• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD95-MLK3 signaling module

    2014-06-01 09:08:55JieMouXiaomeiLiuDongshengPei
    關(guān)鍵詞:亞鐵氰化鉀鍍銅硫醇

    Jie Mou, Xiaomei Liu, Dongsheng Pei

    1 Jiangsu Key Laboratory of Targeted Drug and Clinical Application, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    2 School of Basic Medical Science, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    3 Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD95-MLK3 signaling module

    Jie Mou1, Xiaomei Liu2, Dongsheng Pei3

    1 Jiangsu Key Laboratory of Targeted Drug and Clinical Application, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    2 School of Basic Medical Science, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    3 Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    Jie Mou and Xiaomei Liu contributed equally to this study.

    Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad-Glur6-9c on the phosphorylation of JNK, MLK3 and mitogen-activated kinase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of JNK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was signi fi cantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.

    nerve regeneration; brain injury; hippocampal neuronal injury; seizures; adenovirus; GluR6; PSD95; MLK3; kainate; apoptosis; JNK; NSFC grants; neural regeneration

    Funding: This work was supported by the National Natural Science Foundation of China, No. 30800309, 81372172; the Educational Science Foundation of Jiangsu Province, China, No. 10KJB350005; the Xuzhou Science Foundation in China, No. XZZD1153; the President Special Grant of Xuzhou Medical College in China, No. 09KJZ20; and a grant from the Zhenxing Project Foundation of XZMC.

    Mou J, Liu XM, Pei DS. Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD95-MLK3 signaling module . Neural Regen Res. 2014;9(23):2059-2065.

    Introduction

    Kainate receptors mediate the majority of excitatory synapse transmissions in the mammalian central nervous system, thereby exerting key effects on synaptic plasticity as well as in pathological processes such as ischemia and epilepsy (Dingledine et al., 1999). Kainate receptors also have varied patterns of expression in the subregions of the hippocampus (Bureau et al., 1999). GluR6 is mainly located in the CA1 and CA3 regions, and plays a signi fi cant role in learning and memory (Darstein et al., 2003). GluR6-de fi cient rodents are resistant to kainate-induced excitotoxicity, suggesting that GluR6 likely mediates the neurotoxic effect of glutamate (Mulle et al., 1998). Studies in cerebral ischemia have confi rmed that a correlation exists between GluR6 and postsynaptic density protein 95 (PSD95). Furthermore, these studies have shown that the activation of mixed lineage kinase 3 (MLK3), mitogen-activated kinase kinase 7 (MKK7) and c-Jun NH2-terminal kinase 3 (JNK3) are facilitated by kainate, resulting in neuronal cell death in the CA1 region (Tian et al., 2005).

    Yang et al. (1997) have demonstrated that GluR6 knockout and JNK3-de fi cient mice exhibit similar phenotypes, and are resistant to excitotoxicity and kainate-induced seizures in the hippocampus. Our previous study has focused on Tat-GluR6-9c, a peptide containing the C terminus of GluR6 linked to the membrane transduction sequence Tat protein of HIV (Pei et al., 2006). This study has shown that the assembly of GluR6-PSD95-MLK3 signaling module is attenuated and protects neurons against cerebral ischemia/reperfusion-induced apoptosis. However, whether this signaling module-mediated JNK activation exists in the CA1 region of epileptic rats is still unknown. Therefore, in the presentstudy, we investigated whether recombinant adenovirus (Ad)-C-terminal amino acids of GluR6 (GluR6c) inhibited the assembly of the GluR6-PSD95-MLK3 signaling module and decreased kainate-induced neuronal death in the CA1 subregion.

    Materials and Methods

    Animals

    A total of 24 adult male Sprague-Dawley rats, weighing 230 ± 20 g, were used and obtained from the Shanghai Experimental Animal Center, Chinese Academy of Science (Certi fi cate of Conformity Number 410116). All rats were housed in a laminar fl ow room at 18—22°C and a humidity of 55—58%. Drinking water and food were sterilized by steam. The experimental procedures were conducted according to the Guidance Suggestions for the Care and Use of Laboratory Animals, issued by the Ministry of Science and Technology of China.

    Establishment of seizure models

    Seizures were induced by an intraperitoneal injection of kainate (12 mg/kg, dissolved in sterile saline). The rats were behaviorally monitored for seizures for at least 6 hours after injection. The seizures were scored using a modified scale (Racine, 1972): (1) behavioral arrest and staring spells, (2) head bobbing and gnawing, (3) unilateral forelimb clonus, (4) bilateral forelimb clonus, (5) severe seizures with loss of postural control, and (6) seizure-induced death. The rats that experienced epileptic seizures with stage 4 to 5 for more than three times were considered successful models. Only animals with stage 4 or 5 seizures were used in this study.

    Sample preparation

    The rats were decapitated at 3, 6, and 12 hours, and 1 and 3 days after kainate injection. The CA1 region was separated and quickly frozen in liquid nitrogen (Paxinos and Watson, 2007). The sample was homogenized in ice-cold homogenization buffer, supplemented with 50 mmol/L 3-(N-morpholino) propanesulfonic acid Sigma-Aldrich, St. Louis, MO, USA) (pH 7.4), 100 mmol/L KCl, 320 mmol/L sucrose, 50 mmol/L NaF, 0.5 mmol/L MgCl2, 0.2 mmol/L dithiothreitol, 1 mmol/L ethylenediamine tetraacetic acid, 1 mmol/L ethylene glycol tetraacetic acid, 1 mmol/L Na3VO4(Sigma-Aldrich), 20 mmol/L sodium pyrophosphate, 20 mmol/L β-phosphoglycerol, 1 mmol/L p-nitrophenyl phosphate, 1 mmol/L benzamidine, 1 mmol/L phenylmethylsulfonyl fl uoride, 5 μg/mL leupeptin, 5 μg/mL aprotinin, and 5 μg/mL pepstatin A. The homogenates were centrifuged at 800 × g at 4°C for 10 minutes. Supernatants were collected, and protein concentration was determined in accordance with a previous method (Lowry et al., 1951). Samples were stored at ?80°C and were thawed only once for use.

