• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lesion localization of global aphasia without hemiparesis by overlapping of the brain magnetic resonance images

    2014-06-01 09:08:52WooJinKimNamJongPaik

    Woo Jin Kim, Nam-Jong Paik

    1 Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea

    2 Department of Physical Medicine and Rehabilitation, Haeundae Paik Hospital, Inje University of Medicine, Busan, South Korea

    3 Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea

    Lesion localization of global aphasia without hemiparesis by overlapping of the brain magnetic resonance images

    Woo Jin Kim1,2, Nam-Jong Paik1,3

    1 Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea

    2 Department of Physical Medicine and Rehabilitation, Haeundae Paik Hospital, Inje University of Medicine, Busan, South Korea

    3 Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea

    Global aphasia without hemiparesis is a striking stroke syndrome involving language impairment without the typically manifested contralateral hemiparesis, which is usually seen in patients with global aphasia following large left perisylvian lesions. The objective of this study is to elucidate the speci fi c areas for lesion localization of global aphasia without hemiparesis by retrospectively studying the brain magnetic resonance images of six patients with global aphasia without hemiparesis to de fi ne global aphasia without hemiparesis-related stroke lesions before overlapping the images to visualize the most overlapped area. Talairach coordinates for the most overlapped areas were converted to corresponding anatomical regions. Lesions where the images of more than three patients overlapped were considered significant. The overlapped global aphasia without hemiparesis related stroke lesions of six patients revealed that the signi fi cantly involved anatomical lesions were as follows: frontal lobe, sub-gyral, sub-lobar, extra-nuclear, corpus callosum, and inferior frontal gyrus, while caudate, claustrum, middle frontal gyrus, limbic lobe, temporal lobe, superior temporal gyrus, uncus, anterior cingulate, parahippocampal, amygdala, and subcallosal gyrus were seen less signi fi cantly involved. This study is the fi rst to demonstrate the heterogeneous anatomical involvement in global aphasia without hemiparesis by overlapping of the brain magnetic resonance images.

    nerve regeneration; global aphasia without hemiparesis; global aphasia; stroke; hemiparesis; brain; magnetic resonance imaging; neural regeneration

    Funding: This study was supported by a grant from the Korean Health Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea, No. A101901.

    Kim WJ, Paik NJ. Lesion localization of global aphasia without hemiparesis by overlapping of the brain magnetic resonance images. Neural Regen Res. 2014;9(23):2081-2086.

    Introduction

    Stroke is a major cause of adult disability (Wolfe, 2000). Aphasia is a loss or impairment of verbal communication occurring as a consequence of brain dysfunction (Sinanovic et al., 2011), and has a heterogeneous phenomenon with severity ranging from complete inability to produce and understand language to mild word fi nding problems (van de Sandt-Koenderman et al., 2012). Aphasia following stroke is one of the most common and devastating manifestations causing long term disability (Kang et al., 2010), and its presence can predict longer hospital stays, increased need of rehabilitation therapy and lower chance of returning home (Dickey et al., 2010; Gialanella et al., 2011), thus leading to lower quality of life and participation in social activities (Hilari, 2011). The incidence of aphasia is reported to be 18 to 38% of stroke population (Wade et al., 1986; Ferro et al., 1999; Pedersen et al., 2004). Patients with aphasia following stroke has a higher mortality risk (Ferro et al., 1999) and has a tendency of rapid spontaneous recovery in the fi rst months (Laska et al., 2001). The percentage of patients with aphasia decreases over time and the incidence is reduced to 20—25% at 3 months post onset of stroke (van de Sandt-Koenderman et al., 2012).

    20—40% of post stroke aphasia has been reported to be the global type (Kang et al., 2010), usually occurring after large perisylvian lesions in the left middle cerebral artery territory and is associated with contralateral hemiparesis due to proximity of the language and motor control area in the cortex (Pai et al., 2011).

    Global aphasia without hemiparesis (GAWH) is a rare and distinct phenomenon (Legatt et al., 1987). It has been reported to involve receptive and expressive language impairment, without manifestation of the typical hemiparesis in patients with global aphasia following large left perisylvian lesions (Hanlon et al., 1999), due to unusual dissociation of the language from the motor functions.

    The following studies addressed the topographic correlates and the specificity of GAWH in the literature. Neuroana-tomical correlates of post-stroke aphasias were analyzed with cerebral blood flow single photon emission tomography (SPECT) scanning, and it was found that most extensive damage was throughout the perisylvian region of the left hemisphere in global aphasia, highlighting the integrative role of some subcortical structures in language and speech functions (Jodzio et al., 2003). Lesion analysis for the GAWH using diffusion-weighted imaging (DWI) and SPECT images identi fi ed the lesion sites in three groups of classical, single and extra-sylvian lesions, suggesting the complex functional anatomy of aphasia and that different lesion localization would depend on the pathogenic mechanism (Bang et al., 2004).

    However, anatomical regions accounting for GAWH have never been demonstrated by overlapping brain magnetic resonance (MR) images in the literature. The purpose of this study was to determine the neuroanatomical correlates of GAWH by mapping of overlapped brain MR images.

    Subjects and Methods

    Subjects

    Medical records of stroke patients with left hemisphere lesions from 2005 to 2011 without symptoms of hemiplegia or hemiparesis were reviewed retrospectively. Patients who undertook brain MR imaging (MRI) exam and speech evaluation within 14 days from stroke onset, which revealed left hemisphere lesion and global aphasia according to the Korean version of Western Aphasia Battery (KWAB) test (Kim and Na, 2004) were enrolled. Those with previous history of stroke, bilateral hemisphere lesion, left handedness and premorbid lingual or language problems were excluded. Severe cognitive impairment affecting conversation in one patient and lack of complete speech evaluation due to poor cooperation in two patients rendered exclusion of three of the nine patients. Speech evaluation data and brain MR images of the remaining six patients with GAWH were obtained for analysis. The demographic data included the duration from stroke onset to initial speech evaluation. The Western Aphasia Battery (WAB), a routinely used evaluation tool for language function with high internal consistency, test-retest reliability and validity (Shewan and Kertesz, 1980), and discern the presence, type, and severity of aphasia (Shewan and Kertesz, 1980). In the current study, the Korean version of the WAB (KWAB; Kim and Na, 2004) was used to evaluate fl uency, comprehension, repetition, and naming. Classi fi cation of aphasia type and overall severity of language impairment expressed in aphasia quotients were recorded (Kang et al., 2010). The T1 and FLAIR views of brain MR images were reviewed thoroughly with reference to the official readings by an expert neuroradiologist.

