• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD95-MLK3 signaling module

    2014-06-01 09:08:55JieMouXiaomeiLiuDongshengPei
    關(guān)鍵詞:亞鐵氰化鉀鍍銅硫醇

    Jie Mou, Xiaomei Liu, Dongsheng Pei

    1 Jiangsu Key Laboratory of Targeted Drug and Clinical Application, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    2 School of Basic Medical Science, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    3 Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD95-MLK3 signaling module

    Jie Mou1, Xiaomei Liu2, Dongsheng Pei3

    1 Jiangsu Key Laboratory of Targeted Drug and Clinical Application, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    2 School of Basic Medical Science, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    3 Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China

    Jie Mou and Xiaomei Liu contributed equally to this study.

    Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad-Glur6-9c on the phosphorylation of JNK, MLK3 and mitogen-activated kinase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of JNK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was signi fi cantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.

    nerve regeneration; brain injury; hippocampal neuronal injury; seizures; adenovirus; GluR6; PSD95; MLK3; kainate; apoptosis; JNK; NSFC grants; neural regeneration

    Funding: This work was supported by the National Natural Science Foundation of China, No. 30800309, 81372172; the Educational Science Foundation of Jiangsu Province, China, No. 10KJB350005; the Xuzhou Science Foundation in China, No. XZZD1153; the President Special Grant of Xuzhou Medical College in China, No. 09KJZ20; and a grant from the Zhenxing Project Foundation of XZMC.

    Mou J, Liu XM, Pei DS. Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD95-MLK3 signaling module . Neural Regen Res. 2014;9(23):2059-2065.

    Introduction

    Kainate receptors mediate the majority of excitatory synapse transmissions in the mammalian central nervous system, thereby exerting key effects on synaptic plasticity as well as in pathological processes such as ischemia and epilepsy (Dingledine et al., 1999). Kainate receptors also have varied patterns of expression in the subregions of the hippocampus (Bureau et al., 1999). GluR6 is mainly located in the CA1 and CA3 regions, and plays a signi fi cant role in learning and memory (Darstein et al., 2003). GluR6-de fi cient rodents are resistant to kainate-induced excitotoxicity, suggesting that GluR6 likely mediates the neurotoxic effect of glutamate (Mulle et al., 1998). Studies in cerebral ischemia have confi rmed that a correlation exists between GluR6 and postsynaptic density protein 95 (PSD95). Furthermore, these studies have shown that the activation of mixed lineage kinase 3 (MLK3), mitogen-activated kinase kinase 7 (MKK7) and c-Jun NH2-terminal kinase 3 (JNK3) are facilitated by kainate, resulting in neuronal cell death in the CA1 region (Tian et al., 2005).

    Yang et al. (1997) have demonstrated that GluR6 knockout and JNK3-de fi cient mice exhibit similar phenotypes, and are resistant to excitotoxicity and kainate-induced seizures in the hippocampus. Our previous study has focused on Tat-GluR6-9c, a peptide containing the C terminus of GluR6 linked to the membrane transduction sequence Tat protein of HIV (Pei et al., 2006). This study has shown that the assembly of GluR6-PSD95-MLK3 signaling module is attenuated and protects neurons against cerebral ischemia/reperfusion-induced apoptosis. However, whether this signaling module-mediated JNK activation exists in the CA1 region of epileptic rats is still unknown. Therefore, in the presentstudy, we investigated whether recombinant adenovirus (Ad)-C-terminal amino acids of GluR6 (GluR6c) inhibited the assembly of the GluR6-PSD95-MLK3 signaling module and decreased kainate-induced neuronal death in the CA1 subregion.

    Materials and Methods

    Animals

    A total of 24 adult male Sprague-Dawley rats, weighing 230 ± 20 g, were used and obtained from the Shanghai Experimental Animal Center, Chinese Academy of Science (Certi fi cate of Conformity Number 410116). All rats were housed in a laminar fl ow room at 18—22°C and a humidity of 55—58%. Drinking water and food were sterilized by steam. The experimental procedures were conducted according to the Guidance Suggestions for the Care and Use of Laboratory Animals, issued by the Ministry of Science and Technology of China.

    Establishment of seizure models

    Seizures were induced by an intraperitoneal injection of kainate (12 mg/kg, dissolved in sterile saline). The rats were behaviorally monitored for seizures for at least 6 hours after injection. The seizures were scored using a modified scale (Racine, 1972): (1) behavioral arrest and staring spells, (2) head bobbing and gnawing, (3) unilateral forelimb clonus, (4) bilateral forelimb clonus, (5) severe seizures with loss of postural control, and (6) seizure-induced death. The rats that experienced epileptic seizures with stage 4 to 5 for more than three times were considered successful models. Only animals with stage 4 or 5 seizures were used in this study.

    Sample preparation

    The rats were decapitated at 3, 6, and 12 hours, and 1 and 3 days after kainate injection. The CA1 region was separated and quickly frozen in liquid nitrogen (Paxinos and Watson, 2007). The sample was homogenized in ice-cold homogenization buffer, supplemented with 50 mmol/L 3-(N-morpholino) propanesulfonic acid Sigma-Aldrich, St. Louis, MO, USA) (pH 7.4), 100 mmol/L KCl, 320 mmol/L sucrose, 50 mmol/L NaF, 0.5 mmol/L MgCl2, 0.2 mmol/L dithiothreitol, 1 mmol/L ethylenediamine tetraacetic acid, 1 mmol/L ethylene glycol tetraacetic acid, 1 mmol/L Na3VO4(Sigma-Aldrich), 20 mmol/L sodium pyrophosphate, 20 mmol/L β-phosphoglycerol, 1 mmol/L p-nitrophenyl phosphate, 1 mmol/L benzamidine, 1 mmol/L phenylmethylsulfonyl fl uoride, 5 μg/mL leupeptin, 5 μg/mL aprotinin, and 5 μg/mL pepstatin A. The homogenates were centrifuged at 800 × g at 4°C for 10 minutes. Supernatants were collected, and protein concentration was determined in accordance with a previous method (Lowry et al., 1951). Samples were stored at ?80°C and were thawed only once for use.

