• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Waveguide Invariant and Passive Ranging Using Double Element

    2011-07-25 06:22:02YUYun余赟HUIJunying惠俊英CHENYang陳陽LINFang林芳
    Defence Technology 2011年3期
    關(guān)鍵詞:林芳陳陽

    YU Yun(余赟),HUI Jun-ying(惠俊英),CHEN Yang(陳陽),LIN Fang(林芳)

    (1.Science and Technology on Underwater Acoustic Laboratory,Harbin Engineering University,Harbin 150001,Heilongjiang,China;2.Department of Physics and Electrical Information Engineering,Daqing Normal University,Daqing 163712,Heilongjiang,China)

    Introduction

    The passive ranging technology has been researched for sonar system.The main passive ranging technologies conclude the three-element array passive ranging technology[1]which uses a high-precision time delay estimation and provides the relative ranging error of about 15%at 10 km,the bearing-time delay difference-based target motion analysis[2]of which position accuracy is better than the three-element array passive ranging technology[3],the matched field-based ranging technology of which position accuracy is similar to the three-element array passive[4-5]ranging technology but its range is farther,and the focused beamforming-based passive ranging technology which is suitable for highprecision positioning in the near sound field.The performance of the first three-element array and bearingtime delay difference-based target motion analysis passive ranging technologies decline sharply when they are used in the towed linear array sonar whose relative position of the array element is unstable,while the matched field-based ranging technology needs the accurate prior knowledge of marine environment to model the sound field,which requires the deep pre-investigation of the ocean region in which the technique is used,and it is difficult to be used in unfamiliar oceans.Therefore,this paper tries to explore a robust passive ranging algorithm applicable to the towed line array sonar.

    The interference structure,which is divided into line spectrum and continuous spectrum interference structures,exists stably in low-frequency sound field.The features and applications of the line spectrum interference structure were discussed in Ref.[6 - 7].The continuous spectrum interference structure will be discussed in this paper,and it is hoped to realize passive ranging based on it.The continuous spectrum interference structures observed in a shallow sea trial are shown in Fig.1,where Fig.1(a)shows the acoustic field interference fringes of targets at middle and short ranges obtained from the tracking beam output of the towed linear array sonar,and Fig.1(b)shows the acoustic field interference fringes of target at long range obtained from the same sonar.Although both the receiving array and the target move,the interference fringes in LOFARgram are still visible and obvious,which indicates the interference structure in low-frequency acoustic field is indeed stable and observable.

    Fig.1 Interference fringes of the acoustic field obtained from the tracking beam output of the towed linear array sonar

    The waveguide invariant[8-14],usually designated asβ,was proposed by Chuprov,a Russian scholar,in 1982,which is used to describe the continuous spectrum interference fringes in LOFARgram obtained by processing the acoustic signals from moving broadband source.The invariantβis used to denote the relationship among the slope of the interference fringe,dω/dr,the rangerfrom the source and the frequencyω,describe the dispersive propagation characteristics of the acoustic field,and provide a descriptor of constructive/destructive interference structure in a single scalar parameter.In this paper,the expression of the interference fringe is derived by combining the waveguide invariant and the geometric relationship of the target moving trajectory,and the target motion parameters are estimated by image processing.And then the passive ranging can be realized based on double element or double array model,which can be two arrays split from a large array in the actual application.

    1 Waveguide Invariant β and the Expression of Interference Fringe

    According to the definition,the waveguide invariant in the range-independent waveguide can be expressed as[13]:

    whereωis the frequency of acoustic signal,ris the range from the source,βis the waveguide invariant,whose value is 1 in the Pekeris waveguide[15],vanduare the average phase velocity and the average group velocity,respectively.

    Therefore,βcan be predicted using Eq.(1)by modeling the acoustic field to get the mode phase velocity and group velocity if the information on the ocean environment is prior known accurately,which is difficult in practice.However,the first term in Eq.(1)shows that based on the image processing the value ofβcan be estimated by extracting the slope of the interference fringes in LOFARgram,which is obtained by STFT.