    MRI and FLAIR imaging acquisition

    MRI was conducted using a 3T Philips Achieva TX with parameters as follows: acquisition matrix = 352 × 264, reconstructed to matrix = 512 × 512, field of view = 182 × 230 mm2, repetition time = 11,000 ms, echo time = 125 ms, parallel imaging reduction factor (SENSE factor) = 1, number of excitations = 1, slice gap = 1, slice thickness = 5 mm, number of slices = 25—27, and RC SENSE-NV-16 channel coil. We obtained the fluid attenuated inversion recovery (FLAIR) images (acquired voxel size = 0.5 × 0.5 × 1 mm3, transverse orientation) for visualizing the lesion. Sixty-eight axial images were collected for each subject, encompassing the whole brain. DICOM files were acquired and spatially normalized into reconstructed images of isotropic voxel size of 2 × 2 × 2 mm3using SPM8 implemented in Matlab (Version7.8.0, The Mathworks Inc, Natick, MA, USA) as described elsewhere (Marchina et al., 2011).

    Lesion mapping

    MRIcro software program (www.mricro.com, Columbia, SC, USA) was adopted to manually define the outline of the hyperintense lesions in the spatially normalized FLAIR images with reference to the co-registered T1-weighted images for additional guidance using BambooTM(Wacom, Kazo-shi, Saitama, Japan) to increase precision (Kim et al., 2013). Slice 34 of the 68 axial slices was set as the median level and three additional levels both below and above the median slice were selected for analysis, with a total of seven slices separated by fi ve slices. The regions of interest (ROI) were drawn on the slices of 19, 24, 29, 34, 39, 44 and 49. Six slices at the same level of each patient were overlaid on each other to obtain the overlapped lesion onto the template. Color coding was adopted to display the overlapped areas with different colors according to the number of overlapped ROIs (red = 6, yellow = 5, green = 4, blue = 3, navy = 2, purple = 1) at each level for all of the selected slices. Talairach space coordinates at the center of each most overlapped region were gained using the MRIcro software for identi fi cation of the exact anatomical region of the most overlapped area. The coordinates gained were then inputted to the Talairach-Client program (www.talairach. org, San Antonio, TX, USA) for conversion of the coordinates to the anatomical names at the marked coordinate as well as anatomical structures within 5 mm or nearest gray matter of the center of the ROI. Anatomical lesions were considered significant when images overlapped in more than three patients. The names of the anatomical regions are listed inTable 1in order of frequency of appearance.

    Results

    Clinical data of patients

    The age of the six patients ( fi ve males, one female) at the time of stroke ranged from 40 to 74 years, with mean of 57 years. The duration from onset of the stroke to the initial speech evaluation ranged from 8 to 14 days, with mean of 11.2 days. The KWAB results of fluency, comprehension, repetition, and naming are summarized inTable 2. Assessment results showed that fl uency ranged from 31% to 37%, comprehension from 25% to 59%, repetition from 25% to 75%, naming from 29% to 49%, and aphasia quotient for overall severity of aphasia from 29% to 49%. At follow up of speech evaluation, global aphasia evolved to transcortical motor aphasia in three patients, Wernicke aphasia in one patient, and completerecovery in one patient, while one patient was lost during follow up. Brain MRI showed that the lesion sites in the left hemisphere were frontal, temporal lobes, deep white matter, thalamus, basal ganglia and insula. The size and extent of the lesions varied; some patients had focal lesions, others had large lesions, and some had cortical infarcts while deep structures were affected in some patients. They were all acute infarctions except for patient 6, whose MR fi nding suggested subacute infarction.

    Table 2 Demographic data and KWAB results

    Figure 1 FLAIR MRI of axial brain slices of six patients, showing distribution of all patient’s lesion area on a brain template.

    Lesion location in the brain determined by imaging

    The numbers of patients overlapping in slices 1, 2, 3, 4, 5,6 and 7 were four, four, five, five, four, four and two, respectively. In the seventh slice, only two patients’ images overlapped and therefore were discarded from analysis. The rendered Talairach space coordinates at the center of the overlapped ROI were —32 × —2 × —14 in the fi rst slice, —20 × 32 × —4, —20 × 24 × 6, —22 × 22 × 16, —28 × 4 × 26 and —28 × —6 × 36 in the 2nd, 3rd, 4th, 5thand 6thslices, respectively.Figure 1shows the axial view of each level with open circle indicating the region with the highest number of ROIs (more than four overlaps). There is no open circle in the last slice since only two ROIs overlapped. Sagittal view of the seven levels at which the ROI analysis was performed is shown in the fi rst slice. The overlapped ROIs of six patients revealed the involved areas as follows in order of frequency of appearance with number of patients for each overlapped ROI in the brackets: frontal lobe (6), sub-gyral (6), sub-lobar (5), extra-nuclear (5), corpus callosum (3), inferior frontal gyrus (3), caudate (2), claustrum (2), middle frontal gyrus (2), limbic lobe (2), temporal lobe (1), superior temporal gyrus (1), uncus (1), anterior cingulated (1), parahippocampal (1), amygdala (1) and subcallosalgyrus (1) (Table 1).