    Immunoprecipitation

    Tissue homogenates (400 μg of protein) were diluted four-fold with 50 mmol/L 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (pH 7.4), containing 10% glycerol, 150 mmol/L NaCl, 1% Triton X-100, 0.5% NP-40, and 1 mmol/L of ethylenediamine tetraacetic acid, ethylene glycol tetraacetic acid, phenylmethyl sulfonylfluoride and Na3VO4(all from Sigma-Aldrich). Samples were preincubated with 20 μL protein A sepharose CL-4B (Amersham, Uppsala, Sweden) for 1 hour at 4°C, and then centrifuged to remove proteins that adhered nonspeci fi cally to protein A. The supernatants were incubated with 1—2 μg of primary antibodies overnight at 4°C or for 4 hours. Protein A was added to the tube for an additional 2-hour incubation. Samples were centrifuged at 10,000 × g at 4°C for 2 minutes. The pellets were washed three times with immunoprecipitation buffer. Bound proteins were eluted by boiling in sodium dodecyl sulfate polyacrylamide gel electrophoresis loading buffer at 100°C for 5 minutes, and then isolated by centrifugation.

    Western immunoblotting

    Proteins extracted from CA1 supernatants were separated on polyacrylamide gels via electrophoresis, and then transferred to nitrocellulose membranes (Amersham Biosciences, Buckinghamshire, UK). After blocking with 3% serum albumin in Tris-buffered saline and 0.1% Tween-20 for 3 hours, membranes were incubated with mouse monoclonal anti-JNK antibody (1:1,000; Santa Cruz Biotechnology, Dallas, TX, USA), mouse monoclonal anti-p-JNK antibody (1:1,000; Santa Cruz Biotechnology), goat polyclonal anti-GluR6 (1:1,000; Santa Cruz Biotechnology), goat polyclonal anti-MKK7 (1:200; Santa Cruz Biotechnology), goat polyclonal anti-p-MKK7 (1:500; Cell Signaling, Boston, MA, USA), rabbit polyclonal anti-p-MLK3 (1:1,000; Cell Signaling), rabbit polyclonal anti-MLK3 antibody (1:200; Santa Cruz Biotechnology), or mouse monoclonal anti-PSD95 (1:1,000; Sigma-Aldrich) in Tris-buffered saline with 3% bovine serum albumin and Tween, overnight at 4°C. Rabbit polyclonal anti-Beta-actin (1:3,000; Santa Cruz Biotechnology) served as the housekeeping protein. Membranes were then washed and incubated with the secondary antibodies: goat anti-mouse (1:5,000; Sigma) or alkaline phosphatase-conjugated goat anti-rabbit (1:5,000; Sigma) in Tris-buffered saline with Tween at 25°C for 2 hours. Membranes were then developed with nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate color substrate (Promega, Madison, WI, USA). The optical density of the protein bands (Target protein/ β-actin) on the membrane was scanned and analyzed by Lab Works image analysis software (UVP, Upland, CA, USA).

    Histological analysis

    The rats were perfusion-fixed with 4% paraformaldehyde in 0.1 mol/L sodium phosphate buffer (pH 7.4) under anesthesia, 7 days after kainate injection. Brains were removed quickly and further fixed in the same fixative at 4°C overnight. Post- fi xed brains were embedded in paraf fi n and sliced into 5-μm-thick coronal sections using a microtome (Leica, Wetzlar, Germany). Sections were dewaxed with xylene, rehydrated with ethanol at graded concentrations of 100—70% (v/v), and then washed with water. The sections were stainedwith 0.1% (w/v) cresyl violet and observed under the light microscope (Olympus, Tokyo, Japan). The number of surviving hippocampal CA1 pyramidal cells per 1-mm-length was counted as the neuronal density. Cells were counted on six random microscopic fi elds in a double-blind manner by two observers.

    Figure 1 Time courses of the interactions of GluR6 with PSD95 and p-MLK3, p-MKK7 and p-JNKs derived from saline-treated rats or rats at various times of KA injection.

    Recombination of adenoviral vectors

    Recombinant Ad-GluR6c-green fluorescent protein constructs were produced in accordance with standard techniques (He et al., 1998). The pAd Track CMV vector is bicistronic, and expresses both green fl uorescent protein and the GluR6c domain. Briefly, GluR6c (852-908 amino acids of GluR6) was generated by polymerase chain reaction of the appropriate GluR6c coding region to incorporate lanking Bgl II and Hind III sites followed by ligation into the Ad shuttle vector pAdTrack-CMV digested with Bgl II and Hind III (Promega). The resultant plasmid was linearized by digestion with restriction endonuclease Pme I (New England Biolabs, Beverly, MA), and subsequently cotransformed into Escherichia coli (Promega). BJ5183 cells (Addgene, Cambridge, MA, USA) have an adenoviral backbone plasmid pAdEasy-1. Recombinants were selected with kanamycin, and recombination confirmed by restriction endonuclease analyses. Finally, the linearized recombinant plasmid was transfected into Ad packaging cell lines, Human Embryonic Kidney 293 cells (Addgene). Recombinant Ads were generated typically within 7 to 12 days, puri fi ed, and then tittered.

    Drug treatment

    Figure 2 Effect of pretreatment with adenovirus-GluR6c on the interactions of GluR6 with PSD-95 and the phosphorylation of MLK3, MKK7 and JNKs in the CA1 region in rats.

    Rats were equally divided into saline , kainate-treated, Ad-treated and Ad-GluR6c groups. A single dose of kainate (12 mg/kg) was injected intraperitoneally to the rats, which were carefully monitored for signs of seizures. Within 15 minutes following the injection, rats first presented with deep breathing and increased salivation, followed by scratching, and then progression to rearing and generalized clonic/ tonic seizures within 50—60 minutes, which lasted for 2—3 hours. Two hours after the cessation of behavioral seizures, rats were taken back to their cages and sacri fi ced 7 days after the kainate injection. Control rats were only given 0.9% NaCl, the same volume of used for the kainate-treated rats. A total of 10 μL of Ad or Ad-GluR6c (1 × 1010pfu) was given to the rats of the Ad and Ad-GluR6c-treated groups 40 minutes before kainate injection to the CA1 region (anteroposterior: 3.6 mm; lateral: 2.0 mm; depth: 4.0 mm from bregma).