    The origin of coordinates is located at the acoustic center of the single sensor or the array.Provided that the target radiates continuously broadband signals and moves in a uniform rectilinearity,the linear speed isv,the range at the closest point of approach(CPA)isr0,the corresponding time ist0,θis target bearing,andφis the heading angle which is defined as the angle between the positive axis ofxand the target moving direction.The geometry relation of target movement is shown in Fig.2.The moving trajectory of the target can be expressed as:

    Fig.2 Moving geometry relation of target

    It can be seen from Fig.2 that:

    It can be derived from Eq.(4)and(5):

    The slope df/dτof the interference fringes can be written as:

    And Eq.(1)can be expressed as:

    It can be known from Eq.(3)that

    Substituting the Eq.(8)and Eq.(9)into Eq.(7),we have

    Then both the sides of the above equation are integrated and rearranged,we have

    Eq.(11)is just the trajectory equation of the interference fringes,which indicates that the interference fringes are a family of quasi-hyperbolas in shallow water.Whenβμ1,Eq.(11)can be simplified as a standard hyperbola equation in which apex is(t0,f0),wheref0is the frequency corresponding toτ=0,namely,f(0)=f0.

    2 Parameter Estimation via Hough Transform

    Hough transform[16]is an image processing method for edge detection,which is suitable to detect arbitrary curve.The Hough transform is to map the points on the same curve in the image space onto a family of curves intersected at a point in the parameter space,and the coordinate of the intersection reflects the parameter of the curve in the image space.The intensity of each element(a,b)in the parameter space is the cumulative intensity of the points on the curve characterized by the parameters(a,b)in the image space,so the parameters of the curve can be achieved by searching the maximum element in the parameter space.

    In this paper,Hough transform is used to process the LOFARgram and bearing-time records to estimate the parameters.For the former,LOFARgram is just the image space mentioned above,in which the curves are determined by Eq.(11).Provided thatt0andf0can be gotten directly from the LOFARgram,while the parameter space is a plane which takesr0/vas the horizontal axis and the waveguide invariantβas the vertical axis.Similarly,for the latter,the bearing-time record is an image space,in which the curves are determined by Eq.(6),while the parameter space is a plane which takesr0/vas the horizontal axis and the heading angle as the vertical axis.

    The simulation results of LOFARgram and its Hough transform are shown in Fig.3.The Hough transform of LOFARgram are performed fort0=0 s andf0=637 Hz as the apex of some interference fringe,as shown in Fig.3(b)and Fig.3(c).Then the parameters can be estimated by searching the maximum element in the parameter space:β=0.97 andr0/v=99.2,where the true value ofr0/vis 100,which indicates that Hough transform has high accuracy.The curve shown in Fig.3(a)as the dotted line can be achieved by substituting the estimated parameters into Eq.(11),which coincides with the bright fringe in LOFARgram.

    Fig.3 LOFARgram and the results of Hough transform

    Assuming that the heading angle of target is 30°,and the targets moves from far to near then the opposite,the remaining conditions are the same as the above.The bearing-time records estimated by acoustic intensity average using the vector sensor are shown in Fig.4(a).In the same way,the bearing-time records are processed by selectingt0=0 as a reference and the Eq.(6)as the Hough transform template,and the parameter space is shown in Fig.4(b).φandr0/vcan be estimated synchronously by searching the brightest pix of parameter space,they are 30°and 100 s,respectively,and the latter is exactly equal to the true value.But in practice,the bearing estimate differs from the real value by several degrees in bearing-time records,so there will be a corresponding estimated error with the parameters we concerned.

    Fig.4 The Bearing-time records and the result of Hough transform

    3 The Principle of Passive Ranging Using Double Array(Element)

    From Eq.(11)and the parameter estimation discussed in the previous section,it can be seen that only the ratio ofr0/vcan be obtained by a single vector sensor or a single array.Therefore,the problem of passive ranging can not be solved entirely.So the model of double element or double array is adopted to realize the passive ranging,which has a far detecting range and a lot of application aspects,such as shore station,surface ship or submarine.

    A double array element model is adopted as an example to explain the ranging principle,the principle using double array is the same as the former,but its operating range is father and the direction finding is more accurate.The ranging model is shown in Fig.5.The two array elements are placed onxaxis,and the array element spacing isL=d.Assuming that the target moves in a uniform linearity,its speed isv,and its heading angle isφ.The distances from the target to element 1 and 2 arer1andr2,and the corresponding bearing angles areθ1andθ2,respectively.Relative to element 1 and element 2,the ranges at the closest point of approach(CPA)arer01andr02,and the times at CPA aret01andt02,respectively.If the origin is used as a reference,the range at CPA and the time at CPA arer0andt0,respectively.