    Immunoprecipitation

    Tissue homogenates (400 μg of protein) were diluted four-fold with 50 mmol/L 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (pH 7.4), containing 10% glycerol, 150 mmol/L NaCl, 1% Triton X-100, 0.5% NP-40, and 1 mmol/L of ethylenediamine tetraacetic acid, ethylene glycol tetraacetic acid, phenylmethyl sulfonylfluoride and Na3VO4(all from Sigma-Aldrich). Samples were preincubated with 20 μL protein A sepharose CL-4B (Amersham, Uppsala, Sweden) for 1 hour at 4°C, and then centrifuged to remove proteins that adhered nonspeci fi cally to protein A. The supernatants were incubated with 1—2 μg of primary antibodies overnight at 4°C or for 4 hours. Protein A was added to the tube for an additional 2-hour incubation. Samples were centrifuged at 10,000 × g at 4°C for 2 minutes. The pellets were washed three times with immunoprecipitation buffer. Bound proteins were eluted by boiling in sodium dodecyl sulfate polyacrylamide gel electrophoresis loading buffer at 100°C for 5 minutes, and then isolated by centrifugation.

    Western immunoblotting

    Proteins extracted from CA1 supernatants were separated on polyacrylamide gels via electrophoresis, and then transferred to nitrocellulose membranes (Amersham Biosciences, Buckinghamshire, UK). After blocking with 3% serum albumin in Tris-buffered saline and 0.1% Tween-20 for 3 hours, membranes were incubated with mouse monoclonal anti-JNK antibody (1:1,000; Santa Cruz Biotechnology, Dallas, TX, USA), mouse monoclonal anti-p-JNK antibody (1:1,000; Santa Cruz Biotechnology), goat polyclonal anti-GluR6 (1:1,000; Santa Cruz Biotechnology), goat polyclonal anti-MKK7 (1:200; Santa Cruz Biotechnology), goat polyclonal anti-p-MKK7 (1:500; Cell Signaling, Boston, MA, USA), rabbit polyclonal anti-p-MLK3 (1:1,000; Cell Signaling), rabbit polyclonal anti-MLK3 antibody (1:200; Santa Cruz Biotechnology), or mouse monoclonal anti-PSD95 (1:1,000; Sigma-Aldrich) in Tris-buffered saline with 3% bovine serum albumin and Tween, overnight at 4°C. Rabbit polyclonal anti-Beta-actin (1:3,000; Santa Cruz Biotechnology) served as the housekeeping protein. Membranes were then washed and incubated with the secondary antibodies: goat anti-mouse (1:5,000; Sigma) or alkaline phosphatase-conjugated goat anti-rabbit (1:5,000; Sigma) in Tris-buffered saline with Tween at 25°C for 2 hours. Membranes were then developed with nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate color substrate (Promega, Madison, WI, USA). The optical density of the protein bands (Target protein/ β-actin) on the membrane was scanned and analyzed by Lab Works image analysis software (UVP, Upland, CA, USA).

    Histological analysis

    The rats were perfusion-fixed with 4% paraformaldehyde in 0.1 mol/L sodium phosphate buffer (pH 7.4) under anesthesia, 7 days after kainate injection. Brains were removed quickly and further fixed in the same fixative at 4°C overnight. Post- fi xed brains were embedded in paraf fi n and sliced into 5-μm-thick coronal sections using a microtome (Leica, Wetzlar, Germany). Sections were dewaxed with xylene, rehydrated with ethanol at graded concentrations of 100—70% (v/v), and then washed with water. The sections were stainedwith 0.1% (w/v) cresyl violet and observed under the light microscope (Olympus, Tokyo, Japan). The number of surviving hippocampal CA1 pyramidal cells per 1-mm-length was counted as the neuronal density. Cells were counted on six random microscopic fi elds in a double-blind manner by two observers.

    Figure 1 Time courses of the interactions of GluR6 with PSD95 and p-MLK3, p-MKK7 and p-JNKs derived from saline-treated rats or rats at various times of KA injection.

    Recombination of adenoviral vectors

    Recombinant Ad-GluR6c-green fluorescent protein constructs were produced in accordance with standard techniques (He et al., 1998). The pAd Track CMV vector is bicistronic, and expresses both green fl uorescent protein and the GluR6c domain. Briefly, GluR6c (852-908 amino acids of GluR6) was generated by polymerase chain reaction of the appropriate GluR6c coding region to incorporate lanking Bgl II and Hind III sites followed by ligation into the Ad shuttle vector pAdTrack-CMV digested with Bgl II and Hind III (Promega). The resultant plasmid was linearized by digestion with restriction endonuclease Pme I (New England Biolabs, Beverly, MA), and subsequently cotransformed into Escherichia coli (Promega). BJ5183 cells (Addgene, Cambridge, MA, USA) have an adenoviral backbone plasmid pAdEasy-1. Recombinants were selected with kanamycin, and recombination confirmed by restriction endonuclease analyses. Finally, the linearized recombinant plasmid was transfected into Ad packaging cell lines, Human Embryonic Kidney 293 cells (Addgene). Recombinant Ads were generated typically within 7 to 12 days, puri fi ed, and then tittered.

    Drug treatment

    Figure 2 Effect of pretreatment with adenovirus-GluR6c on the interactions of GluR6 with PSD-95 and the phosphorylation of MLK3, MKK7 and JNKs in the CA1 region in rats.

    Rats were equally divided into saline , kainate-treated, Ad-treated and Ad-GluR6c groups. A single dose of kainate (12 mg/kg) was injected intraperitoneally to the rats, which were carefully monitored for signs of seizures. Within 15 minutes following the injection, rats first presented with deep breathing and increased salivation, followed by scratching, and then progression to rearing and generalized clonic/ tonic seizures within 50—60 minutes, which lasted for 2—3 hours. Two hours after the cessation of behavioral seizures, rats were taken back to their cages and sacri fi ced 7 days after the kainate injection. Control rats were only given 0.9% NaCl, the same volume of used for the kainate-treated rats. A total of 10 μL of Ad or Ad-GluR6c (1 × 1010pfu) was given to the rats of the Ad and Ad-GluR6c-treated groups 40 minutes before kainate injection to the CA1 region (anteroposterior: 3.6 mm; lateral: 2.0 mm; depth: 4.0 mm from bregma).