    Table 1 Number of slices of each lesion

    Discussion

    Stroke is the cause of aphasia in 80—90% of all aphasic patients (van de Sandt-Koenderman et al., 2012) and aphasia is a common consequence of left hemispheric lesions (Sinanovic et al., 2011). Global aphasia typically results from large presylvian lesions, also affecting adjacent motor area, responsible for accompaniment of right hemiplegia and facial weakness in right handed patients (Damasio, 1992). The absence of hemiparesis in GAWH syndrome suggests that the cortical representation of motor and language function may not always follow classic description.

    The underlying pathogenic mechanisms of GAWH are not completely understood, but multiple etiologies including embolic cerebral infarction, subarachnoid hemorrhage, arterial atherosclerosis, brain tumors and dural arteriovenous fi stula have been previously reported as causes of GAWH in the literature (Shindo et al., 2013; Togawa et al., 2014). Underlying mechanism for GAWH has been recently studied by transcranial magnetic stimulation (Shindo et al., 2013), in which authors suggested sparing of the decussated pyramidal tract in cases of GAWH caused by cardioembolism. In their description of stroke mimics, the so-called neuroimaging-negative strokes (Artto et al., 2012; Zinkstok et al., 2013) and its related language impairment, compared with the true ischemic stroke, the authors reported a high proportion of stroke mimic patients presenting with GAWH, as in several others studies (Winkler et al., 2009; Chen et al., 2011; Guillan et al., 2012). However, all of the six patients in our study were neuroimaging-positive, suggesting that GAWH occurs both in neuroimaging-negative and -positive stroke patients.

    Diversity of anatomical regions associated with global aphasia with hemiparesis has been documented, showing heterogenous and variable lesion constellation responsible for global aphasia with hemiparesis (Hanlon et al., 1999). In a series of 46 patients with global aphasia, Scarpa et al. (1987) reported only 53% had anterior-posterior lesion profi le while 32% of patients had deep lesion. Similarly, Vignolo et al. (1986) found only 59% of their 37 patients with global aphasia had large left perisylvian lesion, involving both Broca’s and Wernicke’s areas. Four (11%) involved deep lesions of insula and lenticular nucleus, while 22% and 8% had anterior and posterior lesions, respectively. Global language impairment was also reported after left thalamic hemorrhage (Kumar et al., 1996).

    Van Horn and Hawes (1982) fi rst described involvement of two discrete ischemic lesions in the domnant hemisphere in patients with GAWH, which was con fi rmed by Tranelet et al. (1987) by demonstrating lesions in the anterior language cortices or language-related subcortical area, and one in the posterior language cortices. Hanlon et al. (1999) explored whether a single or multiple lesions could cause GAWH, demonstrating heterogenous lesion pro fi le.

    Ferro (1983) reported two cases with left middle cerebral artery involving both Broca’s and Wernicke’s areas with spared posterior limb of the internal capsule whereas other studies reported various etiologies and lesions relating to GAWH, stating that GAWH does not imply a single topographic correlate and etiology. Deleval et al. (1989) reported only a single lesion of the posterior part of F2 and F3, suggesting that functional disconnection of posterior language area is responsible for GAWH. Location and size of brain lesions between the global aphasia with hemiparesis group and GAWH group were compared in an earlier report (von Keyserlingk et al., 1997). The authors observed that the infarcted areas of patients with hemiparesis always extended to the wall of the lateral ventricle, including the whole corona radiata with the pyramidal tract, while parts of the deep white matter were spared in the GAWH group. However, subcortical lesions causing GAWH have been reported byBang et al. (2004) who suggested functional reorganization following earlier lesion of the motor pathway, such as cortical plasticity in right hemispheric control of right limb motor functions, may have played a role in sparing of the motor skills despite the likely involvement of the motor pathways.

    In the current study, the frontal lobe, sub-gyral, white matter, sub-lobar, extra-nuclear, corpus callosum and inferior frontal gyrus were overlapped in more than three slices, while caudate, claustrum, medial frontal gyrus, limbic lobe, temporal lobe, superior temporal gyrus anterior cingulate, parhippocampal gyrus, amygdale and subcallosal gyrus were less signi fi cantly involved, demonstrating signi fi cant involvement of deeper structures (Table 2). Naeser et al. (1989) reported subcortical lesions involving the medial subcallosal fasciculus and the middle third of the paraventricular white matter, which contains the body of the caudate nucleus and motor-sensory projections of the mouth involved in speech production, affected spontaneous speech due to loss of pathways for speech initiation, motor execution or sensory feedback, and emphasized the essential role of white matter pathways for speech and comprehension by reporting on patients with putamen and internal capsule infarction with subcortical aphasia with anterior, posterior and superior white matter extension (Naeser and Palumbo, 1994). Okuda et al. (1994) measured hypoperfusion in perisylvian language areas with a SPECT scan, and suggested white matter lesions in those areas were critical in development of global subcortical aphasia (Okuda et al., 1994). By applying diffusion tensor tractography in recent years, identi fi cation of several white matter structures interconnecting cortical language areas has been demonstrated (Smits et al., 2012). The arcuate fasciculus connects the Broca’s area (a frontal expressive language area) with the Wernicke’s area (a posterior temporoparietal deceptive language area), and is the best known language related white matter pathway (Smits et al., 2012). Although we did not analyze the speci fi c white matter involvement, our observation of white matter involvement is in agreement with those of previous studies (Naeser and Palumbo, 1994, Okuda et al., 1994, Smits et al., 2012). On the contrary, Bates et al. (2003) revealed lesions in the insula and arcuate/superior longitudinal fasciculus most affect speech production, and lesions in the middle temporal gyrus most affect speech comprehension, neither of which appeared in our results (Table 1).

