• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic reactive astrocytes after focal ischemia

    2014-06-01 09:08:51ShinghuaDing

    Shinghua Ding

    1 Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO, USA

    2 Department of Bioengineering, University of Missouri-Columbia, MO, USA

    Dynamic reactive astrocytes after focal ischemia

    Shinghua Ding1,2

    1 Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO, USA

    2 Department of Bioengineering, University of Missouri-Columbia, MO, USA

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disorders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar formation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insights for astrocyte-based cell therapy in stroke.

    ischemic stroke; reactive astrocytes; glial scar; morphology; cell proliferation; dynamics; cell therapy

    Funding: This work was supported by the National Institutes of Health [Grant no. R01NS069726] and the American Heart Association Grant in Aid Grant [Grant no. 13GRNT17020004] to SD.

    Ding S. Dynamic reactive astrocytes after focal ischemia. Neural Regen Res. 2014;9(23):2048-2052.

    Introduction

    Astrocytes are the most abundant glial cell type in the central nervous system (CNS). In a normal brain, there are generally two major types of astrocytes: Fibrous astrocytes in white matter found in the corpus callosum and protoplasmic astrocytes in grey matter found in the cortex. In addition to their morphologic differences, the processes of protoplasmic astrocytes completely wrap or ensheath synapses as well as blood vessels (Bushong et al., 2002; Wilhelmsson et al., 2006; Halassa et al., 2007). The spatial occupation and the intimate physical contact with both synapses and blood vessels render astrocytes as ideally situated to be involved in bidirectional interactions with neurons as well as with vasculature. Many studies also demonstrate that astrocytes are heterogeneous in morphology, molecular expression (Xie et al., 2010; Ding, 2013; Molofsky et al., 2014) and electrophysiological and Ca2+signaling properties (Zhou and Kimelberg, 2000; Takata and Hirase, 2008) (for review of this topic see Zhang and Barres, 2010). It has been thought that glial fi brillary acidic protein (GFAP) is a ‘pan-astrocyte’ marker, but its expression levels are different in fibrous and protoplasmic astrocytes. Aldh1L1 is the most widely and homogenously expressed astrocyte speci fi c protein (Cahoy et al., 2008).

    Astrocytes have been found to play important roles in many diseases and respond to almost all forms of neural disorders ranging from severe brain injuries such as stroke and traumatic brain injury (TBI), and neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) through a process called astrogliosis (Sofroniew and Vinters, 2010; Verkhratsky et al., 2012). A hallmark of astrogliosis is the morphological changes and the increased expression of GFAP in astrocytes. Given the different causes and the onset of diseases, the temporal and spatial changes of these reactive astrocytes are different; thus, detailed studies on the dynamic changes of reactive astrocytes have been undertaken to provide information for potential therapeutic interventions. For extensive reviews of reactive astrocytes in various aspects in neural diseases, readers can consult reviews by Burda and Sofroniew (2014), Sofroniew and Vinters (2010), and Escartin and Bonvento (2008). This review article will focus on discussing the dynamics of reactive astrocytes in the peri-infarct region, i.e., the so called penumbra after focal ischemia in experimental animal models.

    Spatial and temporal dynamics of reactive astrocytes in the penumbra after ischemia

    Focal ischemic stroke, resulting from the blockage of cerebral blood vessels in a certain region of the brain, leads to cell death and brain damage and is a leading cause of human disability and death (Stapf and Mohr, 2002). Besides cell death in the ischemic core, ischemia induces a series of alterations at molecular and cellular levels in the penumbra over time, including Ca2+signaling, cellular proliferation, morphology changes and gene regulation (Panickar and Norenberg, 2005; Ding et al., 2009, 2013, 2014; Zamanian et al., 2012; Li et al., 2013). These alterations are temporal and spatial dependent with a common feature of high GFAP expression levels in reactive astrocytes and formation of glial scar in the penumbra that demarcates the ischemic core (infarction) from healthy tissue (Haupt et al.,2007; Hayakawa et al., 2010; Barreto et al., 2011; Shimada et al., 2011; Bao et al., 2012; Li et al., 2013). The clinical aim of stroke therapy is to salvage the cells in the penumbra; thus, in-depth studyon the dynamics of reactive astrocytes at molecular and cellular levels will provide insights for therapeutic strategy. Although the responses of astrocytes to ischemic stroke have been well documented in focal ischemic models, including photothrombosis (PT)-induced focal ischemia and middle cerebral artery occlusion (MCAO) models (Stoll et al., 1998; Schroeter et al., 2002; Haupt et al., 2007; Nowicka et al., 2008; Barreto et al., 2011; Shen et al., 2012; Li et al., 2013), detailed and quantitative studies on cell proliferation with a good temporal resolution are lacking. Our recent study presented a detailed evaluation of dynamic change of reactive astrocytes in the cortex after PT (Li et al., 2014). We used bromodeoxyuridine (BrdU) labeling and immunostaining to assess the spatial and temporal changes in cellular proliferation, morphology and glial scar formation. To precisely study the rate of cell proliferation of astrocytes and microglia at different times after ischemia, we designed a ‘time-block’BrdU labeling protocol to titrate proliferating cells in the penumbra. Mice were administered with BrdU at the beginning of days 1, 3, 4, 5, 9, 11, and 13 post PT for two consecutive days and sacrificed 1 day following the last injection. From this study, a few new results were obtained.