    Statistical analysis

    All data were expressed as the mean ± SD, and were analyzed by one-way analysis of variance followed by Duncan’s new multiple range method. Statistical analysis was performed using SPSS 13.0 software (SPSS, Chicago, IL, USA). A value of P < 0.05 was considered statistically signi fi cant.

    Results

    Alterations of the GluR6-PSD95-MLK3 signaling module during kainate-induced seizures in the CA1 region

    Rats were injected with kainate for specific time-frames to explore the changes in the assembly of the GluR6-PSD95-MLK3 signaling module during seizures. Western immunoblotting were then performed for GluR6 or MLK3 with PSD95 at the speci fi c time points. The interactions of GluR6 and PSD95 following kainate injection increased rapidly, peaking at 6 hours and gradually decreasing to control levels 3 days later (Figure 1A, B). Saline did not affect the interactions of GluR6 and PSD95.

    MLK3, an upstream kinase of MKK7 and JNK, can be activated by GluR6 and PSD95 (Savinainen et al., 2001). Therefore, we analyzed the effect of kainate on the activation (phosphorylation) of MLK3. Western immunoblotting revealed that kainate treatment increased the phosphorylation of MLK3 in the CA1 region (Figure 1C, D). The activation of JNK and MKK7 was signi fi cantly induced at 6 hours after kainate injection (P < 0.05).

    Ad-GluR6-c suppressed kainate-induced activation of MLK3, MKK7, and JNK in the CA1 region

    To elucidate whether downstream proteins of GluR6 was affected by the over-expression of GluR6c, Ad-GluR6c was administered to observe the variation of phosphorylated MLK3, MKK4/7 and JNKs (Figure 2A–D). Western immunoblotting revealed that Ad-GluR6c signi fi cantly (P < 0.05) inhibited the phosphorylation of MLK3 (Figure 2C, D). Additionally, the activation of MKK7 6 hours after kainate injection was significantly (P < 0.05) suppressed by Ad-GluR6c (Figure 2C, D). Similar results were obtained with JNKs (Figure 2C, D).

    Neuroprotective effects of Ad-GluR6-c against kainateinduced neuronal injury in CA1 neurons

    Figure 3 Neuroprotection of adenovirus-GluR6c against KA-induced brain damage in the CA1 region.

    To investigate whether pretreatment with Ad-GluR6-c was protective against kainate-induced cell death, rats were pre-treated with Ad-GluR6c via a cerebroventricular injection 40 minutes before kainate administration. Rats from the saline, kainate, Ad, and Ad-GluR6c groups were perfusion- fi xed with paraformaldehyde, 7 days later. Cresyl violet staining was conducted to examine the survival of CA1 pyramidal cells. Our results showed normal CA1 neuronal cells as round and palely stained nuclei (Figure 3A, B), whereas kainate-induced cells showed pyknotic nuclei (Figure 3C, D), indicative of cell death. The pre-treatment of Ad-GluR6-c reduced neuronal degeneration (Figure 3G, H), whereas the Ad group did not show any protection against kainate-induced degeneration (Figure 3E, F). The neuronal densities of the saline, kainate, Ad and Ad-GluR6c groups were 250.0 ± 19.8, 37.2 ± 8.5, 32.6 ± 7.3, and 121.3 ± 17.8, respectively (Figure 3I).

    Discussion

    Many drugs have been developed for epilepsy in the past decades (Sander and Shorvon, 1996), but approximately one-third of epilepsy patients still cannot be cured. A larger percentage of patients suffer from the side effects of antiepileptic drugs (Smith and Bleck, 1991). We showed that in the CA1 region, Ad-GluR6c inhibited the 6-hour kainate-induced activation of MLK3, MKK7, and JNK. Furthermore, pretreatment with Ad-GluR6c significantly protected neuronal cells in the CA1 region from kainate-induced death. Overall, these results suggest that Ad-GluR6c generates the GluR6c peptide in neuronal cells and possibly binding to the PDZ1 domain of PSD95, then suppressing the interaction of PSD95 and GluR6.

    Administration of kainate has been shown to increase mitochondrial dysfunction, induce the production of reactive oxygen species, and induce apoptosis in many regions of the brain, particularly in the CA1 region (Wang et al., 2005; Guo et al., 2012; Yuan etal., 2014). Kainate-induced neuronal injury in the hippocampus is reversed by the activation of adenosine A receptors (Matsuoka et al., 1999), dopamine D2 receptors (Bozzi et al., 2000), and N-methyl-D-aspartate receptors (Ogita et al., 2003). The activation of the kainate receptor subunit GluR6 induces neuronal cell death in the hippocampus (Liu et al., 2006). Moreover, GluR6 knockout mice have shown resistance to neuronal cell death and to kainate-induced seizures (Mulle et al., 1998). However, the precise molecular mechanism underlying the effect of GluR6 remains unclear. Savinainen et al. (2001) have reported that GluR6, MLK3, and PSD95 form a signaling complex and facilitate the activation and phosphorylation of MLK3 and JNK in vitro. In the present study, we demonstrated suppressing the assembly of the GluR6-PSD95-MLK3 signaling module attenuated MLK3 and JNK activation and kainate-induced seizures in vivo.

    Members of MLK regulate the JNK signaling pathway by phosphorylation-dependent regulation of MKK4 and MKK7 (Muniyappa and Das, 2008; Wen et al., 2008; Mishra et al., 2010; Wang et al., 2011; Chen et al., 2012; Chen and Gallo, 2012; Song et al., 2012; Wang and Xia, 2012; Zhang et al., 2012; He et al., 2013; Owen et al., 2013; Rana et al., 2013). MKK4 and MKK7 are dual-speci fi city kinases phosphorylating threonine and tyrosine residues in the catalytic domains of JNK (Davis, 2000). Numerous studies have demonstrated that the JNK signaling pathway plays an important role in mediating neurotoxicity (Saporito et al., 1998; Behrens et al., 1999; Wu et al., 2000; Borsello et al., 2003; Kuan et al., 2003; Zhang et al., 2006; Moon et al., 2013; Oshitari et al., 2013; Chen et al., 2014; Lu et al., 2014). The MLK-MKK7-JNK signaling module has been shown to be regulated by the activation of JNK3 (Whitmarsh et al., 1998), which is involved in kainate-induced brain injury (Liu et al., 2006). Our previous study has clearly demonstrated the activation of JNK3 and its association with neuronal cell death during brain ischemia/reperfusion (Tian et al., 2003). Our present results showed that application of Ad-GluR6c inhibited the assembly of the GluR6-PSD95-MLK3 signaling module, and subsequently attenuated the activation of MLK3 and JNK.