    Hanlon et al. (1999) demonstrated composite lesion analysis according to the three subtypes of GAWH based on acute language profiles and evolvement of aphasia in the first 3 months after stroke (persistent, transcortical motor aphasia, and Wernicke). In our study, the subtypes of speech at follow up speech evaluations are transcortical motor aphasia in three patients, Wernicke aphasia in one, complete recovery in one and one was lost in follow up. Such results may raise issue of misdiagnosed GAWH initially due to cognitive de ficit, apraxia, but complete exclusion of cognitive de fi cit when not definitive is difficult in aphasic patients, and there is always the possibility of actual recovery of the global aphasia over the period in those with initial clinical manifestations of GAWH.

    However, because its relationship with lesion extent and aphasia severity was not studied, further studies on this topic are needed. Also, more extensive studies correlating the lesion mapping with the subtypes of aphasia based on aphasic evolvement in few months, and as well as overlapping the lesions according to the different types of GAWH with larger number of cases would further specify the responsible or most commonly involved anatomical region.

    This study is the first to use the brain MR image overlapping technique to demonstrate the lesions involved in global aphasia without hemiparesis. Our results identify the involvement of heterogeneous structures in six acute GAWH patients. Further studies with larger number of cases, together with exploration of the functional correlation speci fi c structures contributing to GAWH would enhance our understanding of GAWH.

    Author contributions:Paik NJ was responsible for conception and design of the study, fundraising, provided assistance in technical performance or material use, supervised the study, and provided critical revision of the manuscript for intellectual contents. Kim WJ collected and analyzed data and wrote the manuscript. Both of these two authors interpreted the data and approved the final version of the manuscript.

    Con fl icts of interest:None declared.

    Artto V, Putaala J, Strbian D, Meretoja A, Piironen K, Liebkind R, Silvennoinen H, Atula S, Happola O (2012) Stroke mimics and intravenous thrombolysis. Ann Emerg Med 59:27-32.

    Bang OY, Heo KG, Kwak Y, Lee PH, Joo IS, Huh K (2004) Global aphasia without hemiparesis: lesion analysis and its mechanism in 11 Korean patients. J Neurol Sci 217:101-106.

    Chen Y, Bogosavljevic V, Leys D, Jovanovic D, Beslac-Bumbasirevic L, Lucas C (2011) Intravenous thrombolytic therapy in patients with stroke mimics: baseline characteristics and safety pro fi le. Eur J Neurol 18:1246-1250.

    Damasio AR (1992) Aphasia. N Engl J Med 326:531-539.

    Deleval J, Leonard A, Mavroudakis N, Rodesch G (1989) Global aphasia without hemiparesis following prerolandic infarction. Neurology 39:1532-1535.

    Dickey L, Kagan A, Lindsay MP, Fang J, Rowland A, Black S (2010) Incidence and pro fi le of inpatient stroke-induced aphasia in Ontario, Canada. Arch Phys Med Rehabil 91:196-202.

    Ferro JM (1983) Global aphasia without hemiparesis. Neurology 33:1106.

    Ferro JM, Mariano G, Madureira S (1999) Recovery from aphasia and neglect. Cerebrovasc Dis 9 Suppl 5:6-22.

    Gialanella B, Bertolinelli M, Lissi M, Prometti P (2011) Predicting outcome after stroke: the role of aphasia. Disabil Rehabil 33:122-129.

    Guillan M, Alonso-Canovas A, Gonzalez-Valcarcel J, Garcia Barragan N, Garcia Caldentey J, Hernandez-Medrano I, Defelipe-Mimbrera A, Sanchez-Gonzalez V, Terecoasa E, Alonso de Lecinana M, Masjuan J (2012) Stroke mimics treated with thrombolysis: further evidence on safety and distinctive clinical features. Cerebrovasc Dis 34:115-120.

    Hanlon RE, Lux WE, Dromerick AW (1999) Global aphasia without hemiparesis: language pro fi les and lesion distribution. J Neurol Neurosurg Psychiatry 66:365-369.

    Hilari K (2011) The impact of stroke: are people with aphasia different to those without? Disabil Rehabil 33:211-218.

    Jodzio K, Gasecki D, Drumm DA, Lass P, Nyka W (2003) Neuroanatomical correlates of the post-stroke aphasias studied with cerebral blood fl ow SPECT scanning. Med Sci Monit 9:MT32-41.

    Kang EK, Sohn HM, Han MK, Kim W, Han TR, Paik NJ (2010) Severity of post-stroke aphasia according to aphasia type and lesion location in Koreans. J Korean Med Sci 25:123-127.

    Kim H, Na DL (2004) Normative data on the Korean version of the Western Aphasia Battery. J Clin Exp Neuropsychol 26:1011-1020.

    Kim WJ, Yang EJ, Paik NJ (2013) Neural substrate responsible for crossed aphasia. J Korean Med Sci 28:1529-1533.

    Kumar R, Masih AK, Pardo J (1996) Global aphasia due to thalamic hemorrhage: a case report and review of the literature. Arch Phys Med Rehabil 77:1312-1315.

    Laska AC, Hellblom A, Murray V, Kahan T, Von Arbin M (2001) Aphasia in acute stroke and relation to outcome. J Intern Med 249:413-422.

    Legatt AD, Rubin MJ, Kaplan LR, Healton EB, Brust JC (1987) Global aphasia without hemiparesis: multiple etiologies. Neurology 37:201-205.

    Marchina S, Zhu LL, Norton A, Zipse L, Wan CY, Schlaug G (2011) Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke 42:2251-2256.

    Naeser MA, Palumbo CL (1994) Neuroimaging and language recovery in stroke. J Clin Neurophysiol 11:150-174.

    Naeser MA, Palumbo CL, Helm-Estabrooks N, Stiassny-Eder D, Albert ML (1989) Severe non fl uency in aphasia. Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain 112:1-38.

    Okuda B, Tanaka H, Tachibana H, Kawabata K, Sugita M (1994) Cerebral blood fl ow in subcortical global aphasia. Perisylvian cortical hypoperfusion as a crucial role. Stroke 25:1495-1499.

    Pai AR, Krishnan G, Prashanth S, Rao S (2011) Global aphasia without hemiparesis: A case series. Ann Indian Acad Neurol 14:185-188.