    Statistical analysis

    All data were expressed as the mean ± SD, and were analyzed by one-way analysis of variance followed by Duncan’s new multiple range method. Statistical analysis was performed using SPSS 13.0 software (SPSS, Chicago, IL, USA). A value of P < 0.05 was considered statistically signi fi cant.

    Results

    Alterations of the GluR6-PSD95-MLK3 signaling module during kainate-induced seizures in the CA1 region

    Rats were injected with kainate for specific time-frames to explore the changes in the assembly of the GluR6-PSD95-MLK3 signaling module during seizures. Western immunoblotting were then performed for GluR6 or MLK3 with PSD95 at the speci fi c time points. The interactions of GluR6 and PSD95 following kainate injection increased rapidly, peaking at 6 hours and gradually decreasing to control levels 3 days later (Figure 1A, B). Saline did not affect the interactions of GluR6 and PSD95.

    MLK3, an upstream kinase of MKK7 and JNK, can be activated by GluR6 and PSD95 (Savinainen et al., 2001). Therefore, we analyzed the effect of kainate on the activation (phosphorylation) of MLK3. Western immunoblotting revealed that kainate treatment increased the phosphorylation of MLK3 in the CA1 region (Figure 1C, D). The activation of JNK and MKK7 was signi fi cantly induced at 6 hours after kainate injection (P < 0.05).

    Ad-GluR6-c suppressed kainate-induced activation of MLK3, MKK7, and JNK in the CA1 region

    To elucidate whether downstream proteins of GluR6 was affected by the over-expression of GluR6c, Ad-GluR6c was administered to observe the variation of phosphorylated MLK3, MKK4/7 and JNKs (Figure 2A–D). Western immunoblotting revealed that Ad-GluR6c signi fi cantly (P < 0.05) inhibited the phosphorylation of MLK3 (Figure 2C, D). Additionally, the activation of MKK7 6 hours after kainate injection was significantly (P < 0.05) suppressed by Ad-GluR6c (Figure 2C, D). Similar results were obtained with JNKs (Figure 2C, D).

    Neuroprotective effects of Ad-GluR6-c against kainateinduced neuronal injury in CA1 neurons

    Figure 3 Neuroprotection of adenovirus-GluR6c against KA-induced brain damage in the CA1 region.

    To investigate whether pretreatment with Ad-GluR6-c was protective against kainate-induced cell death, rats were pre-treated with Ad-GluR6c via a cerebroventricular injection 40 minutes before kainate administration. Rats from the saline, kainate, Ad, and Ad-GluR6c groups were perfusion- fi xed with paraformaldehyde, 7 days later. Cresyl violet staining was conducted to examine the survival of CA1 pyramidal cells. Our results showed normal CA1 neuronal cells as round and palely stained nuclei (Figure 3A, B), whereas kainate-induced cells showed pyknotic nuclei (Figure 3C, D), indicative of cell death. The pre-treatment of Ad-GluR6-c reduced neuronal degeneration (Figure 3G, H), whereas the Ad group did not show any protection against kainate-induced degeneration (Figure 3E, F). The neuronal densities of the saline, kainate, Ad and Ad-GluR6c groups were 250.0 ± 19.8, 37.2 ± 8.5, 32.6 ± 7.3, and 121.3 ± 17.8, respectively (Figure 3I).

    Discussion

    Many drugs have been developed for epilepsy in the past decades (Sander and Shorvon, 1996), but approximately one-third of epilepsy patients still cannot be cured. A larger percentage of patients suffer from the side effects of antiepileptic drugs (Smith and Bleck, 1991). We showed that in the CA1 region, Ad-GluR6c inhibited the 6-hour kainate-induced activation of MLK3, MKK7, and JNK. Furthermore, pretreatment with Ad-GluR6c significantly protected neuronal cells in the CA1 region from kainate-induced death. Overall, these results suggest that Ad-GluR6c generates the GluR6c peptide in neuronal cells and possibly binding to the PDZ1 domain of PSD95, then suppressing the interaction of PSD95 and GluR6.

    Administration of kainate has been shown to increase mitochondrial dysfunction, induce the production of reactive oxygen species, and induce apoptosis in many regions of the brain, particularly in the CA1 region (Wang et al., 2005; Guo et al., 2012; Yuan etal., 2014). Kainate-induced neuronal injury in the hippocampus is reversed by the activation of adenosine A receptors (Matsuoka et al., 1999), dopamine D2 receptors (Bozzi et al., 2000), and N-methyl-D-aspartate receptors (Ogita et al., 2003). The activation of the kainate receptor subunit GluR6 induces neuronal cell death in the hippocampus (Liu et al., 2006). Moreover, GluR6 knockout mice have shown resistance to neuronal cell death and to kainate-induced seizures (Mulle et al., 1998). However, the precise molecular mechanism underlying the effect of GluR6 remains unclear. Savinainen et al. (2001) have reported that GluR6, MLK3, and PSD95 form a signaling complex and facilitate the activation and phosphorylation of MLK3 and JNK in vitro. In the present study, we demonstrated suppressing the assembly of the GluR6-PSD95-MLK3 signaling module attenuated MLK3 and JNK activation and kainate-induced seizures in vivo.

    Members of MLK regulate the JNK signaling pathway by phosphorylation-dependent regulation of MKK4 and MKK7 (Muniyappa and Das, 2008; Wen et al., 2008; Mishra et al., 2010; Wang et al., 2011; Chen et al., 2012; Chen and Gallo, 2012; Song et al., 2012; Wang and Xia, 2012; Zhang et al., 2012; He et al., 2013; Owen et al., 2013; Rana et al., 2013). MKK4 and MKK7 are dual-speci fi city kinases phosphorylating threonine and tyrosine residues in the catalytic domains of JNK (Davis, 2000). Numerous studies have demonstrated that the JNK signaling pathway plays an important role in mediating neurotoxicity (Saporito et al., 1998; Behrens et al., 1999; Wu et al., 2000; Borsello et al., 2003; Kuan et al., 2003; Zhang et al., 2006; Moon et al., 2013; Oshitari et al., 2013; Chen et al., 2014; Lu et al., 2014). The MLK-MKK7-JNK signaling module has been shown to be regulated by the activation of JNK3 (Whitmarsh et al., 1998), which is involved in kainate-induced brain injury (Liu et al., 2006). Our previous study has clearly demonstrated the activation of JNK3 and its association with neuronal cell death during brain ischemia/reperfusion (Tian et al., 2003). Our present results showed that application of Ad-GluR6c inhibited the assembly of the GluR6-PSD95-MLK3 signaling module, and subsequently attenuated the activation of MLK3 and JNK.