    In summary, kainate induced the assembly of the GluR6-PSD95-MLK3 signaling module, and subsequently activated the downstream JNK signaling pathway, ultimately resulting in neuronal cell death. Application of Ad-GluR6c suppressed the binding of GluR6 to the PDZ1 domain of PSD95 in the postsynaptic regions, and subsequently inhibited the assembly of the GluR6-PSD95-MLK3 signaling module by inhibiting the activation of MLK3 and JNK.

    Author contributions:Mou J and Liu XM provided study data, ensured the integrity of the data, participated in data analysis, and wrote the manuscript. Mou J participated in study concept and design. Pei DS was in charge of manuscript authorization, provided technical or material support, obtained the funding and served as a principle investigator. All authors approved the final version of this paper.

    Con fl icts of interest:None declared.

    Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21:326-329.

    Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180-1186.

    Bozzi Y, Vallone D, Borrelli E (2000) Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 20:8643-8649.

    Bureau I, Bischoff S, Heinemann SF, Mulle C (1999) Kainate receptor-mediated responses in the CA1 fi eld of wild-type and gluR6-defi cient Mice. J Neurosci 19:653-663.

    Chen CY, Weng YH, Chien KY, Lin KJ, Yeh TH, Cheng YP, Lu CS, Wang HL (2012) (G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD. Cell Death Differ 19:1623-1633.

    Chen J, Gallo KA (2012) MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res 72:4130-4140.

    Chen S, Gu C, Xu C, Zhang J, Xu Y, Ren Q, Guo M, Huang S, Chen L (2014) Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. J Neurochem 128:256-266.

    Darstein M, Petralia RS, Swanson GT, Wenthold RJ, Heinemann SF (2003) Distribution of kainate receptor subunits at hippocampal mossy fi ber synapses. J Neurosci 23:8013-8019.

    本發(fā)明公開了一種化學(xué)鍍銅溶液用安定劑,由下述質(zhì)量份原料組成:三水合亞鐵氰化鉀22 ~ 26 g/L,四水合酒石酸鉀鈉60 ~ 70 g/L,促進劑2-硫醇基苯駢噻唑0.38 ~ 0.39 g/L,水1 L。化學(xué)鍍銅溶液用安定劑的制備方法,具體步驟如下:常溫下,向水中加入三水合亞鐵氰化鉀,并攪拌5 ~ 10 min,然后加入四水合酒石酸鉀鈉,攪拌5 ~ 10 min,最后加入2-硫醇基苯駢噻唑,攪拌至完全溶解。本發(fā)明具有能夠提高化學(xué)銅鍍液的穩(wěn)定性,減少和避免銅離子歧化的優(yōu)點。

    Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239-252.

    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7-62.

    Guo DH, Liu XH, Zeng J, Tang Y, Zeng WJ, Luo ZZ, Lei YL, Yu HX (2012) Effect of the re-distribution of kainate 1 expression on the neuronal excitotoxicity. Zhongguo Zuzhi Gongcheng Yanjiu 16:287-290.

    He S, Liu P, Jian Z, Li J, Zhu Y, Feng Z, Xiao Y (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/ c-jun pathway. Biochem Biophys Res Commun 441:763-769.

    He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509-2514.

    Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P (2003) A critical role of neural-speci fi c JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100:15184-15189.

    Liu XM, Pei DS, Guan QH, Sun YF, Wang XT, Zhang QX, Zhang GY (2006) Neuroprotection of Tat-GluR6-9c against neuronal death induced by kainate in rat hippocampus via nuclear and non-nuclear pathways. J Biol Chem 281:17432-17445.

    Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224:130-140.

    Matsuoka Y, Okazaki M, Takata K, Kitamura Y, Ohta S, Sekino Y, Taniguchi T (1999) Endogenous adenosine protects CA1 neurons from kainic acid-induced neuronal cell loss in the rat hippocampus. Eur J Neurosci 3617-3625.

    Mishra P, Senthivinayagam S, Rangasamy V, Sondarva G, Rana B (2010) Mixed lineage kinase-3/JNK1 axis promotes migration of human gastric cancer cells following gastrin stimulation. Mol Endocrinol 24:598-607.

    Moon MH, Jeong JK, Lee YJ, Park SY (2013) FTY720 protects neuronal cells from damage induced by human prion protein by inactivating the JNK pathway. Inter J Mol Med 32:1387-1393.

    Mulle C, Sailer A, Perez-Otano I, Dickinson-Anson H, Castillo PE, Bureau I, Maron C, Gage FH, Mann JR, Bettler B, Heinemann SF (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-de fi cient mice. Nature 392:601-605.

    Muniyappa H, Das KC (2008) Activation of c-Jun N-terminal kinase (JNK) by widely used speci fi c p38 MAPK inhibitors SB202190 and SB203580: a MLK-3-MKK7-dependent mechanism. Cell Signal 20:675-683.

    Ogita K, Okuda H, Yamamoto Y, Nishiyama N, Yoneda Y (2003) In vivo neuroprotective role of NMDA receptors against kainate-induced excitotoxicity in murine hippocampal pyramidal neurons. J Neurochem 85:1336-1346.

    Oshitari T, Bikbova G, Yamamoto S (2013) Increased expression of phosphorylated c-Jun and phosphorylated c-Jun N-terminal kinase associated with neuronal cell death in diabetic and high glucose exposed rat retinas. Brain Res Bull 101C:18-25.

    Owen GR, Achilonu I, Dirr HW (2013) High yield purification of JNK1beta1 and activation by in vitro reconstitution of the MEKK1-->MKK4-->JNK MAPK phosphorylation cascade. Protein Expr Purif 87:87-99.

    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6thEdition. Amsterdam, Boston: Academic Press, Elsevier, USA.