    Pedersen PM, Vinter K, Olsen TS (2004) Aphasia after stroke: type, severity and prognosis. The Copenhagen aphasia study. Cerebrovasc Dis 17:35-43.

    Scarpa M, Colombo A, Sorgato P, De Renzi E (1987) The incidence of aphasia and global aphasia in left brain-damaged patients. Cortex 23:331-336.

    Shewan CM, Kertesz A (1980) Reliability and validity characteristics of the Western Aphasia Battery (WAB). J Speech Hear Disord 45:308-324.

    Shindo A, Satoh M, Naito Y, Asahi M, Takashima S, Sasaki R, Furukawa K, Narita Y, Kuzuhara S, Tomimoto H (2013) Global aphasia without hemiparesis: the underlying mechanism examined by transcranial magnetic stimulation. Neurologist 19:11-14.

    Sinanovic O, Mrkonjic Z, Zukic S, Vidovic M, Imamovic K (2011) Poststroke language disorders. Acta Clin Croat 50:79-94.

    Smits M, Visch-Brink EG, van de Sandt-Koenderman ME, van der Lugt A (2012) Advanced magnetic resonance neuroimaging of language function recovery after aphasic stroke: a technical review. Arch Phys Med Rehabil 93:S4-14.

    Togawa J, Ohi T, Kawarazaki S (2014) Global aphasia without hemiparesis caused by a dural arteriovenous fi stula. Intern Med 53:135-138.

    Tranel D, Biller J, Damasio H, Adams HP Jr, Cornell SH (1987) Global aphasia without hemiparesis. Arch Neurol 44:304-308.

    van de Sandt-Koenderman ME, van der Meulen I, Ribbers GM (2012) Aphasia rehabilitation: more than treating the language disorder. Arch Phys Med Rehabil 93:S1-3.

    Van Horn G, Hawes A (1982) Global aphasia without hemiparesis: a sign of embolic encephalopathy. Neurology 32:403-406.

    Vignolo LA, Boccardi E, Caverni L (1986) Unexpected CT-scan fi ndings in global aphasia. Cortex 22:55-69.

    von Keyserlingk AG, Naujokat C, Niemann K, Huber W, Thron A (1997) Global aphasia-with and without hemiparesis. A linguistic and CT scan study. Eur Neurol 38:259-267.

    Wade DT, Hewer RL, David RM, Enderby PM (1986) Aphasia after stroke: natural history and associated deficits. J Neurol Neurosurg Psychiatry 49:11-16.

    Winkler DT, Fluri F, Fuhr P, Wetzel SG, Lyrer PA, Ruegg S, Engelter ST (2009) Thrombolysis in stroke mimics: frequency, clinical characteristics, and outcome. Stroke 40:1522-1525.

    Wolfe CD (2000) The impact of stroke. Br Med Bull 56:275-286.

    Zinkstok SM, Engelter ST, Gensicke H, Lyrer PA, Ringleb PA, Artto V, Putaala J, Haapaniemi E, Tatlisumak T, Chen Y, Leys D, Sarikaya H, Michel P, Odier C, Berrouschot J, Arnold M, Heldner MR, Zini A, Fioravanti V, Padjen V, Beslac-Bumbasirevic L, Pezzini A, Roos YB, Nederkoorn PJ (2013) Safety of thrombolysis in stroke mimics: results from a multicenter cohort study. Stroke 44:1080-1084.

    Copyedited by Kremer C, Micu I, Li CH, Song LP, Zhao M

    10.4103/1673-5374.147935

    Nam-Jong Paik, M.D., Ph.D., Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, South Korea, njpaik@snu.ac.kr.