    The spatial and temporal distribution of proliferating cells

    Our results show that the densities of BrdU+cells in the region close to the ischemic core are higher than those regions further away from the ischemic core over time after PT (Figure 1B), suggesting spatial difference in cell proliferation rates (Li et al., 2014). On the other hand, BrdU+cells signi fi cantly increased from post ischemic day 1 to day 2 and reached a peak value during days 3 and 4 after PT, and then decreased over time and fi nally sustained their value for a prolonged time—until day 14, the longest time in the study (Figure 1B). These results demonstrate that the rate of proliferating cells generated in the penumbra after ischemia is highly spatiotemporal dependent, consitent with the report from Barreto et al. (2011).

    Morphological changes of reactive astrocytes

    As glial fi brillary acidic protein (GFAP) is a prototypic marker for reactive astrocytes, we conducted immunostaining of GFAP to inspect the morphological change and proliferation of reactive astrocytes. There was little expression of GFAP in the cortex of control mice (also see previous studies (Zhang et al., 2010; Li et al., 2013)) (Figure 1A:A1). However, a signi fi cant increase of GFAP was observed at day 2 post PT (Figure 1A:A2). Up to day 4 post PT, astrocytes exhibited a stellate morphology and hypertrophy with highly upregulated GFAP expression (Figure 1A:A3). Starting from day 6, astrocytes in the penumbra were densely packed and formed a stream with their elongated (straight) processes pointing towards the ischemic core, i.e., a feature of astroglial scar formation (Figure 1A:A4). After day 10, the morphology of astrocytes at the scar border remained similar but with longer processes as compared with days 6—8, suggesting the maturation of astroglial scar tissue (Figure 1A:A5–A6). Signi fi cant increase in GFAP was also observed in the regions further away from the penumbra but with similar morphology to the astrocytes in the control condition. Thus, morphology of GFAP+astrocytes in the penumbra experienced dramatic changes over time after PT (Figure 1A), corroborating the results from other studies (Haupt et al., 2007; Nowicka et al., 2008). Mestriner et al. (2015) conducted a detailed study on the morphology of reactive astrocytes at 30 day after endotelin-1 induced ischemic stroke. Their results showed that rami fi cation and length of reactive astrocytes in the penumbra were different between sensorimotor cortex and dorsolateral striatum, indicating the regional heterogeneity inthe morphology of reactive astrocytes; however, morphological change in earlier stage might be more important in disease progress than in the chronic stage. The detailed study on morphology of reactive astrocytes was also conducted in rats at day 4 after MCAO (Wagner et al., 2012). Mean process volume, diameter and branching level in reactive astrocytes in the penumbra all increased compared with astrocytes in the remote region from ischemic core. However, the mean process length of reactive astrocytes in the penumbra is shorter than astrocytes in the remote region, confirming hypertrophic morphology of reactive astrocytes at this time point. Due to the heterogeneity of astrocytes in the brain even in the same region such as cortex (Takata and Hirase, 2008; Benesova et al., 2009), it is conceivable that astrocytes would respond to stroke in different manners. Thus detailed characterization of reactive astrocytes can only be done with lineage analysis and the availability of transgenic mice that express fl uorescent marker in different types of astrocytes.

    Proliferating reactive astrocytes

    It is known that reactive astrocytes are also characterized by progressive changes in proliferation and gene expression (Panickar and Norenberg, 2005; Haupt et al., 2007; Nowicka et al., 2008; Barreto et al., 2011; Zamanian et al., 2012). We further evaluated the rate of proliferating astrocytes using double staining of GFAP and BrdU. Although a large number of GFAP+astrocytes were emerged after PT, overall, the GFAP+BrdU+proliferating astrocytes only accounted for a small percentage of total BrdU+cells, which reached a peak value of about 6% from post ischemic days 3 to 4 and then decreased sharply over time (Figure 1D). On the other hand, the ratio of GFAP+BrdU+to GFAP+also reached the highest level within days 3 to 4 after PT (Li et al., 2014). These results demonstrated that stroke induces an increase in the number of proliferating reactive astrocytes in a highly time-dependent manner. The results indicate that the majority of GFAP+reactive astrocytes resulted from the upregulation of GFAP in existing astrocytes without proliferation. Nevertheless, this BrdU labeling protocol may underestimate the total number of BrdU+cells since a single daily injection will not label all proliferating astrocytes and other cells (Wanner et al., 2013).