    Pei DS, Wang XT, Liu Y, Sun YF, Guan QH, Wang W, Yan JZ, Zong YY, Xu TL, Zhang GY (2006) Neuroprotection against ischaemic brain injury by a GluR6-9c peptide containing the TAT protein transduction sequence. Brain 129:465-479.

    Racine RJ (1972) Modi fi cation of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophys 32:281-294.

    Rana A, Rana B, Mishra R, Sondarva G, Rangasamy V, Das S, Viswakarma N, Kanthasamy A (2013) Mixed lineage kinase-c-Jun N-terminal kinase axis: a potential therapeutic target in cancer. Genes Cancer 4:334-341.

    Sander JW, Shorvon SD (1996) Epidemiology of the epilepsies. J Neurol Neurosurg Psychiatry 61:433-443.

    Saporito MS, Brown ER, Carswell S, Di Camillo AM, Miller MS, Murakata C, Neff NT, Vaught JL, Haun FA (1998) Preservation of cholinergic activity and prevention of neuron death by CEP-1347/ KT-7515 following excitotoxic injury of the nucleus basalis magnocellularis. Neuroscience 86:461-472.

    Savinainen A, Garcia EP, Dorow D, Marshall J, Liu YF (2001) Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via post-synaptic density protein 95. J Biol Chem 276:11382-11386.

    Smith MC, Bleck TP (1991) Convulsive disorders: toxicity of anticonvulsants. Clin Neuropharmacol 14:97-115.

    Song YJ, Zong ZM, Liu HZ, Mukasa R, Pei DS, Mou J, Wen XR, Liu ZA, Wei XY (2012) Heme oxygenase-1 regulates the JNK signaling pathway through the MLK3-MKK7-JNK3 signaling module in brain ischemia injury. Brain Res 1429:1-8.

    Tian H, Zhang G, Li H, Zhang Q (2003) Antioxidant NAC and AMPA/ KA receptor antagonist DNQX inhibited JNK3 activation following global ischemia in rat hippocampus. Neurosci Res 46:191-197.

    Tian H, Zhang QG, Zhu GX, Pei DS, Guan QH, Zhang GY (2005) Activation of c-Jun NH2-terminal kinase 3 is mediated by the GluR6. PSD-95.MLK3 signaling module following cerebral ischemia in rat hippocampus. Brain Res 1061:57-66.

    Wang J, Xia Y (2012) Assessing developmental roles of MKK4 and MKK7 in vitro. Commun Integr Biol 5:319-324.

    Wang Q, Yin XH, Liu Y, Zhang GY (2011) K252a suppresses neuronal cells apoptosis through inhibiting the translocation of Bax to mitochondria induced by the MLK3/JNK signaling after transient global brain ischemia in rat hippocampal CA1 subregion. J Recept Signal Transduct Res 31:307-313.

    Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31:3-16.

    Wen XR, Li C, Zong YY, Yu CZ, Xu J, Han D, Zhang GY (2008) Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury. Neuroscience 156:483-497.

    Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ (1998) A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281:1671-1674.

    Wu DC, Ye W, Che XM, Yang GY (2000) Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. J Cereb Blood Flow Metab 20:1320-1330.

    Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865-870.

    Yuan L, Zhang HX, Qian SL, Xu B, Gong JQ, Liu XH, Tang Y, Yu HX (2014) Kainic acid-induced endoplasmic reticulum stress model. Zhongguo Zuzhi Gongcheng Yanjiu 18:5861-5867.

    Zhang QX, Pei DS, Guan QH, Sun YF, Liu XM, Zhang GY (2006) Blockade of the translocation and activation of mitogen-activated protein kinase kinase 4 (MKK4) signaling attenuates neuronal damage during later ischemia-reperfusion. J Neurochem 98:170-179.

    Zhang Y, Li F, Liu S, Wang H, Mahavadi S, Murthy KS, Khalili K, Hu W (2012) MEKK1-MKK4-JNK-AP1 pathway negatively regulates Rgs4 expression in colonic smooth muscle cells. PLoS One 7:e35646.

    Copyedited by Mark F, Wysong S, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.147932

    Dongsheng Pei, Ph.D., Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China, dspei@xzmc.edu.cn.