    http://www.nrronline.org/

    Accepted: 2014-10-28

    色播亚洲综合网| 欧美xxxx黑人xx丫x性爽| 一区二区三区四区激情视频 | 欧美在线一区亚洲| 蜜桃亚洲精品一区二区三区| 香蕉av资源在线| 男女边吃奶边做爰视频| 精品欧美国产一区二区三| 女的被弄到高潮叫床怎么办| 欧美日韩国产亚洲二区| 搡老岳熟女国产| 18禁在线播放成人免费| 国产麻豆成人av免费视频| 国内精品久久久久精免费| 国产视频一区二区在线看| 中文亚洲av片在线观看爽| 免费人成在线观看视频色| 一区福利在线观看| 无遮挡黄片免费观看| 悠悠久久av| 久久精品91蜜桃| 国产乱人视频| 欧美又色又爽又黄视频| 中文字幕av成人在线电影| 亚洲欧美精品自产自拍| 久久久久国产精品人妻aⅴ院| 老熟妇乱子伦视频在线观看| av天堂中文字幕网| 三级国产精品欧美在线观看| 国产女主播在线喷水免费视频网站 | 又粗又爽又猛毛片免费看| 免费高清视频大片| 最近2019中文字幕mv第一页| 99久久精品一区二区三区| 国内精品美女久久久久久| 色吧在线观看| 久久久国产成人免费| 淫妇啪啪啪对白视频| 亚洲国产高清在线一区二区三| 亚洲综合色惰| 免费人成视频x8x8入口观看| 久久久久久久久久久丰满| 国产成人freesex在线 | 精品一区二区三区av网在线观看| 12—13女人毛片做爰片一| 十八禁网站免费在线| 男人的好看免费观看在线视频| 日韩欧美国产在线观看| 身体一侧抽搐| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| 色5月婷婷丁香| 日韩人妻高清精品专区| 欧美性感艳星| 欧美3d第一页| 伦精品一区二区三区| 日韩精品青青久久久久久| 丰满乱子伦码专区| 一进一出抽搐动态| 亚洲中文日韩欧美视频| 成人三级黄色视频| av卡一久久| 欧美另类亚洲清纯唯美| 色综合色国产| 精品一区二区免费观看| 一级毛片我不卡| 成年av动漫网址| 久久精品国产亚洲av涩爱 | 欧美zozozo另类| 中文字幕免费在线视频6| 成人永久免费在线观看视频| 看非洲黑人一级黄片| 在线观看美女被高潮喷水网站| 午夜爱爱视频在线播放| 在线国产一区二区在线| 国产精品福利在线免费观看| 午夜亚洲福利在线播放| 精品人妻一区二区三区麻豆 | 欧美zozozo另类| 欧洲精品卡2卡3卡4卡5卡区| 永久网站在线| 麻豆国产97在线/欧美| 熟女人妻精品中文字幕| 搞女人的毛片| 99久久精品热视频| 高清毛片免费观看视频网站| a级一级毛片免费在线观看| 日本黄大片高清| 国产亚洲91精品色在线| 可以在线观看的亚洲视频| 小蜜桃在线观看免费完整版高清| 少妇人妻一区二区三区视频| 在线观看午夜福利视频| 真人做人爱边吃奶动态| 18禁黄网站禁片免费观看直播| 99国产精品一区二区蜜桃av| 成人美女网站在线观看视频| 成人av一区二区三区在线看| av在线天堂中文字幕| 欧美中文日本在线观看视频| 久久久久国产网址| 99热网站在线观看| 精品一区二区三区视频在线| 国产av麻豆久久久久久久| 日韩精品青青久久久久久| 欧美性感艳星| 欧洲精品卡2卡3卡4卡5卡区| 在线天堂最新版资源| 99热网站在线观看| 国产真实乱freesex| 中文字幕av在线有码专区| 亚洲真实伦在线观看| 天美传媒精品一区二区| 日本在线视频免费播放| 老熟妇仑乱视频hdxx| 国产精品精品国产色婷婷| 夜夜夜夜夜久久久久| 亚洲最大成人中文| 国产成年人精品一区二区| 成人av在线播放网站| 18+在线观看网站| 欧美又色又爽又黄视频| 六月丁香七月| 神马国产精品三级电影在线观看| 欧美性感艳星| 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 日本爱情动作片www.在线观看 | 精品久久久久久久久av| 色视频www国产| 久久鲁丝午夜福利片| av国产免费在线观看| 久久天躁狠狠躁夜夜2o2o| 国产成人a区在线观看| 三级国产精品欧美在线观看| 久久久久久大精品| 午夜福利成人在线免费观看| 国产亚洲精品久久久久久毛片| 亚州av有码| 好男人在线观看高清免费视频| 波多野结衣巨乳人妻| 午夜影院日韩av| 一级毛片久久久久久久久女| 午夜免费激情av| 精品一区二区三区视频在线| 成人性生交大片免费视频hd| 精品99又大又爽又粗少妇毛片| 久久人妻av系列| 亚洲国产精品合色在线| 日韩精品青青久久久久久| 五月玫瑰六月丁香| 免费搜索国产男女视频| 麻豆乱淫一区二区| 日韩欧美国产在线观看| 国产探花极品一区二区| 你懂的网址亚洲精品在线观看 | 91在线观看av| 日韩欧美一区二区三区在线观看| 麻豆精品久久久久久蜜桃| 搞女人的毛片| 九色成人免费人妻av| 成人鲁丝片一二三区免费| 三级男女做爰猛烈吃奶摸视频| 亚洲18禁久久av| 久久精品国产亚洲网站| h日本视频在线播放| 五月玫瑰六月丁香| 一级av片app| 黄色一级大片看看| 十八禁网站免费在线| 夜夜夜夜夜久久久久| 亚洲专区国产一区二区| 国产黄a三级三级三级人| 欧美中文日本在线观看视频| 一进一出抽搐gif免费好疼| 欧美性猛交╳xxx乱大交人| 晚上一个人看的免费电影| 日韩精品中文字幕看吧| 欧美一区二区国产精品久久精品| 亚洲国产精品国产精品| av在线亚洲专区| 12—13女人毛片做爰片一| 搡老熟女国产l中国老女人| 久久久久国产网址| 日本五十路高清| 俄罗斯特黄特色一大片| 国产亚洲欧美98| 欧美激情国产日韩精品一区| 国内精品美女久久久久久| 日韩欧美三级三区| 亚洲最大成人手机在线| 午夜福利成人在线免费观看| 全区人妻精品视频| 国产精品日韩av在线免费观看| 精品无人区乱码1区二区| 乱码一卡2卡4卡精品| 亚洲国产高清在线一区二区三| АⅤ资源中文在线天堂| 欧美色视频一区免费| 国产精品野战在线观看| 久久久午夜欧美精品| 精品久久久久久久久av| 可以在线观看的亚洲视频| 在线播放无遮挡| 人妻夜夜爽99麻豆av| 