    Fig.5 Double element based positioning model

    LOFARgram 1 and LOFARgram 2 can be achieved by processing the signals received by element 1 and 2 using STFT.At the same time,the bearing-time records 1 and bearing-time records 2 can be achieved by bearing estimation.The four figures are the premise of further passive ranging.Four ranging algorithms will be introduced in the following sections.

    3.1 Algorithm 1

    The time delayTof the target moving from pointAto pointBshown in Fig.5 can be estimated by putting image cross-correlation,also called two-dimensional correlation,on two LOFARgrams,at the same time,t01andt02can be gotten easily.The heading angle can be estimated using Hough transform to process some bearing-time records,and the average value ofφ1andφ2can be adopted if Hough transform have be done to both the bearing-time records.So the navigation speed of the target can be expressed as:

    Because the element spacingdis known,the speedvcan be estimated using Eq.(12).

    The Hough transform of two LOFARgrams can be done to estimater01/vandr02/v:

    whereaandbare the values obtained by searching a maximum in parameter space of Hough transform.The ranges at CPA relative to two elements are

    Therefore,the range at CPA of target relative to the origin can be expressed as:

    And the time at CPA relative to the origin is

    So the horizontal distance of target is

    The above equation can be used to estimate the horizontal distance of target.The advantage of this algorithm is simple,but the ranging accuracy is poor when the heading angle of target is close to 90°,and it is inapplicable forφ=90°.

    3.2 Algorithm 2

    Similarly,the heading angleφcan be estimated by processing the bearing-time records using Hough transform,then the ratios of the ranges at CPA relative to two elements to the target speed can be obtained by processing the LOFARgrams using Hough transform,which areaandb,respectively.The simultaneous equations are as follows:

    The solution of the above equations is

    Based on the Eq.(19),the horizontal range of target can be estimated by Eq.(15),(16)and(17).

    This algorithm is also simple,and its calculation amount is less without image correlation.It is suitable to ranging forφ=90°,and the larger the heading angle is,the better the ranging accuracy is.However,the accuracy is poor when the heading angle is small(for example,the target is near the axial direction of the array),and the algorithm is inapplicable forφ=0°.In addition,it can be seen from the first equation of Eq.(19)that the robustness of this algorithm is poor because the target speed is determined by the difference betweenaandb,and the estimated errors caused by Hough transform are random.

    3.3 Algorithm 3

    The heading anglesφ1andφ2,and the ratiosmandnof the ranges at CPA relative to two elements to the target speed can be estimated synchronously by processing the bearing-time records using Hough transform,we have:

    The next step of this algorithm is the same as Algorithm 2.We have

    Then the following steps are also the same as the algorithms mentioned above.

    3.4 Algorithm 4

    This algorithm is obviously different from the algorithms mentioned above.It utilizes the definition of the waveguide invariant.

    Similarly,the waveguide invariantβandr01/v=acan be estimated synchronously by processing LOFAR-grams using Hough transform,and the heading angleφandr01/v=ccan also be obtained by processing the bearing-time records using Hough transform.So the difference of ranges at CPA relative to two elements Δr0can be expressed as:

    The frequenciesf01iandf02j,whereiandjare the numbers of interference fringes,of the corresponding interference fringes at CPA can be extracted easily from two LOFARgrams.So the frequency difference of the corresponding interference fringes can be expressed as:

    Therefore,it can be seen from Eq.(8)that the ranges at CPA of target relative to each element are as follows:

    In this way,the range at CPA relative to the origin can be estimated as:

    and the navigation speedvLandvbof the target are expressed using Eq.(27)and(28),where the subscripts denote the ratio of the range at CPA to the target's speed used to estimate the speed is estimated by processing the LOFARgram or the bearing-time records.

    Finally,the range of the target can be expressed as:

    wherercan be estimated by=vLand=vb,respectively,and the average value of two results is used as the final estimation of target range.The range of the target can also be obtained directly by substituting=(vL+vb)/2 into Eq.(29).

    4 Simulation Research

    The simulation researches have been conducted to verify the correctness of four algorithms proposed above and to evaluate the ranging accuracy of each algorithm.

    The conditions used in the simulation are as follows:the Pekeris model is used.The sea depth isH=55 m.The acoustic velocity and the density of water arec1=1 500 m/s andρ1=1 000 kg/cm3,respectively.While the acoustic velocity and the density of bottom medium arec2=1 610 m/s andρ2=1 900 kg/cm3,respectively.The effect of absorption is negligible.The depth of the vector sensors arezr=30 m,the element spacing isd=120 m.Supposing that the target cruises in the same depth which iszs=4 m,the speed of navigation isv=12 m/s,and the range at the CPA isr0=1 320 m.The time at the CPA is set as 0 time,and the time is defined negative when the target moves towards the receiver,and vice versa.The heading angle is 30°.The working band is 300 ~1 000 Hz.The acoustic field is modeled using the KRAKENC program.