    http://www.nrronline.org/

    Accepted: 2014-09-22

    猜你喜歡
    亞鐵氰化鉀鍍銅硫醇
    食鹽中的亞鐵氰化鉀有毒嗎
    保健與生活(2019年6期)2019-07-31 01:54:16
    液化氣催化氧化脫硫醇的新一代催化劑
    食用鹽中添加亞鐵氰化鉀究竟是怎么回事
    基于Controller Link總線的硫酸鹽鍍銅溫控系統(tǒng)
    碳纖維布化學(xué)鍍銅工藝的研究
    鈦合金無氰堿性鍍銅工藝
    化學(xué)鍍銅液自動分析補充系統(tǒng)設(shè)計
    食鹽里添加亞鐵氰化鉀是滅種計劃?
    百科知識(2016年22期)2016-12-24 21:08:11
    硫醇(酚)對PVC的熱穩(wěn)定作用——性能遞變規(guī)律與機理
    中國塑料(2016年8期)2016-06-27 06:35:02
    淺析液化氣脫硫醇技術(shù)
    亚洲第一电影网av| 国模一区二区三区四区视频| 国产av一区在线观看免费| 成年人黄色毛片网站| 免费av毛片视频| 18禁美女被吸乳视频| 亚洲午夜理论影院| 在线播放无遮挡| 欧美高清成人免费视频www| 香蕉av资源在线| 欧美日韩精品网址| 嫁个100分男人电影在线观看| 国产真实乱freesex| 国产真实伦视频高清在线观看 | 亚洲一区二区三区色噜噜| 亚洲国产高清在线一区二区三| 久久性视频一级片| 丰满乱子伦码专区| 色尼玛亚洲综合影院| 国产一区二区激情短视频| 在线观看舔阴道视频| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 桃红色精品国产亚洲av| 少妇人妻精品综合一区二区 | av视频在线观看入口| 国产老妇女一区| av福利片在线观看| 欧美不卡视频在线免费观看| av专区在线播放| 日韩精品中文字幕看吧| 亚洲 欧美 日韩 在线 免费| 噜噜噜噜噜久久久久久91| 欧美激情在线99| 欧美色视频一区免费| 亚洲avbb在线观看| 欧美日韩福利视频一区二区| 中文在线观看免费www的网站| 日韩成人在线观看一区二区三区| 久久国产精品影院| 亚洲av一区综合| 婷婷六月久久综合丁香| 欧美日韩中文字幕国产精品一区二区三区| 91久久精品国产一区二区成人 | 国产精华一区二区三区| 毛片女人毛片| 亚洲人与动物交配视频| 成人鲁丝片一二三区免费| 国产亚洲欧美98| 校园春色视频在线观看| 国产成人a区在线观看| 久久久精品大字幕| 51国产日韩欧美| 天天添夜夜摸| 国产黄色小视频在线观看| 国产成人福利小说| 免费高清视频大片| 国产成人福利小说| 婷婷六月久久综合丁香| 午夜亚洲福利在线播放| 日韩亚洲欧美综合| 日韩欧美国产在线观看| 熟妇人妻久久中文字幕3abv| av在线蜜桃| 久久国产精品影院| 亚洲无线观看免费| 精品不卡国产一区二区三区| 国产乱人视频| 在线观看一区二区三区| 老司机福利观看| 久久草成人影院| 9191精品国产免费久久| 精品一区二区三区视频在线观看免费| 少妇丰满av| 成年女人永久免费观看视频| 免费搜索国产男女视频| aaaaa片日本免费| 国产成人a区在线观看| 老司机福利观看| 中文字幕av在线有码专区| 在线国产一区二区在线| 网址你懂的国产日韩在线| 免费看光身美女| 一个人看的www免费观看视频| 亚洲va日本ⅴa欧美va伊人久久| 国产成人av激情在线播放| 9191精品国产免费久久| 内射极品少妇av片p| 免费av观看视频| 国产伦一二天堂av在线观看| 一个人看的www免费观看视频| 悠悠久久av| 亚洲国产精品999在线| 欧美av亚洲av综合av国产av| 最好的美女福利视频网| 身体一侧抽搐| 国产三级在线视频| 老汉色∧v一级毛片| av中文乱码字幕在线| 美女免费视频网站| 中文字幕人成人乱码亚洲影| 欧美bdsm另类| 长腿黑丝高跟| 天天躁日日操中文字幕| 中文字幕人成人乱码亚洲影| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人手机在线| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 18禁黄网站禁片免费观看直播| 国产亚洲欧美在线一区二区| 俺也久久电影网| 一级作爱视频免费观看| 中出人妻视频一区二区| 亚洲第一电影网av| 日日摸夜夜添夜夜添小说| 久久久久国产精品人妻aⅴ院| 亚洲无线观看免费| 伊人久久精品亚洲午夜| 精品国产亚洲在线| 变态另类成人亚洲欧美熟女| 在线播放国产精品三级| 99久久99久久久精品蜜桃| 亚洲电影在线观看av| 男人舔奶头视频| 一级a爱片免费观看的视频| 国产精品一区二区三区四区久久| 亚洲国产欧洲综合997久久,| 深夜精品福利| 国产黄a三级三级三级人| 色吧在线观看| 99久久久亚洲精品蜜臀av| 一a级毛片在线观看| 免费高清视频大片| 最近视频中文字幕2019在线8| 亚洲五月天丁香| 99视频精品全部免费 在线| 最新美女视频免费是黄的| 欧美中文日本在线观看视频| 日韩欧美精品免费久久 | 国产成人啪精品午夜网站| 午夜激情欧美在线| 国产69精品久久久久777片| 一卡2卡三卡四卡精品乱码亚洲| 无限看片的www在线观看| 久久精品亚洲精品国产色婷小说| 桃红色精品国产亚洲av| 国产成人aa在线观看| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 91在线观看av| 午夜福利18| 床上黄色一级片| 全区人妻精品视频| 欧美性猛交黑人性爽| 国产精品爽爽va在线观看网站| 久久久精品欧美日韩精品| 国产毛片a区久久久久| 免费av不卡在线播放| 久久国产精品人妻蜜桃| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦观看免费观看视频高清| 亚洲av日韩精品久久久久久密| 天堂动漫精品| 美女被艹到高潮喷水动态| 国产在线精品亚洲第一网站| 亚洲久久久久久中文字幕| 国产在线精品亚洲第一网站| 久久久久久九九精品二区国产| 成人特级av手机在线观看| 日本撒尿小便嘘嘘汇集6| 小蜜桃在线观看免费完整版高清| 国产高潮美女av| 五月伊人婷婷丁香| 黄色视频,在线免费观看| 日本成人三级电影网站| 亚洲精品一卡2卡三卡4卡5卡| 一进一出抽搐gif免费好疼| 五月伊人婷婷丁香| 国产成人福利小说| 黄色日韩在线| 欧美性猛交╳xxx乱大交人| 