    In summary, kainate induced the assembly of the GluR6-PSD95-MLK3 signaling module, and subsequently activated the downstream JNK signaling pathway, ultimately resulting in neuronal cell death. Application of Ad-GluR6c suppressed the binding of GluR6 to the PDZ1 domain of PSD95 in the postsynaptic regions, and subsequently inhibited the assembly of the GluR6-PSD95-MLK3 signaling module by inhibiting the activation of MLK3 and JNK.

    Author contributions:Mou J and Liu XM provided study data, ensured the integrity of the data, participated in data analysis, and wrote the manuscript. Mou J participated in study concept and design. Pei DS was in charge of manuscript authorization, provided technical or material support, obtained the funding and served as a principle investigator. All authors approved the final version of this paper.

    Con fl icts of interest:None declared.

    Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21:326-329.

    Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180-1186.

    Bozzi Y, Vallone D, Borrelli E (2000) Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 20:8643-8649.

    Bureau I, Bischoff S, Heinemann SF, Mulle C (1999) Kainate receptor-mediated responses in the CA1 fi eld of wild-type and gluR6-defi cient Mice. J Neurosci 19:653-663.

    Chen CY, Weng YH, Chien KY, Lin KJ, Yeh TH, Cheng YP, Lu CS, Wang HL (2012) (G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD. Cell Death Differ 19:1623-1633.

    Chen J, Gallo KA (2012) MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res 72:4130-4140.

    Chen S, Gu C, Xu C, Zhang J, Xu Y, Ren Q, Guo M, Huang S, Chen L (2014) Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. J Neurochem 128:256-266.

    Darstein M, Petralia RS, Swanson GT, Wenthold RJ, Heinemann SF (2003) Distribution of kainate receptor subunits at hippocampal mossy fi ber synapses. J Neurosci 23:8013-8019.

    本發(fā)明公開了一種化學(xué)鍍銅溶液用安定劑,由下述質(zhì)量份原料組成:三水合亞鐵氰化鉀22 ~ 26 g/L,四水合酒石酸鉀鈉60 ~ 70 g/L,促進劑2-硫醇基苯駢噻唑0.38 ~ 0.39 g/L,水1 L。化學(xué)鍍銅溶液用安定劑的制備方法,具體步驟如下:常溫下,向水中加入三水合亞鐵氰化鉀,并攪拌5 ~ 10 min,然后加入四水合酒石酸鉀鈉,攪拌5 ~ 10 min,最后加入2-硫醇基苯駢噻唑,攪拌至完全溶解。本發(fā)明具有能夠提高化學(xué)銅鍍液的穩(wěn)定性,減少和避免銅離子歧化的優(yōu)點。

    Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239-252.

    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7-62.

    Guo DH, Liu XH, Zeng J, Tang Y, Zeng WJ, Luo ZZ, Lei YL, Yu HX (2012) Effect of the re-distribution of kainate 1 expression on the neuronal excitotoxicity. Zhongguo Zuzhi Gongcheng Yanjiu 16:287-290.

    He S, Liu P, Jian Z, Li J, Zhu Y, Feng Z, Xiao Y (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/ c-jun pathway. Biochem Biophys Res Commun 441:763-769.

    He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509-2514.

    Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P (2003) A critical role of neural-speci fi c JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100:15184-15189.

    Liu XM, Pei DS, Guan QH, Sun YF, Wang XT, Zhang QX, Zhang GY (2006) Neuroprotection of Tat-GluR6-9c against neuronal death induced by kainate in rat hippocampus via nuclear and non-nuclear pathways. J Biol Chem 281:17432-17445.

    Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224:130-140.

    Matsuoka Y, Okazaki M, Takata K, Kitamura Y, Ohta S, Sekino Y, Taniguchi T (1999) Endogenous adenosine protects CA1 neurons from kainic acid-induced neuronal cell loss in the rat hippocampus. Eur J Neurosci 3617-3625.

    Mishra P, Senthivinayagam S, Rangasamy V, Sondarva G, Rana B (2010) Mixed lineage kinase-3/JNK1 axis promotes migration of human gastric cancer cells following gastrin stimulation. Mol Endocrinol 24:598-607.

    Moon MH, Jeong JK, Lee YJ, Park SY (2013) FTY720 protects neuronal cells from damage induced by human prion protein by inactivating the JNK pathway. Inter J Mol Med 32:1387-1393.

    Mulle C, Sailer A, Perez-Otano I, Dickinson-Anson H, Castillo PE, Bureau I, Maron C, Gage FH, Mann JR, Bettler B, Heinemann SF (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-de fi cient mice. Nature 392:601-605.

    Muniyappa H, Das KC (2008) Activation of c-Jun N-terminal kinase (JNK) by widely used speci fi c p38 MAPK inhibitors SB202190 and SB203580: a MLK-3-MKK7-dependent mechanism. Cell Signal 20:675-683.

    Ogita K, Okuda H, Yamamoto Y, Nishiyama N, Yoneda Y (2003) In vivo neuroprotective role of NMDA receptors against kainate-induced excitotoxicity in murine hippocampal pyramidal neurons. J Neurochem 85:1336-1346.

    Oshitari T, Bikbova G, Yamamoto S (2013) Increased expression of phosphorylated c-Jun and phosphorylated c-Jun N-terminal kinase associated with neuronal cell death in diabetic and high glucose exposed rat retinas. Brain Res Bull 101C:18-25.

    Owen GR, Achilonu I, Dirr HW (2013) High yield purification of JNK1beta1 and activation by in vitro reconstitution of the MEKK1-->MKK4-->JNK MAPK phosphorylation cascade. Protein Expr Purif 87:87-99.