    Correlation of behavioral de fi cits with reactive astrogliosis

    Our study demonstrated that focal ischemia-induced reactive astrocytes exhibit heterogeneity in morphology, GFAP expression levels and proliferating capability; furthermore, such heterogeneity is spatiotemporal dependent (Figure 2). After ischemia, the brain experiences spontaneous recovery process (Badan et al., 2003; Li et al., 2004; Clarkson et al., 2013). Since astrogliosis and glial scar formation is such an important pathological phenomenon, one is led to ask whether reactive astrogliosis is related to ischemia-induced behavioral de fi cits. To explore this, behavioral tests were conducted to study thetime courses of forelimb shift asymmetricity, strength, and sensory motor impairments (Li et al., 2014). The functional de fi cits have a similar time window to the infarct expansion, brain edema and swelling, and the highest rates of cell proliferation and reactive astrocyte generation. Functional de fi cits were recovered from day 6 after ischemia when glial scar tissue starts to form, suggesting that glial scarring might have a bene fi cial effect by stopping the expansion of the ischemic core. Thus, our study suggests that dynamic cellular proliferation and reactive astrogliosis correlate with the progress of brain and neuronal remodeling and functional recovery, and that targeting reactive astrocytes might be an important strategy to facilitate improvement of stroke outcomes.

    Reactive astrogliosis and cell therapy in focal ischemia

    Astrogliosis also occurs in chronic neurodegenerative diseases such as AD. Due to the slow reactivation processes associated with the disease progress and lack of glial scar tissue, reactive astrocytes are more evenly distributed in chronic diseases. Thus it is conceivable that the properties of reactive astrocytes in chronic neurodegenerative diseases are different from these in focal ischemia. Although profound progress has been made regarding the dynamics of reactive astrocytes in morphology and cell proliferation after strokes, studies on gene pro fi le of reactive astrocytes at different times after focal ischemia are needed to define the properties of reactive astrocyte at different stages. Our study suggests that the change of gene expression will likely be different at different times after ischemia as the morphology, the proliferating rate and the density of reactive astrocytes experience dynamic changes. Although single-point study of gene expression of reactive astrocyte after ischemia has been conducted (Zamanian et al., 2012), further studies in this area will likely elucidate the signaling pathways by which astrogliosis is induced after ischemia and derive new insights into the therapeutic potential of reactive astrocytes in ischemia.

    On the other hand, growing evidence indicates that reactive astrocytes exhibit stem cell-like properties (Buffo et al., 2008; Robel et al., 2011; Shimada et al., 2012; Sirko et al., 2013; Dimou, 2014). They can express neural stem cell related proteins such as Nestin, Sox2 (Shimada et al., 2012), and DCX, an immature neural stem cell marker (Ohab et al., 2006). Moreover, it has been reported that astrocytes can be converted into neuroblasts and neurons by forced expression of single transcriptional factors such as Sox2 (Su et al., 2014), neurogenin-2 (Berninger et al., 2007; Heinrich et al., 2010), NeuroD1 (Guo et al., 2013), or a combination of multiple transcriptional factors such as ASCL1, LMX1B and NURR1 (Addis et al., 2011). Thus targeting reactive astrocytes and using local astrocytes are attractive strategies of cell therapy for stroke. Our study on dynamics of reactive astrocytes provides an important implication for the optimal timing for the pharmacological and genetic manipulations of reactive astrocytes to improve stroke outcomes in experimental and clinic studies of stroke therapy. To genetically manipulate reactive astrocytes in vivo, astrocyte-speci fi c approaches such as viral transduction (Xie et al., 2010) and Cre/loxP recombinase system with astrocyte-speci fi c Cre driver mouse lines (Mori et al., 2006) are required.

    While growing evidence suggests that ischemic stroke dramatically increases neurogenesis in the subventricular zone (SVZ) and subgranular layer in dentate gyrus (Tobin et al., 2014), a recent study fi rst showed that ischemic stroke causes substantial reactive astrogliosis in SVZ (Young et al., 2013). The hypertrophic reactive astrocytes and their tortuous processes disrupt neuroblast migratory scaffold and thus might be the cause of SVZ reorganization after stroke. Future studies will be required to further explore whether SVZ astrocytes can function as neural stem cells and can be differentiated into neurons to contribute to the improvement of stroke outcomes.

    Addis RC, Hsu FC, Wright RL, Dichter MA, Coulter DA, Gearhart JD (2011) Ef fi cient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS One 6:e28719.

    Badan I, Buchhold B, Hamm A, Gratz M, Walker LC, Platt D, Kessler C, Popa-Wagner A (2003) Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J Cereb Blood Flow Metab 23:845-854.

    Bao Y, Qin L, Kim E, Bhosle S, Guo H, Febbraio M, Haskew-Layton RE, Ratan R, Cho S (2012) CD36 is involved in astrocyte activation and astroglial scar formation. J Cereb Blood Flow Metab 32:1567-1577.

    Barreto GE, Sun X, Xu L, Giffard RG (2011) Astrocyte proliferation following stroke in the mouse depends on distance from the Infarct. PLoS One 6:e27881.

    Benesova J, Hock M, Butenko O, Prajerova I, Anderova M, Chvatal A (2009) Quanti fi cation of astrocyte volume changes during ischemia in situ reveals two populations of astrocytes in the cortex of GFAP/EGFP mice. J Neurosci Res 87:96-111.

    Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, G?tz M M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27:8654-8664.

    Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Gotz M (2008) Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105:3581-3586.

    Burda J, Sofroniew M (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229-248.

    Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183-192.

    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264-278.

    Clarkson AN, Lopez-Valdes HE, Overman JJ, Charles AC, Brennan KC, Thomas Carmichael S (2013) Multimodal examination of structural and functional remapping in the mouse photothrombotic stroke model. J Cereb Blood Flow Metab 33:716-723.

    Dimou L, G?tz M (2014) Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 94:709-737.

    Ding S, Wang T, Cui W, Haydon PG (2009) Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia 57:767-776.

    Ding S (2013) In vivo astrocytic Ca2+ signaling in health and brain disorders. Future Neurol 8:529-554.

    Ding S (2014) Ca2+signaling in astrocytes and its role in ischemic stroke. Adv Neurobiol 11:189-211.

    Escartin C, Bonvento G (2008) Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 38:231-241.

    Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimers disease model. Cell Stem Cell 14:188-202.

    Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands de fi ned by the territory of a single astrocyte. J Neurosci 27:6473-6477.

    Haupt C, Witte OW, Frahm C (2007) Up-regulation of Connexin43 in the glial scar following photothrombotic ischemic injury. Mol Cell Neurosci 35:89-99.

    Hayakawa K, Nakano T, Irie K, Higuchi S, Fujioka M, Orito K, Iwasaki K, Jin G, Lo EH, Mishima K, Fujiwara M (2010) Inhibition of reactive astrocytes with fl uorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 30:871-882.

    Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, Tiedt S, Schroeder T, G?tz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype speci fi c functional neurons. PLoS Biol 8:e1000373.

    Figure 1 Time course of astrocyte proliferation and morphological changes after stroke.

    Figure 2 Schematic representations of dynamic reactive astrocytes in the penumbra and glial scar formation at different stages after a focal ischemic stroke.

    Li H, Zhang N, Lin H, Yu Y, Cai QM (2014) Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice. BMC Neurosci 15:58.

    Li H, Zhang N, Sun G, Ding S (2013) Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia. ASN Neuro 5:195-207.

    Li X, Blizzard KK, Zeng Z, DeVries AC, Hurn PD, McCullough LD (2004) Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol 187:94-104.

    Mestriner RgG, Saur L, Bagatini PB, Baptista PP, Vaz SP, Ferreira K, Machado SA, Xavier Ld, Netto CA (2015) Astrocyte morphology after ischemic and hemorrhagic experimental stroke has no in fl uence on the different recovery patterns. Behav Brain Res 278:257-261.

    Molofsky AV, Kelley KW, Tsai HH, Redmond SA, Chang SM, Madireddy L, Chan JR, Baranzini SE, Ullian EM, Rowitch DH (2014) Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509:189-194.

    Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M (2006) Inducible gene deletion in astroglia and radial glia is valuable tool for functional and lineage analysis. Glia 54:21-34.

    Nowicka D, Rogozinska K, Aleksy M, Witte OW, Skangiel-Kramska J (2008) Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp 68:155-68.

    Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A Neurovascular Niche for Neurogenesis after Stroke. J Neurosci 26:13007-13016.

    Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287-298.

    Robel S, Berninger B, Gotz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12:88-104.

    Schroeter M, Jander S, Stoll G (2002) Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of in fl ammatory responses. J Neurosci Methods 117:43-49.

    Shen J, Ishii Y, Xu G, Dang TC, Hamashima T, Matsushima T, Yamamoto S, Hattori Y, Takatsuru Y, Nabekura J, Sasahara M (2012) PDGFR-β as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 32:353-367.

    Shimada IS, Borders A, Aronshtam A, Spees JL (2011) Proliferating reactive astrocytes are regulated by notch-1 in the peri-infarct area after stroke. Stroke 42:3231-3237.

    Shimada IS, LeComte MD, Granger JC, Quinlan NJ, Spees JL (2012) Self-renewal and differentiation of reactive astrocyte-derived neural stem/ progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci 32:7926-7940.

    Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, et al. (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic Hedgehog. Cell Stem Cell 12:426-439.

    Sofroniew M, Vinters H (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7-35.

    Stapf C, Mohr JP (2002) Ischemic stroke therapy. Annu Rev Med 53:453-475.

    Stoll G, Jander S, Schroeter M (1998) In fl ammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149-171.

    Su Z, Niu W, Liu ML, Zou Y, Zhang CL (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:3338-3353.

    Takata N, Hirase H (2008) Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo. PLoS One 3:e2525.

    Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O (2014) Neurogenesis and in fl ammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 10:1573-1584.

    Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodroguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4.

    Wagner DC, Scheibe J, Glocke I, Weise G, Deten A, Boltze J, Kranz A (2013) Object-based analysis of astroglial reaction and astrocyte subtype morphology after ischemic brain injury. Acta Neurobiol Exp (Wars) 73:79-87.

    Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fi brotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870-12886.

    Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, Ellisman MH, Pekny M (2006) Rede fi ning the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103:17513-17518.

