站| 男女边吃奶边做爰视频| 久久精品国产亚洲av天美| 婷婷色麻豆天堂久久| 日本欧美国产在线视频| 大香蕉久久网| 18禁在线播放成人免费| 黄色欧美视频在线观看| 亚洲伊人久久精品综合| 蜜桃国产av成人99| 亚洲精品自拍成人| 日韩亚洲欧美综合| 亚洲人成77777在线视频| 国产成人av激情在线播放 | 在线看a的网站| 王馨瑶露胸无遮挡在线观看| 高清视频免费观看一区二区| 激情五月婷婷亚洲| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 少妇 在线观看| av网站免费在线观看视频| 在线播放无遮挡| 成人毛片a级毛片在线播放| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| 一级毛片电影观看| 欧美精品高潮呻吟av久久| 男人操女人黄网站| 丰满饥渴人妻一区二区三| 91久久精品电影网| 国产精品熟女久久久久浪| 色94色欧美一区二区| av国产精品久久久久影院| 伦精品一区二区三区| av一本久久久久| 亚洲人成网站在线观看播放| 一边亲一边摸免费视频| 久久久a久久爽久久v久久| 桃花免费在线播放| 亚洲少妇的诱惑av| 搡女人真爽免费视频火全软件| 香蕉精品网在线| 亚洲色图 男人天堂 中文字幕 | 美女内射精品一级片tv| 国产探花极品一区二区| 久久综合国产亚洲精品| 欧美老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 男女无遮挡免费网站观看| 国产伦精品一区二区三区视频9| 中文字幕制服av| 欧美人与性动交α欧美精品济南到 | 亚洲少妇的诱惑av| 最新中文字幕久久久久| 三上悠亚av全集在线观看| 亚洲天堂av无毛| 国产精品久久久久久精品古装| 亚洲精品,欧美精品| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 热99国产精品久久久久久7| 99国产综合亚洲精品| 丰满少妇做爰视频| 免费av不卡在线播放| 精品国产国语对白av| 看十八女毛片水多多多| 久久国产亚洲av麻豆专区| 国产精品一区二区三区四区免费观看| 亚洲色图综合在线观看| 欧美激情极品国产一区二区三区 | 天美传媒精品一区二区| 97超碰精品成人国产| 国产精品一区二区在线不卡| 在线播放无遮挡| 美女xxoo啪啪120秒动态图| 亚洲无线观看免费| 欧美性感艳星| 色5月婷婷丁香| 18禁在线播放成人免费| 久久av网站| 观看美女的网站| 人妻制服诱惑在线中文字幕| 日本爱情动作片www.在线观看| 久久av网站| 久久精品久久精品一区二区三区| 免费看光身美女| 最近中文字幕高清免费大全6| 久久久久久久久久成人| 久久久久久久精品精品| 伊人久久精品亚洲午夜| av国产精品久久久久影院| 国产欧美亚洲国产| 久久 成人 亚洲| 亚洲经典国产精华液单| 亚洲高清免费不卡视频| 国产男女超爽视频在线观看| 王馨瑶露胸无遮挡在线观看| 精品国产一区二区三区久久久樱花| 一区二区三区乱码不卡18| 高清午夜精品一区二区三区| 亚洲四区av| av网站免费在线观看视频| 久久精品夜色国产| 超色免费av| 91精品国产九色| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 国产成人免费观看mmmm| 日本91视频免费播放| 又粗又硬又长又爽又黄的视频| 久久这里有精品视频免费| 国产亚洲最大av| 99国产精品免费福利视频| 啦啦啦中文免费视频观看日本| 成人免费观看视频高清| 日韩欧美精品免费久久| 日本黄大片高清| 国产精品一区www在线观看| 一级,二级,三级黄色视频| 国产视频内射| 一区二区三区精品91| 飞空精品影院首页| 国产精品秋霞免费鲁丝片| 国产亚洲av片在线观看秒播厂| 啦啦啦在线观看免费高清www| 一区二区日韩欧美中文字幕 | 七月丁香在线播放| 天天影视国产精品| 岛国毛片在线播放| 久久午夜福利片| 寂寞人妻少妇视频99o| 国产成人aa在线观看| 亚洲精品久久久久久婷婷小说| 婷婷成人精品国产| 日韩伦理黄色片| 国产亚洲精品第一综合不卡 | 男女高潮啪啪啪动态图| 熟女av电影| 免费观看无遮挡的男女| 亚洲国产日韩一区二区| 一区二区三区免费毛片| 国产成人精品久久久久久| 国产黄色视频一区二区在线观看| 久久99蜜桃精品久久| 亚洲精品国产av蜜桃| 成人国产av品久久久| 我要看黄色一级片免费的| 精品熟女少妇av免费看| 简卡轻食公司| 黄片无遮挡物在线观看| 亚洲美女搞黄在线观看| 国产欧美另类精品又又久久亚洲欧美| 中文字幕久久专区| 成人影院久久| 成年人免费黄色播放视频| 成人无遮挡网站| 永久网站在线| 水蜜桃什么品种好| 制服诱惑二区| 97在线人人人人妻| 777米奇影视久久| 日韩成人伦理影院| 91精品国产国语对白视频| 在线天堂最新版资源| 狂野欧美激情性bbbbbb| 如日韩欧美国产精品一区二区三区 | 妹子高潮喷水视频| 亚洲av成人精品一二三区| 亚洲av成人精品一区久久| 午夜久久久在线观看| 99国产精品免费福利视频| 丝袜美足系列| 边亲边吃奶的免费视频| 成人二区视频|