    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6thEdition. Amsterdam, Boston: Academic Press, Elsevier, USA.

    Pei DS, Wang XT, Liu Y, Sun YF, Guan QH, Wang W, Yan JZ, Zong YY, Xu TL, Zhang GY (2006) Neuroprotection against ischaemic brain injury by a GluR6-9c peptide containing the TAT protein transduction sequence. Brain 129:465-479.

    Racine RJ (1972) Modi fi cation of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophys 32:281-294.

    Rana A, Rana B, Mishra R, Sondarva G, Rangasamy V, Das S, Viswakarma N, Kanthasamy A (2013) Mixed lineage kinase-c-Jun N-terminal kinase axis: a potential therapeutic target in cancer. Genes Cancer 4:334-341.

    Sander JW, Shorvon SD (1996) Epidemiology of the epilepsies. J Neurol Neurosurg Psychiatry 61:433-443.

    Saporito MS, Brown ER, Carswell S, Di Camillo AM, Miller MS, Murakata C, Neff NT, Vaught JL, Haun FA (1998) Preservation of cholinergic activity and prevention of neuron death by CEP-1347/ KT-7515 following excitotoxic injury of the nucleus basalis magnocellularis. Neuroscience 86:461-472.

    Savinainen A, Garcia EP, Dorow D, Marshall J, Liu YF (2001) Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via post-synaptic density protein 95. J Biol Chem 276:11382-11386.

    Smith MC, Bleck TP (1991) Convulsive disorders: toxicity of anticonvulsants. Clin Neuropharmacol 14:97-115.

    Song YJ, Zong ZM, Liu HZ, Mukasa R, Pei DS, Mou J, Wen XR, Liu ZA, Wei XY (2012) Heme oxygenase-1 regulates the JNK signaling pathway through the MLK3-MKK7-JNK3 signaling module in brain ischemia injury. Brain Res 1429:1-8.

    Tian H, Zhang G, Li H, Zhang Q (2003) Antioxidant NAC and AMPA/ KA receptor antagonist DNQX inhibited JNK3 activation following global ischemia in rat hippocampus. Neurosci Res 46:191-197.

    Tian H, Zhang QG, Zhu GX, Pei DS, Guan QH, Zhang GY (2005) Activation of c-Jun NH2-terminal kinase 3 is mediated by the GluR6. PSD-95.MLK3 signaling module following cerebral ischemia in rat hippocampus. Brain Res 1061:57-66.

    Wang J, Xia Y (2012) Assessing developmental roles of MKK4 and MKK7 in vitro. Commun Integr Biol 5:319-324.

    Wang Q, Yin XH, Liu Y, Zhang GY (2011) K252a suppresses neuronal cells apoptosis through inhibiting the translocation of Bax to mitochondria induced by the MLK3/JNK signaling after transient global brain ischemia in rat hippocampal CA1 subregion. J Recept Signal Transduct Res 31:307-313.

    Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31:3-16.

    Wen XR, Li C, Zong YY, Yu CZ, Xu J, Han D, Zhang GY (2008) Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury. Neuroscience 156:483-497.

    Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ (1998) A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281:1671-1674.

    Wu DC, Ye W, Che XM, Yang GY (2000) Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. J Cereb Blood Flow Metab 20:1320-1330.

    Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865-870.

    Yuan L, Zhang HX, Qian SL, Xu B, Gong JQ, Liu XH, Tang Y, Yu HX (2014) Kainic acid-induced endoplasmic reticulum stress model. Zhongguo Zuzhi Gongcheng Yanjiu 18:5861-5867.

    Zhang QX, Pei DS, Guan QH, Sun YF, Liu XM, Zhang GY (2006) Blockade of the translocation and activation of mitogen-activated protein kinase kinase 4 (MKK4) signaling attenuates neuronal damage during later ischemia-reperfusion. J Neurochem 98:170-179.

    Zhang Y, Li F, Liu S, Wang H, Mahavadi S, Murthy KS, Khalili K, Hu W (2012) MEKK1-MKK4-JNK-AP1 pathway negatively regulates Rgs4 expression in colonic smooth muscle cells. PLoS One 7:e35646.

    Copyedited by Mark F, Wysong S, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.147932

    Dongsheng Pei, Ph.D., Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China, dspei@xzmc.edu.cn.