亚洲内射少妇av| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| 亚洲精品亚洲一区二区| 亚洲精品粉嫩美女一区| 国产淫片久久久久久久久| 亚洲国产精品国产精品| 少妇高潮的动态图| 神马国产精品三级电影在线观看| 嫩草影院精品99| 桃色一区二区三区在线观看| 国产激情偷乱视频一区二区| 我的老师免费观看完整版| 免费观看人在逋| 欧美一级a爱片免费观看看| 精品人妻视频免费看| 国产精品久久久久久av不卡| 中文字幕久久专区| 久久精品夜夜夜夜夜久久蜜豆| 成人av在线播放网站| 精品福利观看| 一个人免费在线观看电影| 乱码一卡2卡4卡精品| 波多野结衣高清无吗| 一区二区三区免费毛片| 日韩一区二区视频免费看| 色在线成人网| 可以在线观看的亚洲视频| 中文字幕av在线有码专区| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 中文字幕人妻熟人妻熟丝袜美| 国产高清不卡午夜福利| 18禁在线播放成人免费| 免费观看精品视频网站| 丰满人妻一区二区三区视频av| 精品无人区乱码1区二区| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 日日摸夜夜添夜夜添小说| 热99在线观看视频| 成人二区视频| 国产乱人视频| 亚洲欧美日韩高清专用| 欧美区成人在线视频| 91久久精品国产一区二区三区| 欧美另类亚洲清纯唯美| 国产 一区精品| 男人的好看免费观看在线视频| 国产免费男女视频| 噜噜噜噜噜久久久久久91| 久久人妻av系列| 日韩中字成人| 能在线免费观看的黄片| 亚洲专区国产一区二区| 亚洲国产精品成人综合色| 国产伦精品一区二区三区四那| 草草在线视频免费看| 少妇熟女欧美另类| 国产一级毛片七仙女欲春2| 免费看a级黄色片| 99riav亚洲国产免费| 内射极品少妇av片p| 亚洲精品色激情综合| 精品日产1卡2卡| 国产乱人视频| 午夜爱爱视频在线播放| 全区人妻精品视频| 欧美成人a在线观看| 青春草视频在线免费观看| 五月伊人婷婷丁香| 国产单亲对白刺激| 免费看a级黄色片| 成人av在线播放网站| 在线观看免费视频日本深夜| 亚洲高清免费不卡视频| 国产成人一区二区在线| 久久久久久久久久黄片| 国产乱人偷精品视频| 午夜影院日韩av| 精品人妻熟女av久视频| 亚洲国产高清在线一区二区三| 日韩欧美免费精品| 亚洲人成网站在线播| 午夜日韩欧美国产| 高清毛片免费看| 黄色欧美视频在线观看| 色综合色国产| 精品人妻视频免费看| 最近中文字幕高清免费大全6| 亚洲av不卡在线观看| 少妇熟女aⅴ在线视频| 精品一区二区免费观看| 免费观看的影片在线观看| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 久久久久国内视频| 免费一级毛片在线播放高清视频| 婷婷精品国产亚洲av在线| 丝袜美腿在线中文| 精品久久久久久久久久久久久| 日韩欧美 国产精品| 久久综合国产亚洲精品| 久久草成人影院| 亚洲激情五月婷婷啪啪| 日韩亚洲欧美综合| 亚洲中文字幕日韩| 亚洲欧美清纯卡通| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区四区激情视频 | 你懂的网址亚洲精品在线观看 | 校园人妻丝袜中文字幕| 真人做人爱边吃奶动态| 一级毛片电影观看 | 国产淫片久久久久久久久| 波野结衣二区三区在线| av视频在线观看入口| 国产午夜精品论理片| 九九热线精品视视频播放| 黄色欧美视频在线观看| 美女黄网站色视频| 又黄又爽又刺激的免费视频.| 看非洲黑人一级黄片| 99热这里只有是精品在线观看| 两个人的视频大全免费| 成人av在线播放网站| 国产成人精品久久久久久| 少妇猛男粗大的猛烈进出视频 | 国产精品av视频在线免费观看| 色视频www国产| 午夜福利在线在线| 色视频www国产| 人人妻,人人澡人人爽秒播| 能在线免费观看的黄片| 亚洲成人久久性| 久久午夜亚洲精品久久| 亚洲第一区二区三区不卡| 国产精品久久久久久av不卡| 黄色一级大片看看| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 不卡视频在线观看欧美| 综合色丁香网| 搡老熟女国产l中国老女人| 中文字幕熟女人妻在线| av在线亚洲专区| 久久久久久久午夜电影| 在线国产一区二区在线| 国产精品女同一区二区软件| 成人精品一区二区免费| 舔av片在线| 久久久久久久久中文| 国产精品三级大全| 国产探花在线观看一区二区| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 久久久精品94久久精品| 99久久精品一区二区三区| 国产一区二区在线av高清观看| 免费观看精品视频网站| 丰满乱子伦码专区| 成人精品一区二区免费| 99九九线精品视频在线观看视频| 欧美日本视频| 综合色丁香网| 两性午夜刺激爽爽歪歪视频在线观看| а√天堂www在线а√下载| 欧美绝顶高潮抽搐喷水| 亚洲av熟女| 又黄又爽又免费观看的视频| av卡一久久| 国产精品国产高清国产av| 色播亚洲综合网| 国产黄片美女视频| 最后的刺客免费高清国语| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 少妇熟女aⅴ在线视频| 亚洲欧美日韩卡通动漫| 亚洲成人av在线免费| 成年女人永久免费观看视频| 老师上课跳d突然被开到最大视频| 亚洲国产高清在线一区二区三| 国产高清不卡午夜福利| 12—13女人毛片做爰片一| 亚洲欧美清纯卡通| 久久久久久久久久成人| 国产欧美日韩精品亚洲av| 久久人妻av系列| 婷婷六月久久综合丁香| 精品日产1卡2卡| av在线观看视频网站免费| 欧美成人一区二区免费高清观看| 精品国内亚洲2022精品成人| eeuss影院久久| 99在线视频只有这里精品首页| 日本成人三级电影网站| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| a级毛片a级免费在线| 久久久久久久亚洲中文字幕| 