    Xie Y, Wang T, Sun GY, Ding S (2010) Speci fi c disruption of astrocytic Ca2+signaling pathway in vivo by adeno-associated viral transduction. Neuroscience 170:992-1003.

    Young CC, van der Harg JM, Lewis NJ, Brooks KJ, Buchan AM, Szele FG (2013) Ependymal ciliary dysfunction and reactive astrocytosis in a reorganized subventricular zone after stroke. Cereb Cortex 23:647-659.

    Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391-6410.

    Zhang W, Xie Y, Wang T, Bi J, Li H, Zhang LQ, Ye SQ, Ding S (2010) Neuronal protective role of PBEF in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30:1962-1971.

    Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588-594.

    Zhou M, Kimelberg HK (2000) Freshly isolated astrocytes from rat hippocampus show two distinct current patterns and different [K+]ouptake capabilities. J Neurophysiol 84:2746-2757.

    10.4103/1673-5374.147929

    Shinghua Ding, Ph.D., Department of Bioengineering, University of Missouri-Columbia, Dalton Cardiovascular Aesearch Center, 134 Research Park Drive, Columbia, MO65211, USA, dings@missouri.edu.

    http://www.nrronline.org/

    Accepted: 2014-11-05

    69av精品久久久久久| 亚洲最大成人手机在线| 熟妇人妻不卡中文字幕| 天天一区二区日本电影三级| 日韩av在线免费看完整版不卡| www.色视频.com| 听说在线观看完整版免费高清| 成年人午夜在线观看视频 | 国产精品99久久久久久久久| 2021天堂中文幕一二区在线观| 九色成人免费人妻av| 春色校园在线视频观看| 国产综合懂色| 国产精品1区2区在线观看.| 国产一区二区三区av在线| 一边亲一边摸免费视频| 日本欧美国产在线视频| 欧美一级a爱片免费观看看| 国产精品1区2区在线观看.| 亚洲欧美精品专区久久| 听说在线观看完整版免费高清| 最近2019中文字幕mv第一页| 联通29元200g的流量卡| 国产精品综合久久久久久久免费| 亚洲欧洲日产国产| 国模一区二区三区四区视频| 午夜福利视频1000在线观看| 精品久久久久久久末码| 嫩草影院精品99| 国产成人福利小说| 久99久视频精品免费| 夜夜爽夜夜爽视频| 大话2 男鬼变身卡| 3wmmmm亚洲av在线观看| 一个人免费在线观看电影| 午夜福利视频精品| 超碰97精品在线观看| 成人午夜精彩视频在线观看| 国产乱人视频| 国产亚洲最大av| 老司机影院成人| 十八禁国产超污无遮挡网站| 你懂的网址亚洲精品在线观看| 久久精品久久久久久噜噜老黄| 五月玫瑰六月丁香| 国产淫片久久久久久久久| 精品人妻一区二区三区麻豆| 三级男女做爰猛烈吃奶摸视频| 最新中文字幕久久久久| 成人无遮挡网站| 亚洲国产成人一精品久久久| 黄色一级大片看看| 日本wwww免费看| 免费大片18禁| 狠狠精品人妻久久久久久综合| 人妻一区二区av| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 日本一二三区视频观看| 亚洲人成网站高清观看| 国产永久视频网站| 精品久久久久久久久av| 国产视频内射| 少妇高潮的动态图| 亚洲伊人久久精品综合| 亚洲四区av| 国产高清三级在线| 日本黄大片高清| 五月玫瑰六月丁香| 2021少妇久久久久久久久久久| 日日啪夜夜爽| 亚洲欧美一区二区三区黑人 | 一级av片app| 久久久久久久久久成人| 在线观看一区二区三区| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 国产av码专区亚洲av| 久久久久久伊人网av| 一本久久精品| 美女被艹到高潮喷水动态| 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 欧美成人一区二区免费高清观看| 女人被狂操c到高潮| 国产在线男女| 插逼视频在线观看| 国产亚洲91精品色在线| 韩国av在线不卡| 亚洲欧美成人精品一区二区| 亚洲熟女精品中文字幕| 