久久6这里有精品| 成人欧美大片| 欧美3d第一页| 最近最新中文字幕大全电影3| 99久久99久久久精品蜜桃| 国产午夜福利久久久久久| 久久婷婷人人爽人人干人人爱| 高清日韩中文字幕在线| 国产精品国产高清国产av| 精华霜和精华液先用哪个| 色吧在线观看| 免费观看人在逋| 男插女下体视频免费在线播放| 在线观看日韩欧美| 美女被艹到高潮喷水动态| 国产高潮美女av| 免费看美女性在线毛片视频| 别揉我奶头~嗯~啊~动态视频| 免费无遮挡裸体视频| 1000部很黄的大片| 日本 av在线| 97超视频在线观看视频| 午夜福利视频1000在线观看| 看免费av毛片| 久久香蕉精品热| 18禁黄网站禁片免费观看直播| 极品教师在线免费播放| 免费在线观看成人毛片| 成年人黄色毛片网站| 一区二区三区免费毛片| 中文在线观看免费www的网站| 国产精品99久久99久久久不卡| 国产成人系列免费观看| 岛国视频午夜一区免费看| 熟女人妻精品中文字幕| 无限看片的www在线观看| 国产精品av视频在线免费观看| 一区二区三区免费毛片| 日本一本二区三区精品| 夜夜看夜夜爽夜夜摸| 免费电影在线观看免费观看| 午夜福利在线观看吧| 少妇丰满av| 天堂动漫精品| 亚洲欧美一区二区三区黑人| 日韩高清综合在线| 日韩欧美精品v在线| 俄罗斯特黄特色一大片| 国产单亲对白刺激| 国产午夜精品论理片| 亚洲专区中文字幕在线| 日韩欧美三级三区| 国产精品永久免费网站| 少妇高潮的动态图| 国产免费av片在线观看野外av| 一本久久中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 757午夜福利合集在线观看| 啦啦啦免费观看视频1| 国产免费男女视频| av天堂中文字幕网| 麻豆成人av在线观看| 欧美激情久久久久久爽电影| 亚洲乱码一区二区免费版| 久久久久久久久久黄片| 一级作爱视频免费观看| 欧美乱码精品一区二区三区| 国产一区二区在线观看日韩 | 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 在线a可以看的网站| 国产三级在线视频| 性色av乱码一区二区三区2| 亚洲av电影不卡..在线观看| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 国产精品自产拍在线观看55亚洲| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 老汉色av国产亚洲站长工具| 99热6这里只有精品| 看免费av毛片| av天堂中文字幕网| 热99在线观看视频| 黄色日韩在线| av国产免费在线观看| 天堂动漫精品| 嫩草影院精品99| 亚洲熟妇熟女久久| 久久6这里有精品| 欧美大码av| 久久精品国产亚洲av涩爱 | 色综合婷婷激情| 日韩成人在线观看一区二区三区| 免费看十八禁软件| 国产高清videossex| 在线a可以看的网站| 天堂√8在线中文| 亚洲av不卡在线观看| 日韩欧美 国产精品| 舔av片在线| 亚洲第一欧美日韩一区二区三区| 国产 一区 欧美 日韩| 又黄又爽又免费观看的视频| 国产真实伦视频高清在线观看 | 看片在线看免费视频| 国产视频一区二区在线看| www.999成人在线观看| 午夜激情欧美在线| 色综合婷婷激情| 国产一区在线观看成人免费| 亚洲黑人精品在线| 日韩大尺度精品在线看网址| 国产精品国产高清国产av| 国内精品久久久久精免费| 麻豆成人av在线观看| 搡女人真爽免费视频火全软件 | 欧美黄色淫秽网站| 亚洲电影在线观看av| 老汉色av国产亚洲站长工具| 久久久国产成人精品二区| 在线观看66精品国产| 国产欧美日韩精品亚洲av| 超碰av人人做人人爽久久 | 久久精品人妻少妇| 91麻豆精品激情在线观看国产| 一进一出抽搐动态| 麻豆成人av在线观看| 狠狠狠狠99中文字幕| 中文字幕av在线有码专区| 亚洲片人在线观看| 久久久国产成人免费| 一个人看的www免费观看视频| av在线天堂中文字幕| 久久人妻av系列| 久久精品国产自在天天线| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| 亚洲黑人精品在线| 欧美日韩瑟瑟在线播放| 免费观看人在逋| 波多野结衣巨乳人妻| 宅男免费午夜| 久久久久精品国产欧美久久久| 午夜免费成人在线视频| 国产麻豆成人av免费视频| 一区二区三区激情视频| 欧美成人一区二区免费高清观看| 白带黄色成豆腐渣| 精品免费久久久久久久清纯| 欧美乱色亚洲激情| 国产精品精品国产色婷婷| 国产激情欧美一区二区| 一二三四社区在线视频社区8| 免费看日本二区| 国产精品综合久久久久久久免费| 黄片大片在线免费观看| 国产精品亚洲一级av第二区| 最近最新免费中文字幕在线| 免费无遮挡裸体视频| 欧美日韩乱码在线| 国产午夜精品论理片| 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件 | 一进一出抽搐gif免费好疼| www.www免费av| 激情在线观看视频在线高清| 最近最新中文字幕大全免费视频| 天天一区二区日本电影三级| 搡老妇女老女人老熟妇| 99国产精品一区二区三区| 舔av片在线| 免费一级毛片在线播放高清视频| 九色成人免费人妻av| 国产 一区 欧美 日韩| 少妇丰满av| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| 在线观看日韩欧美| 亚洲精品亚洲一区二区| 三级毛片av免费| 成人av一区二区三区在线看| 真人一进一出gif抽搐免费| 一级黄色大片毛片| 精品久久久久久久末码| 又紧又爽又黄一区二区| 亚洲精品久久国产高清桃花| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| 欧美日韩综合久久久久久 | 国产伦精品一区二区三区视频9 | 国产成人系列免费观看| 女人被狂操c到高潮| 神马国产精品三级电影在线观看| 免费在线观看成人毛片| 女人高潮潮喷娇喘18禁视频| 桃色一区二区三区在线观看| 午夜免费成人在线视频| www国产在线视频色| 精品久久久久久,| 97超级碰碰碰精品色视频在线观看| 一进一出抽搐gif免费好疼| 在线观看日韩欧美| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 亚洲av成人不卡在线观看播放网| 亚洲欧美激情综合另类| 日本与韩国留学比较| 欧美色欧美亚洲另类二区| 97碰自拍视频| 