3wmmmm亚洲av在线观看| 少妇熟女欧美另类| 人妻夜夜爽99麻豆av| 最后的刺客免费高清国语| 两性午夜刺激爽爽歪歪视频在线观看| 九九热线精品视视频播放| 精品一区二区三区av网在线观看| 午夜a级毛片| 亚洲欧美精品综合久久99| 亚洲美女黄片视频| 美女cb高潮喷水在线观看| av在线亚洲专区| 日韩三级伦理在线观看| 亚洲欧美精品综合久久99| 午夜影院日韩av| 在线看三级毛片| 日本免费一区二区三区高清不卡| 18禁在线无遮挡免费观看视频 | 日韩欧美三级三区| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻视频免费看| 亚洲国产精品成人久久小说 | 久久久精品大字幕| 成人三级黄色视频| 美女 人体艺术 gogo| 亚洲中文字幕一区二区三区有码在线看| 午夜亚洲福利在线播放| 在线国产一区二区在线| 国产av不卡久久| 老师上课跳d突然被开到最大视频| 久久人人精品亚洲av| 精品一区二区三区视频在线| 国产探花极品一区二区| 一进一出好大好爽视频| 久久久久性生活片| 成人亚洲欧美一区二区av| 亚洲av免费在线观看| 三级毛片av免费| 亚洲一区二区三区色噜噜| 高清毛片免费观看视频网站| 波野结衣二区三区在线| 久久亚洲精品不卡| 一级av片app| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 国产伦一二天堂av在线观看| 97在线视频观看| av在线老鸭窝| 嫩草影视91久久| 国产亚洲精品久久久com| 欧美人与善性xxx| 看非洲黑人一级黄片| 少妇人妻精品综合一区二区 | 精品久久久久久成人av| 国产亚洲av嫩草精品影院| 女的被弄到高潮叫床怎么办| 少妇高潮的动态图| 国产精品三级大全| 国产精品伦人一区二区| 一区二区三区高清视频在线| 国产欧美日韩一区二区精品| 国产极品精品免费视频能看的| 春色校园在线视频观看| 人人妻人人澡人人爽人人夜夜 | 嫩草影院精品99| 午夜精品一区二区三区免费看| 国产伦精品一区二区三区视频9| 午夜激情欧美在线| 国产一级毛片七仙女欲春2| 男插女下体视频免费在线播放| 成年版毛片免费区| 久久6这里有精品| av专区在线播放| 香蕉av资源在线| 美女 人体艺术 gogo| 在线a可以看的网站| 一级毛片电影观看 | 在线观看av片永久免费下载| 国产午夜精品久久久久久一区二区三区 | 搡老妇女老女人老熟妇| 亚洲人成网站在线观看播放| 婷婷六月久久综合丁香| 久久久国产成人精品二区| ponron亚洲| 男人的好看免费观看在线视频| 久久精品国产亚洲av涩爱 | 深夜精品福利| 欧美另类亚洲清纯唯美| 国产av在哪里看| 国产欧美日韩一区二区精品| 插逼视频在线观看| 欧美一区二区亚洲| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| 哪里可以看免费的av片| 级片在线观看| www日本黄色视频网| 欧美丝袜亚洲另类| av在线蜜桃| 欧美成人a在线观看| 天堂av国产一区二区熟女人妻| 国产精品一及| 欧美色欧美亚洲另类二区| 91久久精品电影网| 美女内射精品一级片tv| 国产伦一二天堂av在线观看| 日韩强制内射视频| 精品久久久久久久久久免费视频| 亚洲av.av天堂| 免费看日本二区| av中文乱码字幕在线| 少妇人妻精品综合一区二区 | 国产单亲对白刺激| 女同久久另类99精品国产91| 嫩草影院新地址| 淫妇啪啪啪对白视频| 一进一出好大好爽视频| 晚上一个人看的免费电影| 一进一出抽搐gif免费好疼| 亚洲va在线va天堂va国产| 内射极品少妇av片p| 国产av不卡久久| av在线老鸭窝| 人人妻人人澡人人爽人人夜夜 | 日产精品乱码卡一卡2卡三| 美女内射精品一级片tv| 日韩国内少妇激情av| 亚洲熟妇熟女久久| 日韩欧美国产在线观看| 一a级毛片在线观看| 日本黄色片子视频| 亚洲精品日韩在线中文字幕 | 老司机影院成人| 国语自产精品视频在线第100页| 亚洲欧美日韩卡通动漫| 中文资源天堂在线| 亚洲性夜色夜夜综合| a级一级毛片免费在线观看| 日韩制服骚丝袜av| 亚洲第一电影网av| 国产高清激情床上av| 亚洲av电影不卡..在线观看| 一区福利在线观看| 一本精品99久久精品77| 亚洲自偷自拍三级| 免费观看精品视频网站| 亚洲精品国产成人久久av| 麻豆一二三区av精品| 日韩欧美免费精品| 三级经典国产精品| 六月丁香七月| 变态另类成人亚洲欧美熟女| 亚洲av免费高清在线观看| 我的老师免费观看完整版| 亚洲人与动物交配视频| 最好的美女福利视频网| 久久精品国产清高在天天线| 国产精品一区二区免费欧美| 色哟哟·www| 成人精品一区二区免费| 一级毛片久久久久久久久女| 少妇熟女aⅴ在线视频| 精品久久久久久久末码| 网址你懂的国产日韩在线| av视频在线观看入口| 亚洲最大成人中文| 成人午夜高清在线视频| 免费看光身美女| 日本免费a在线| 欧美人与善性xxx| 色综合站精品国产| 国产亚洲精品av在线| 精品免费久久久久久久清纯| 成年版毛片免费区| 美女cb高潮喷水在线观看| 免费观看在线日韩| 亚洲欧美日韩高清专用| 天天躁夜夜躁狠狠久久av| 久99久视频精品免费| 午夜影院日韩av| 蜜桃久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 尤物成人国产欧美一区二区三区| 少妇丰满av| 最近最新中文字幕大全电影3| 亚洲内射少妇av| 真人做人爱边吃奶动态| 狂野欧美激情性xxxx在线观看| 赤兔流量卡办理| 国产精品精品国产色婷婷| 国产精品一区二区三区四区免费观看 | 亚洲欧美中文字幕日韩二区| 永久网站在线| 给我免费播放毛片高清在线观看| 欧美又色又爽又黄视频| 午夜福利成人在线免费观看| 欧美精品国产亚洲| 亚洲精华国产精华液的使用体验 | 亚洲精品国产av成人精品 | 午夜激情欧美在线| 少妇被粗大猛烈的视频| 久久精品国产亚洲av天美| 久久久久久伊人网av| 亚洲在线观看片| 激情 狠狠 欧美| 亚洲最大成人中文| 午夜精品在线福利| 搡老岳熟女国产|