国产在视频线精品| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 亚洲精品影视一区二区三区av| 亚洲精品一区蜜桃| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 51国产日韩欧美| 国产成人午夜福利电影在线观看| 亚洲精品成人久久久久久| 免费观看无遮挡的男女| 亚洲美女搞黄在线观看| 亚洲欧美一区二区三区黑人 | 高清av免费在线| 毛片女人毛片| 成人欧美大片| 深夜a级毛片| 免费观看性生交大片5| 亚洲精品国产av蜜桃| 欧美最新免费一区二区三区| 国产亚洲91精品色在线| 国产单亲对白刺激| 亚洲av二区三区四区| 七月丁香在线播放| 熟女人妻精品中文字幕| 欧美激情久久久久久爽电影| 七月丁香在线播放| 国产精品美女特级片免费视频播放器| 成人高潮视频无遮挡免费网站| 日韩伦理黄色片| 97热精品久久久久久| 十八禁国产超污无遮挡网站| 汤姆久久久久久久影院中文字幕 | 成年女人在线观看亚洲视频 | 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 波野结衣二区三区在线| 国产黄a三级三级三级人| 日韩一区二区三区影片| 久久久久久久久久人人人人人人| 天堂√8在线中文| 老司机影院成人| 国产又色又爽无遮挡免| eeuss影院久久| 18禁在线无遮挡免费观看视频| 老师上课跳d突然被开到最大视频| 亚洲欧美精品自产自拍| 免费大片18禁| av在线老鸭窝| 欧美日韩在线观看h| 色播亚洲综合网| 又爽又黄a免费视频| 国产免费一级a男人的天堂| 国国产精品蜜臀av免费| 午夜精品国产一区二区电影 | 亚洲精品aⅴ在线观看| 乱人视频在线观看| 又爽又黄a免费视频| 国产高潮美女av| 淫秽高清视频在线观看| 国产单亲对白刺激| 在线a可以看的网站| 日韩av免费高清视频| 99热全是精品| 日本熟妇午夜| 国产精品一及| 久久久久精品性色| 伦精品一区二区三区| 国内揄拍国产精品人妻在线| 免费观看的影片在线观看| 日韩一区二区视频免费看| 人人妻人人澡欧美一区二区| 欧美激情在线99| 丝袜喷水一区| 22中文网久久字幕| 免费观看性生交大片5| 国产综合懂色| 久久精品人妻少妇| 啦啦啦中文免费视频观看日本| 伊人久久国产一区二区| 高清午夜精品一区二区三区| 国内揄拍国产精品人妻在线| 亚洲内射少妇av| 国产精品人妻久久久影院| 男女边吃奶边做爰视频| 午夜免费男女啪啪视频观看| 尾随美女入室| 中文天堂在线官网| 五月伊人婷婷丁香| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 国产白丝娇喘喷水9色精品| 久久精品国产自在天天线| 18禁在线播放成人免费| 婷婷色综合www| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区三区四区免费观看| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| 狂野欧美白嫩少妇大欣赏| 天堂网av新在线| 欧美xxⅹ黑人| 日韩三级伦理在线观看| 成年人午夜在线观看视频 | 不卡视频在线观看欧美| 亚洲欧美精品专区久久| 色哟哟·www| 偷拍熟女少妇极品色| 在现免费观看毛片| 午夜精品国产一区二区电影 | 亚洲va在线va天堂va国产| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 精品久久久久久久末码| 天堂av国产一区二区熟女人妻| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| av在线亚洲专区| 色综合亚洲欧美另类图片| 少妇人妻精品综合一区二区| 大香蕉久久网| 九色成人免费人妻av| 晚上一个人看的免费电影| 成年女人看的毛片在线观看| 日韩强制内射视频| 高清在线视频一区二区三区| 久久久亚洲精品成人影院| 91久久精品国产一区二区成人| 欧美一级a爱片免费观看看| 美女大奶头视频| 日韩亚洲欧美综合| 日本熟妇午夜| 久久久国产一区二区| 特大巨黑吊av在线直播| 国产精品一区二区性色av| 日本av手机在线免费观看| 亚洲在线观看片| 91aial.com中文字幕在线观看| 性色avwww在线观看| 91精品一卡2卡3卡4卡| 国产精品久久久久久精品电影| 久久精品国产亚洲网站| 熟女电影av网| 九色成人免费人妻av| 建设人人有责人人尽责人人享有的 | 嫩草影院精品99| 天堂影院成人在线观看| 国产亚洲5aaaaa淫片| 亚洲综合精品二区| 国产精品99久久久久久久久| 亚洲国产欧美在线一区| 久久久久久久大尺度免费视频| 日韩欧美 国产精品| 色播亚洲综合网| 赤兔流量卡办理| 日韩制服骚丝袜av| 韩国av在线不卡| 日本免费在线观看一区| 日韩强制内射视频| 观看免费一级毛片| av免费观看日本| 国产老妇伦熟女老妇高清| 久久鲁丝午夜福利片| 国产精品一区二区三区四区久久| 中文字幕亚洲精品专区| 成人毛片a级毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久人妻蜜臀av| 热99在线观看视频| 在线免费观看不下载黄p国产| 精品国产露脸久久av麻豆 | 日韩视频在线欧美| 日韩伦理黄色片| 国产中年淑女户外野战色| 亚洲成人av在线免费| 亚洲av一区综合| 精品国内亚洲2022精品成人| 