    http://www.nrronline.org/

    Accepted: 2014-09-22

    猜你喜歡
    亞鐵氰化鉀鍍銅硫醇
    食鹽中的亞鐵氰化鉀有毒嗎
    保健與生活(2019年6期)2019-07-31 01:54:16
    液化氣催化氧化脫硫醇的新一代催化劑
    食用鹽中添加亞鐵氰化鉀究竟是怎么回事
    基于Controller Link總線的硫酸鹽鍍銅溫控系統(tǒng)
    碳纖維布化學(xué)鍍銅工藝的研究
    鈦合金無氰堿性鍍銅工藝
    化學(xué)鍍銅液自動分析補充系統(tǒng)設(shè)計
    食鹽里添加亞鐵氰化鉀是滅種計劃?
    百科知識(2016年22期)2016-12-24 21:08:11
    硫醇(酚)對PVC的熱穩(wěn)定作用——性能遞變規(guī)律與機理
    中國塑料(2016年8期)2016-06-27 06:35:02
    淺析液化氣脫硫醇技術(shù)
    久久久久网色| 妹子高潮喷水视频| 涩涩av久久男人的天堂| 久久精品国产亚洲av涩爱| 亚洲欧美精品自产自拍| e午夜精品久久久久久久| 色视频在线一区二区三区| 老司机影院成人| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀 | 国产亚洲欧美精品永久| 亚洲av片天天在线观看| 成人国产一区最新在线观看 | 久久 成人 亚洲| 亚洲五月色婷婷综合| av在线老鸭窝| 久久中文字幕一级| 桃花免费在线播放| 啦啦啦中文免费视频观看日本| 下体分泌物呈黄色| 天天影视国产精品| 肉色欧美久久久久久久蜜桃| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲av高清不卡| 欧美精品高潮呻吟av久久| www.av在线官网国产| 又大又爽又粗| 在线观看国产h片| 一边摸一边抽搐一进一出视频| www.自偷自拍.com| 国产成人精品在线电影| 亚洲欧美成人综合另类久久久| 精品一区二区三区av网在线观看 | 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 男女免费视频国产| 各种免费的搞黄视频| 国产成人a∨麻豆精品| 国产精品一二三区在线看| 久久精品熟女亚洲av麻豆精品| 国产高清不卡午夜福利| 欧美黄色淫秽网站| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 女性生殖器流出的白浆| 国产精品秋霞免费鲁丝片| 亚洲精品久久午夜乱码| 亚洲精品中文字幕在线视频| 91麻豆精品激情在线观看国产 | 国产成人免费观看mmmm| 99久久综合免费| 国产高清视频在线播放一区 | 后天国语完整版免费观看| 欧美精品av麻豆av| 一边摸一边做爽爽视频免费| 男女床上黄色一级片免费看| 在线观看免费日韩欧美大片| 久久久久久久精品精品| 久久精品久久久久久久性| 国产精品国产av在线观看| 国产免费福利视频在线观看| 2018国产大陆天天弄谢| 又紧又爽又黄一区二区| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| av国产精品久久久久影院| 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 电影成人av| 啦啦啦在线观看免费高清www| 一级毛片我不卡| 亚洲精品一区蜜桃| 国产成人精品在线电影| 一本—道久久a久久精品蜜桃钙片| 亚洲国产欧美网| 欧美日韩亚洲高清精品| 日本黄色日本黄色录像| 麻豆国产av国片精品| 青青草视频在线视频观看| 日韩一区二区三区影片| a级片在线免费高清观看视频| 日韩av在线免费看完整版不卡| 丰满人妻熟妇乱又伦精品不卡| a 毛片基地| 天天影视国产精品| 国产精品久久久av美女十八| 香蕉丝袜av| 各种免费的搞黄视频| 久久久久网色| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| 日本猛色少妇xxxxx猛交久久| 不卡av一区二区三区| 免费黄频网站在线观看国产| 最近中文字幕2019免费版| 少妇人妻 视频| av国产久精品久网站免费入址| 婷婷色av中文字幕| 亚洲,欧美,日韩| 青草久久国产| 91精品伊人久久大香线蕉| 好男人电影高清在线观看| 国产免费现黄频在线看| 精品久久蜜臀av无| 侵犯人妻中文字幕一二三四区| 80岁老熟妇乱子伦牲交| 最黄视频免费看| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 一级,二级,三级黄色视频| 亚洲欧洲日产国产| 亚洲精品在线美女| 免费高清在线观看日韩| 99久久精品国产亚洲精品| 丰满少妇做爰视频| 久久久精品免费免费高清| 母亲3免费完整高清在线观看| 一级毛片电影观看| 欧美日韩亚洲高清精品| 成人亚洲欧美一区二区av| 免费不卡黄色视频| 老司机在亚洲福利影院| a级片在线免费高清观看视频| 日本av免费视频播放| 久久综合国产亚洲精品| 97在线人人人人妻| 电影成人av| 成人18禁高潮啪啪吃奶动态图| 建设人人有责人人尽责人人享有的| 一本一本久久a久久精品综合妖精| 欧美成狂野欧美在线观看| 50天的宝宝边吃奶边哭怎么回事| 午夜免费成人在线视频| 永久免费av网站大全| 夫妻午夜视频| 午夜视频精品福利| 免费观看人在逋| 91麻豆av在线| 国产精品国产三级国产专区5o| 91麻豆精品激情在线观看国产 | 两个人看的免费小视频| 午夜精品国产一区二区电影| 国产成人精品久久久久久| 高清av免费在线| 欧美精品亚洲一区二区| www.999成人在线观看| av福利片在线| 免费日韩欧美在线观看| 久久久精品免费免费高清| 国产精品成人在线| 美国免费a级毛片| 国产日韩欧美在线精品| 国产精品国产三级专区第一集| xxxhd国产人妻xxx| tube8黄色片| 男女边摸边吃奶| 久久人人爽av亚洲精品天堂| 丝袜喷水一区| 丝袜人妻中文字幕| 亚洲国产最新在线播放| 精品国产超薄肉色丝袜足j| 自线自在国产av| 91九色精品人成在线观看| 亚洲精品中文字幕在线视频| 久久久久精品人妻al黑| 国产精品成人在线| 欧美精品av麻豆av| 一级毛片我不卡| 亚洲熟女毛片儿| 在线观看免费视频网站a站| 亚洲成色77777| 女警被强在线播放| 黄片播放在线免费| 一区二区三区乱码不卡18| 国产精品一二三区在线看| 欧美在线黄色| 日韩熟女老妇一区二区性免费视频| 这个男人来自地球电影免费观看| 十分钟在线观看高清视频www| 一级毛片女人18水好多 | 国产91精品成人一区二区三区 | 下体分泌物呈黄色| 十八禁高潮呻吟视频| 欧美变态另类bdsm刘玥| 日本a在线网址| 欧美成狂野欧美在线观看| 99国产精品99久久久久| 欧美变态另类bdsm刘玥| av片东京热男人的天堂| 国产精品99久久99久久久不卡| 高清视频免费观看一区二区| 国产成人欧美在线观看 | 亚洲五月婷婷丁香| netflix在线观看网站| 精品一区二区三卡| 欧美日韩福利视频一区二区| 丝袜脚勾引网站| 免费在线观看完整版高清| 亚洲欧美成人综合另类久久久| 日本欧美国产在线视频| 国产亚洲欧美在线一区二区| 国产精品 欧美亚洲| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 久久国产亚洲av麻豆专区| 国产精品久久久av美女十八| 日韩伦理黄色片| av不卡在线播放| 蜜桃在线观看..