两人在一起打扑克的视频| 午夜福利在线在线| 国产69精品久久久久777片| 国产男靠女视频免费网站| x7x7x7水蜜桃| 色在线成人网| 精品日产1卡2卡| 一区福利在线观看| 高清在线国产一区| 18禁国产床啪视频网站| 最新美女视频免费是黄的| 国产精品,欧美在线| 国产在视频线在精品| 男女做爰动态图高潮gif福利片| 亚洲国产中文字幕在线视频| 色综合亚洲欧美另类图片| 国产又黄又爽又无遮挡在线| 国产高清视频在线观看网站| 亚洲人成网站高清观看| av在线蜜桃| 国产精品久久久久久精品电影| 五月伊人婷婷丁香| 亚洲国产欧洲综合997久久,| 国产国拍精品亚洲av在线观看 | 亚洲精品456在线播放app | 啦啦啦免费观看视频1| 国产黄a三级三级三级人| 十八禁人妻一区二区| 黄色丝袜av网址大全| 我的老师免费观看完整版| 国产黄a三级三级三级人| 欧美中文日本在线观看视频| 日本成人三级电影网站| 久久香蕉国产精品| 99久国产av精品| 亚洲国产高清在线一区二区三| a级毛片a级免费在线| 人妻久久中文字幕网| 亚洲成人久久性| 免费看美女性在线毛片视频| 久久伊人香网站| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 亚洲天堂国产精品一区在线| 丝袜美腿在线中文| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩东京热| 欧美zozozo另类| 少妇熟女aⅴ在线视频| 91久久精品国产一区二区成人 | 18禁美女被吸乳视频| 国产精品国产高清国产av| 日韩欧美精品免费久久 | 亚洲国产欧洲综合997久久,| 人人妻人人看人人澡| 深爱激情五月婷婷| 老熟妇乱子伦视频在线观看| 久久性视频一级片| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 国产精品香港三级国产av潘金莲| 亚洲天堂国产精品一区在线| 久久久久久国产a免费观看| 9191精品国产免费久久| 岛国在线免费视频观看| 国产老妇女一区| 久久午夜亚洲精品久久| 国产三级中文精品| 狂野欧美激情性xxxx| 三级毛片av免费| 亚洲精品亚洲一区二区| 精品日产1卡2卡| 高清日韩中文字幕在线| 精品国内亚洲2022精品成人| 嫩草影院精品99| 两性午夜刺激爽爽歪歪视频在线观看| 99国产综合亚洲精品| 少妇熟女aⅴ在线视频| 日韩高清综合在线| 老熟妇仑乱视频hdxx| aaaaa片日本免费| 美女免费视频网站| 亚洲天堂国产精品一区在线| 欧美性猛交黑人性爽| 伊人久久精品亚洲午夜| 久久精品91无色码中文字幕| 免费在线观看影片大全网站| 国产日本99.免费观看| av国产免费在线观看| 在线播放国产精品三级| 99在线人妻在线中文字幕| 国产亚洲精品综合一区在线观看| 夜夜爽天天搞| 国产精品综合久久久久久久免费| 成年女人毛片免费观看观看9| 婷婷六月久久综合丁香| 国产欧美日韩精品一区二区| 制服丝袜大香蕉在线| 国产精品98久久久久久宅男小说| 午夜精品久久久久久毛片777| 午夜福利18| 国产在视频线在精品| 国产精品三级大全| 又黄又粗又硬又大视频| 一个人免费在线观看电影| av黄色大香蕉| 日韩精品青青久久久久久| 日日干狠狠操夜夜爽| 国产又黄又爽又无遮挡在线| 国产三级中文精品| 69人妻影院| 内地一区二区视频在线| 国产高清视频在线播放一区| 久久久久国内视频| 老司机深夜福利视频在线观看| 日本精品一区二区三区蜜桃| 蜜桃久久精品国产亚洲av| 无遮挡黄片免费观看| 国产淫片久久久久久久久 | 婷婷丁香在线五月| 日本免费一区二区三区高清不卡| 啪啪无遮挡十八禁网站| 色综合婷婷激情| 美女高潮喷水抽搐中文字幕| 内地一区二区视频在线| 国产野战对白在线观看| 高清毛片免费观看视频网站| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久v下载方式 | 久久精品国产亚洲av涩爱 | 亚洲av成人精品一区久久| 欧美性猛交╳xxx乱大交人| 小说图片视频综合网站| 热99re8久久精品国产| 国产不卡一卡二| 久久久精品大字幕| 免费观看人在逋| 亚洲国产高清在线一区二区三| av片东京热男人的天堂| 日韩欧美一区二区三区在线观看| 啦啦啦韩国在线观看视频| 国产高清有码在线观看视频| 国产99白浆流出| 国产69精品久久久久777片| 丰满人妻一区二区三区视频av | 宅男免费午夜| 一本综合久久免费| 亚洲成av人片免费观看| 一级a爱片免费观看的视频| 国产高清三级在线| 极品教师在线免费播放| 九九在线视频观看精品| 欧美丝袜亚洲另类 | 精品人妻1区二区| 色尼玛亚洲综合影院| 精品久久久久久久毛片微露脸| 国产精品99久久99久久久不卡| 亚洲人成电影免费在线| 男人舔女人下体高潮全视频| 免费在线观看日本一区| 岛国在线免费视频观看| 精品人妻偷拍中文字幕| 欧美中文综合在线视频| 久久精品影院6| 岛国在线观看网站| 别揉我奶头~嗯~啊~动态视频| www日本黄色视频网| 中文字幕久久专区| 成人午夜高清在线视频| 国产高清视频在线播放一区| 日本三级黄在线观看| 亚洲狠狠婷婷综合久久图片| 欧美日韩综合久久久久久 | 亚洲av第一区精品v没综合| 国产极品精品免费视频能看的| 国产v大片淫在线免费观看| 男女床上黄色一级片免费看| 人人妻人人看人人澡| 久久久久久大精品| 午夜两性在线视频| 老司机午夜十八禁免费视频| 久久久久久久久久黄片| 国产成+人综合+亚洲专区| 男插女下体视频免费在线播放| 亚洲国产精品999在线| 国产成人a区在线观看| 天美传媒精品一区二区| 国产99白浆流出| 亚洲avbb在线观看| 久久久久久国产a免费观看| 欧美日韩综合久久久久久 | 午夜福利免费观看在线| 三级男女做爰猛烈吃奶摸视频| 成年免费大片在线观看| 99热只有精品国产| 色老头精品视频在线观看| 在线免费观看不下载黄p国产 | 亚洲国产精品sss在线观看| 成人欧美大片| 久久久久国内视频| 亚洲精品日韩av片在线观看 | 香蕉av资源在线| 在线观看舔阴道视频| 免费观看的影片在线观看| 欧美bdsm另类| 91在线观看av| 好男人在线观看高清免费视频| 亚洲美女视频黄频| 99久久精品一区二区三区| 日本 欧美在线| 久久国产乱子伦精品免费另类| 黑人欧美特级aaaaaa片| 亚洲国产精品成人综合色| 国产精品久久久久久亚洲av鲁大| 黑人欧美特级aaaaaa片| 啪啪无遮挡十八禁网站| 亚洲美女黄片视频| av专区在线播放|