亚洲欧美成人综合另类久久久| 国产乱来视频区| 大话2 男鬼变身卡| 91精品伊人久久大香线蕉| 人人妻人人看人人澡| 99久久中文字幕三级久久日本| 91精品国产九色| 亚洲激情五月婷婷啪啪| 午夜福利视频1000在线观看| 九草在线视频观看| 国产视频首页在线观看| 丝袜喷水一区| 少妇丰满av| a级毛色黄片| 我的老师免费观看完整版| 精品久久久久久久末码| 99re6热这里在线精品视频| 麻豆国产97在线/欧美| 精品人妻一区二区三区麻豆| 97人妻精品一区二区三区麻豆| 久久久久精品性色| 美女脱内裤让男人舔精品视频| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 九九爱精品视频在线观看| 自拍偷自拍亚洲精品老妇| 亚洲欧美中文字幕日韩二区| av天堂中文字幕网| 少妇裸体淫交视频免费看高清| 国产淫语在线视频| 色吧在线观看| 精品久久久久久成人av| 国产真实伦视频高清在线观看| 国产美女午夜福利| 免费观看在线日韩| 国产成人a∨麻豆精品| 亚洲,欧美,日韩| 精品久久国产蜜桃| 99热这里只有是精品50| 色综合亚洲欧美另类图片| 欧美日韩亚洲高清精品| 精品人妻偷拍中文字幕| 一本久久精品| 色综合色国产| 国产精品女同一区二区软件| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 欧美成人精品欧美一级黄| 亚洲精品乱码久久久久久按摩| 高清欧美精品videossex| 国产精品一区二区在线观看99 | 天堂影院成人在线观看| 日本午夜av视频| 99久国产av精品国产电影| 三级经典国产精品| 欧美性猛交╳xxx乱大交人| 久久精品熟女亚洲av麻豆精品 | 女人被狂操c到高潮| 亚洲av中文av极速乱| av女优亚洲男人天堂| 亚洲国产高清在线一区二区三| 国产精品久久视频播放| 亚洲最大成人中文| 少妇裸体淫交视频免费看高清| 国产又色又爽无遮挡免| 精品久久久久久久久av| 精品久久久噜噜| 99久久中文字幕三级久久日本| 丝瓜视频免费看黄片| 3wmmmm亚洲av在线观看| 免费看日本二区| 免费看a级黄色片| 午夜激情福利司机影院| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 精品一区二区三区人妻视频| 美女cb高潮喷水在线观看| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 麻豆成人av视频| 国产一区二区亚洲精品在线观看| 天堂网av新在线| 99久久中文字幕三级久久日本| 欧美高清性xxxxhd video| 日韩av在线免费看完整版不卡| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看 | h日本视频在线播放| 日本免费a在线| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品456在线播放app| 亚洲激情五月婷婷啪啪| 午夜福利视频1000在线观看| 午夜免费男女啪啪视频观看| 国产精品三级大全| 国产精品麻豆人妻色哟哟久久 | 黄色欧美视频在线观看| 精品国产三级普通话版| 国产亚洲一区二区精品| 午夜福利在线在线| 国产美女午夜福利| 免费观看av网站的网址| 免费观看性生交大片5| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 日本三级黄在线观看| 日韩欧美 国产精品| 高清欧美精品videossex| 黄色一级大片看看| 中国国产av一级| 真实男女啪啪啪动态图| 欧美日韩精品成人综合77777| 婷婷色av中文字幕| 男女边摸边吃奶| 国产成人aa在线观看| 永久网站在线| 一个人观看的视频www高清免费观看| 欧美+日韩+精品| 超碰av人人做人人爽久久| 日韩在线高清观看一区二区三区| 一级片'在线观看视频| 尤物成人国产欧美一区二区三区| 少妇被粗大猛烈的视频| 久久99热6这里只有精品| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 国产成人freesex在线| 噜噜噜噜噜久久久久久91| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 欧美3d第一页| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区免费观看| 日本免费a在线| 内射极品少妇av片p| 色哟哟·www| 精品国内亚洲2022精品成人| 久久这里只有精品中国| 亚洲成人一二三区av| 精品一区二区三区人妻视频| 久久综合国产亚洲精品| 成人亚洲精品av一区二区| 精品一区二区三区人妻视频| 国产亚洲最大av| 欧美成人午夜免费资源| 色网站视频免费| 国产高潮美女av| 久久久精品94久久精品| 卡戴珊不雅视频在线播放| 国产精品嫩草影院av在线观看| 亚洲av在线观看美女高潮| 国产毛片a区久久久久| 日本午夜av视频| 最后的刺客免费高清国语| 久久久久久久久中文| 2022亚洲国产成人精品| 又粗又硬又长又爽又黄的视频| 午夜精品在线福利| 国产色婷婷99| 寂寞人妻少妇视频99o| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 国产成人freesex在线| 国产精品一区二区三区四区久久| 免费看日本二区| 