| 欧美人与性动交α欧美精品济南到| av国产久精品久网站免费入址| 80岁老熟妇乱子伦牲交| 成人国产av品久久久| 精品第一国产精品| 亚洲欧美色中文字幕在线| 如日韩欧美国产精品一区二区三区| 最近手机中文字幕大全| 在线天堂中文资源库| av有码第一页| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看 | 国产无遮挡羞羞视频在线观看| 免费观看人在逋| 我的亚洲天堂| 久久国产精品男人的天堂亚洲| 国产精品成人在线| 久久精品亚洲熟妇少妇任你| 看十八女毛片水多多多| 日本av手机在线免费观看| 在线观看一区二区三区激情| 极品人妻少妇av视频| 韩国高清视频一区二区三区| 日韩人妻精品一区2区三区| 99国产精品99久久久久| kizo精华| 日本猛色少妇xxxxx猛交久久| 久久人人97超碰香蕉20202| 麻豆av在线久日| 精品卡一卡二卡四卡免费| 熟女av电影| 大码成人一级视频| 人人妻,人人澡人人爽秒播 | 高清欧美精品videossex| 亚洲国产精品999| 国产精品亚洲av一区麻豆| 在线观看www视频免费| 免费女性裸体啪啪无遮挡网站| 一级毛片女人18水好多 | 丁香六月欧美| 91麻豆精品激情在线观看国产 | 国产片特级美女逼逼视频| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 男女无遮挡免费网站观看| 99热国产这里只有精品6| 97人妻天天添夜夜摸| 亚洲av电影在线进入| 搡老乐熟女国产| tube8黄色片| 日本色播在线视频| 午夜两性在线视频| 美女大奶头黄色视频| 久久久国产一区二区| 亚洲专区中文字幕在线| 黄频高清免费视频| 丝袜美足系列| 一个人免费看片子| 19禁男女啪啪无遮挡网站| 精品久久蜜臀av无| 国产日韩欧美亚洲二区| 亚洲黑人精品在线| 久久精品亚洲熟妇少妇任你| av线在线观看网站| 大香蕉久久成人网| 啦啦啦在线免费观看视频4| kizo精华| 亚洲欧美成人综合另类久久久| 亚洲成人免费电影在线观看 | av在线播放精品| 亚洲精品国产av蜜桃| 大香蕉久久成人网| 一本久久精品| 国产一区二区三区综合在线观看| 欧美日韩福利视频一区二区| 黄网站色视频无遮挡免费观看| 亚洲欧美一区二区三区黑人| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 成人国语在线视频| 麻豆乱淫一区二区| 亚洲av国产av综合av卡| 久久久久网色| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品一区三区| 乱人伦中国视频| 制服诱惑二区| 免费日韩欧美在线观看| 国产亚洲精品久久久久5区| 久久久久精品国产欧美久久久 | 韩国高清视频一区二区三区| 亚洲av国产av综合av卡| 久久 成人 亚洲| 高清视频免费观看一区二区| 桃花免费在线播放| 国产亚洲av片在线观看秒播厂| 99国产精品一区二区蜜桃av | 免费看十八禁软件| 亚洲精品av麻豆狂野| 999精品在线视频| 大香蕉久久网| av又黄又爽大尺度在线免费看| 国产亚洲av高清不卡| 日韩,欧美,国产一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲国产成人一精品久久久| 国产成人精品久久二区二区91| 国产精品免费大片| 日本欧美视频一区| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频| 久久99一区二区三区| 久久精品国产综合久久久| 国产免费又黄又爽又色| 可以免费在线观看a视频的电影网站| 无限看片的www在线观看| 看十八女毛片水多多多| 少妇猛男粗大的猛烈进出视频| 一区福利在线观看| 爱豆传媒免费全集在线观看| 亚洲av综合色区一区| 视频在线观看一区二区三区| 精品卡一卡二卡四卡免费| 另类亚洲欧美激情| 麻豆国产av国片精品| 我要看黄色一级片免费的| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡| 桃花免费在线播放| 啦啦啦啦在线视频资源| 日本午夜av视频| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区| 免费在线观看日本一区| 午夜福利乱码中文字幕| 婷婷丁香在线五月| 久久久久久久大尺度免费视频| 青草久久国产| 在现免费观看毛片| 99国产精品一区二区蜜桃av | 国产激情久久老熟女| 99热全是精品| 国产精品av久久久久免费| 国产高清国产精品国产三级| 午夜免费男女啪啪视频观看| 各种免费的搞黄视频| 丝袜喷水一区| 午夜av观看不卡| 一区二区三区激情视频| 亚洲av电影在线进入| 国产人伦9x9x在线观看| 黑人欧美特级aaaaaa片| 黑人猛操日本美女一级片| 欧美日韩视频高清一区二区三区二| 一级a爱视频在线免费观看| av欧美777| 精品国产乱码久久久久久小说| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影小说| 久久精品人人爽人人爽视色| 亚洲av男天堂| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 视频区欧美日本亚洲| 午夜激情久久久久久久| 中国国产av一级| 免费日韩欧美在线观看| 国产一卡二卡三卡精品| 国产免费福利视频在线观看| 国产视频首页在线观看| 国产精品熟女久久久久浪| 国产在线一区二区三区精| 18禁国产床啪视频网站| 亚洲av欧美aⅴ国产| 亚洲精品久久午夜乱码| 97精品久久久久久久久久精品| videos熟女内射| 色网站视频免费| 精品久久久久久电影网| 亚洲欧美中文字幕日韩二区| 日韩熟女老妇一区二区性免费视频| 