男的添女的下面高潮视频| 在线观看免费高清a一片| 久久这里有精品视频免费| 少妇丰满av| 水蜜桃什么品种好| 亚洲成人av在线免费| 一夜夜www| 可以在线观看毛片的网站| 亚洲精品,欧美精品| 97热精品久久久久久| 看黄色毛片网站| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 小蜜桃在线观看免费完整版高清| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线播| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 国产精品99久久久久久久久| 有码 亚洲区| 日韩欧美一区视频在线观看 | 国产精品不卡视频一区二区| 少妇猛男粗大的猛烈进出视频 | 日日撸夜夜添| 久久这里有精品视频免费| 偷拍熟女少妇极品色| 女人久久www免费人成看片| 亚洲精品国产av成人精品| 三级国产精品欧美在线观看| 免费在线观看成人毛片| 免费播放大片免费观看视频在线观看| 国产成人精品一,二区| 亚洲精品国产成人久久av| 天天一区二区日本电影三级| 午夜免费激情av| 一区二区三区高清视频在线| 男人狂女人下面高潮的视频| 美女国产视频在线观看| 成人午夜精彩视频在线观看| 国产av国产精品国产| 成人亚洲欧美一区二区av| 国产淫片久久久久久久久| 人人妻人人澡欧美一区二区| 国产在线一区二区三区精| 天堂√8在线中文| 久久久久免费精品人妻一区二区| 天天躁日日操中文字幕| 寂寞人妻少妇视频99o| 国产精品国产三级国产专区5o| 在线观看一区二区三区| 日韩视频在线欧美| 综合色丁香网| 高清午夜精品一区二区三区| 久久人人爽人人片av| 男女下面进入的视频免费午夜| 国产成人a区在线观看| 精品一区在线观看国产| 国产精品一区二区三区四区免费观看| 精品欧美国产一区二区三| 久久99精品国语久久久| 亚洲精品乱码久久久v下载方式| 亚洲熟妇中文字幕五十中出| 久久久久久久久久成人| 亚洲欧美清纯卡通| 亚洲真实伦在线观看| av线在线观看网站| 九色成人免费人妻av| 一个人看视频在线观看www免费| 一区二区三区乱码不卡18| av网站免费在线观看视频 | 久久精品人妻少妇| 99热这里只有精品一区| 床上黄色一级片| 国产一区二区三区综合在线观看 | 男女国产视频网站| 网址你懂的国产日韩在线| 五月天丁香电影| 亚洲成人精品中文字幕电影| 又爽又黄a免费视频| 精品一区在线观看国产| 人人妻人人澡人人爽人人夜夜 | 九九在线视频观看精品| 韩国av在线不卡| 国产精品av视频在线免费观看| 成人一区二区视频在线观看| 女人十人毛片免费观看3o分钟| 日本黄大片高清| 国产单亲对白刺激| av又黄又爽大尺度在线免费看| 久久久久免费精品人妻一区二区| 一区二区三区乱码不卡18| 神马国产精品三级电影在线观看| 内地一区二区视频在线| 九色成人免费人妻av| 成人高潮视频无遮挡免费网站| 男人和女人高潮做爰伦理| 深夜a级毛片| 一级爰片在线观看| 在线观看美女被高潮喷水网站| 精品国产露脸久久av麻豆 | 日本黄大片高清| 婷婷色av中文字幕| 777米奇影视久久| 国产成人freesex在线| 日韩亚洲欧美综合| 五月伊人婷婷丁香| 国产淫语在线视频| 91久久精品国产一区二区成人| 91久久精品电影网| 欧美高清性xxxxhd video| 国产一区二区亚洲精品在线观看| 三级经典国产精品| 非洲黑人性xxxx精品又粗又长| 精品久久久久久电影网| kizo精华| 男插女下体视频免费在线播放| 黄片无遮挡物在线观看| 丝袜喷水一区| 一夜夜www| 1000部很黄的大片| 亚洲人成网站在线播| 夫妻午夜视频| 老司机影院毛片| 非洲黑人性xxxx精品又粗又长| 免费av毛片视频| 久久久久免费精品人妻一区二区| 免费观看的影片在线观看| 亚洲欧美日韩无卡精品| 国产免费又黄又爽又色| 嫩草影院新地址| 边亲边吃奶的免费视频| 内地一区二区视频在线| 国产亚洲最大av| 精品国产露脸久久av麻豆 | 国产爱豆传媒在线观看| 亚洲图色成人| 狂野欧美激情性xxxx在线观看| 夫妻性生交免费视频一级片| 国产精品一二三区在线看| 国产欧美另类精品又又久久亚洲欧美| 国产成人freesex在线| 亚洲欧美中文字幕日韩二区| 国产精品av视频在线免费观看| 97超碰精品成人国产| 春色校园在线视频观看| 日本午夜av视频| 日韩欧美一区视频在线观看 | 亚洲欧美精品自产自拍| av免费观看日本| av专区在线播放| 午夜福利在线观看吧| 国产永久视频网站| 久久精品国产亚洲av天美| 乱人视频在线观看| 国产成人精品久久久久久| 亚洲av不卡在线观看| av一本久久久久| 你懂的网址亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 亚洲国产欧美人成| 99视频精品全部免费 在线| 免费看日本二区| 一级a做视频免费观看| 国产男女超爽视频在线观看| 三级国产精品片| 国产男人的电影天堂91| 天天一区二区日本电影三级| 最近2019中文字幕mv第一页| 我的女老师完整版在线观看| 国产精品99久久久久久久久| 能在线免费观看的黄片| 国产精品久久久久久精品电影| 熟妇人妻久久中文字幕3abv| 能在线免费观看的黄片| 七月丁香在线播放| 亚洲欧美日韩东京热| 午夜激情欧美在线| 国产成年人精品一区二区| 亚洲无线观看免费| 国产精品久久久久久精品电影小说 |