亚洲中文日韩欧美视频| 欧美人与善性xxx| 国产一区二区 视频在线| 国产伦理片在线播放av一区| 黑人猛操日本美女一级片| kizo精华| 最新在线观看一区二区三区 | 亚洲国产毛片av蜜桃av| 婷婷色综合大香蕉| 精品人妻1区二区| 亚洲精品日韩在线中文字幕| 精品少妇一区二区三区视频日本电影| 国产免费现黄频在线看| 久久综合国产亚洲精品| 1024香蕉在线观看| 99热网站在线观看| 999精品在线视频| 观看av在线不卡| 我要看黄色一级片免费的| 宅男免费午夜| 成人国产av品久久久| 免费黄频网站在线观看国产| 两性夫妻黄色片| 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 少妇粗大呻吟视频| 大型av网站在线播放| 99久久综合免费| 天天添夜夜摸| 两人在一起打扑克的视频| 亚洲国产精品国产精品| 婷婷丁香在线五月| 18禁国产床啪视频网站| 黄色毛片三级朝国网站| 99精国产麻豆久久婷婷| 老司机在亚洲福利影院| 亚洲美女黄色视频免费看| 18禁观看日本| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 日日夜夜操网爽| a级片在线免费高清观看视频| 一本色道久久久久久精品综合| 亚洲欧美清纯卡通| 欧美亚洲日本最大视频资源| 亚洲人成77777在线视频| 午夜av观看不卡| 热99国产精品久久久久久7| 亚洲中文av在线| xxx大片免费视频| 亚洲欧美日韩另类电影网站| 国产精品.久久久| 香蕉国产在线看| 在线 av 中文字幕| 久久久欧美国产精品| 一本—道久久a久久精品蜜桃钙片| 9191精品国产免费久久| 97在线人人人人妻| 久久人妻福利社区极品人妻图片 | 精品少妇久久久久久888优播| 亚洲中文字幕日韩| 亚洲,欧美精品.| 美女主播在线视频| 看免费av毛片| 五月天丁香电影| 蜜桃在线观看..| 日韩大码丰满熟妇| 成年人午夜在线观看视频| 午夜福利免费观看在线| √禁漫天堂资源中文www| 久久毛片免费看一区二区三区| 男女下面插进去视频免费观看| 热re99久久国产66热| 久久精品aⅴ一区二区三区四区| 亚洲情色 制服丝袜| 晚上一个人看的免费电影| 视频在线观看一区二区三区| 欧美人与性动交α欧美软件| 国产精品久久久久久人妻精品电影 | 黑人猛操日本美女一级片| 丝袜喷水一区| 一级毛片 在线播放| 久久精品熟女亚洲av麻豆精品| 久久这里只有精品19| 欧美亚洲日本最大视频资源| 99热网站在线观看| 国产爽快片一区二区三区| 精品欧美一区二区三区在线| av在线老鸭窝| 欧美久久黑人一区二区| 性高湖久久久久久久久免费观看| 精品国产国语对白av| 亚洲av欧美aⅴ国产| 老司机影院成人| 亚洲欧美精品自产自拍| 亚洲五月色婷婷综合| 久久99一区二区三区| 丰满饥渴人妻一区二区三| 免费女性裸体啪啪无遮挡网站| 精品少妇一区二区三区视频日本电影| av福利片在线| 久久人人97超碰香蕉20202| 啦啦啦在线观看免费高清www| 天天躁狠狠躁夜夜躁狠狠躁| 两个人看的免费小视频| 国产精品久久久人人做人人爽| 亚洲精品av麻豆狂野| 国产免费又黄又爽又色| 午夜av观看不卡| 麻豆乱淫一区二区| 欧美精品人与动牲交sv欧美| 狂野欧美激情性bbbbbb| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 精品久久蜜臀av无| 美女午夜性视频免费| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美色中文字幕在线| 十分钟在线观看高清视频www| 水蜜桃什么品种好| 一级毛片黄色毛片免费观看视频| 黄色a级毛片大全视频| 99国产精品免费福利视频| 亚洲国产最新在线播放| 大香蕉久久网| 国产精品一区二区精品视频观看| 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 熟女少妇亚洲综合色aaa.| 91成人精品电影| 精品第一国产精品| 99精国产麻豆久久婷婷| 美国免费a级毛片| 国产有黄有色有爽视频| 一级毛片我不卡| 国产亚洲欧美在线一区二区| 水蜜桃什么品种好| 国产免费福利视频在线观看| 下体分泌物呈黄色| 99热国产这里只有精品6| 欧美性长视频在线观看| 中文欧美无线码| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 一区福利在线观看| 91精品伊人久久大香线蕉| www.av在线官网国产| 丝袜脚勾引网站| 欧美日韩一级在线毛片| 成人国产一区最新在线观看 | av天堂在线播放| 激情五月婷婷亚洲| 亚洲第一av免费看| xxx大片免费视频| 日本黄色日本黄色录像| 黑人欧美特级aaaaaa片| 欧美xxⅹ黑人| 欧美日韩精品网址| bbb黄色大片| 精品国产超薄肉色丝袜足j| 国产成人欧美在线观看 | 伦理电影免费视频| 高清视频免费观看一区二区| 亚洲国产av新网站| 欧美av亚洲av综合av国产av| 精品少妇久久久久久888优播| 日本黄色日本黄色录像| 欧美日韩精品网址| 亚洲国产欧美一区二区综合| 人人妻,人人澡人人爽秒播 | 99九九在线精品视频| 99国产综合亚洲精品| 久久久久久免费高清国产稀缺| 精品久久蜜臀av无| 久久亚洲精品不卡| 亚洲中文日韩欧美视频| 欧美亚洲 丝袜 人妻 在线| 欧美 日韩 精品 国产| 又大又黄又爽视频免费| 久久天堂一区二区三区四区| 一本大道久久a久久精品| 在线看a的网站| 欧美成人精品欧美一级黄| 亚洲综合色网址| 人妻一区二区av| 脱女人内裤的视频| 国产av精品麻豆| 久久久久网色| 成年人免费黄色播放视频| 亚洲中文日韩欧美视频| 男女下面插进去视频免费观看| 在线观看免费高清a一片| 看十八女毛片水多多多| 亚洲成人免费电影在线观看 | 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 久久久国产精品麻豆| 一区二区三区激情视频| 日韩av在线免费看完整版不卡| 91成人精品电影| 国产成人免费观看mmmm| 捣出白浆h1v1| 丝袜脚勾引网站| 亚洲人成电影观看| 欧美97在线视频| 好男人视频免费观看在线| 人体艺术视频欧美日本| 免费看av在线观看网站| 欧美中文综合在线视频| 久久久欧美国产精品| 不卡av一区二区三区| 国产国语露脸激情在线看| 尾随美女入室| 黄片播放在线免费| 一级片免费观看大全| 一个人免费看片子| av在线播放精品| 中文字幕人妻丝袜制服| 晚上一个人看的免费电影| 精品一区在线观看国产| 亚洲av美国av| 2021少妇久久久久久久久久久| 亚洲人成电影免费在线|