    It can be known from the above analysis that the advantage of Algorithm 1,of which ranging accuracy is dependent on the time delay estimation accuracy is to estimate the range of target at the heading angle of 0°.The time delay estimation results obtained by image cross-correlation under different heading angles are shown in Tab.1,whereτ,and Δτare the true value,estimated value and the relative estimated error of the time delay,respectively.The results indicate that,when the heading angle is 0°,the relative estimated error is 0 which causes the high ranging accuracy,and the time delay estimation accuracy roughly reduces with the increase in heading angle.If the range accuracy is required to be better than 15%,then the condition for Algorithm 1 is that the heading angle is smaller than 10°.

    Tab.1 Time delay estimation results obtained by image cross-correlation under different heading angles

    Ranging results and relative errors of four algorithms when heading angles are 10°,30°and 90°are shown in Fig.6 to Fig.8,where(a)of each figure shows the ranging results,while(b)shows the corresponding relative ranging errors.It can be seen from the comparison of the results in the figures that:first,the relative ranging error of Algorithm 1 is about 9.2%when the heading angle is 10°,while the error is about 23.4%when the heading angle is 30°,which once again verifies that Algorithm 1 is suitable for small heading angle,especially for 0°heading angle at which Algorithm 2,3 and 4 are inapplicable.Second,Algorithm 2,3 and 4 have enough passive range accuracy when the heading angle is large,and the general trend is that the larger the heading angle is,the better the range accuracy is.

    Fig.6 Ranging results and relative errors of four algorithms at 10°heading angle

    5 Conclusions

    The stable interference structure of the low-frequency continuous spectrum acoustic field has been observed in the sea trials.For a target moving towards a receiver from far to near,and then moving away form the receiver,the equation of the interfe-rence fringes has been derived based on the concept of waveguide invariant and the geometric relationship of target moving trajectory,indicating that the interference fringes are a family of quasi hyperbolas.The heading angleφ,waveguide invariantβandr0/v(wherer0is the target's range at CPA andvis the target speed)can be estimated by processing the LOFARgram and the bearingtime records using the Hough transform.The double element or double array model is adopted to achieve passive ranging,four ranging algorithms are proposed.The simulation research shows that Algorithm 1 is suitable for the scenario of small heading angle,the ranging error is less than 10% if the heading angle is smaller than 10°.Algorithm 2,3 and 4 are inapplica-ble when the heading angle is equal to 0°,but all of them have enough range accuracy when the heading angle is larger than 10°.In the practical application,the heading angle should be estimated first,and then a threshold is set according to heading angle in order to use a suitable ranging algorithm.

    Fig.7 Ranging results and relative errors of four algorithms at 30°heading angle

    A complete interference fringe is required to range for all the four algorithms which do not fully satisfies the operational requirements of sonar device,but they are still valuable for basic research and have important application prospect in many aspects,such as shore station,airborne sonobuoy,marine research,especially acoustic measurement and so on.More detailed simulation and sea trial research will be needed for their practical engineering applications.The ranging algorithm suitable for the scenario without the closest point of approach is the focal point of further research.

    [1]WANG Xin-yong,HUI Jun-ying,YU Hong-xia.Filtering applied research on noise passive ranging[J].Journal of Harbin Engineering University,2005,26(1):80 - 83.(in Chinese)

    [2]WANG Yan,HUI Jun-ying,LIANG Guo-long.Target motion analysis based on bearing and time delay difference of dual arrays[C]∥Proceedings of National Conference on Underwater Acoustics,Shanghai:Editorial Office of Technical Acoustic,2001:60-62.(in Chinese)

    [3]Thode A M,Kuperman W A,D’Spain G L,et al.Localization using Bartlett matched-field processor sidelobes[J].J Acoust Soc Am,2000,107(1):278-286.

    [4]HUI Juan,HU Dan,HUI Jun-ying,et al.Research on the measurement of distribution image of radiated noise using focused beamforming[J].Acta Acoust,2007,34(2):356-361.(in Chinese)

    [5]YU Yun,MEI Ji-dan,ZHAI Chun-ping,et al.Sea trial researches on the measurements of passive source space distribution imaging and positioning[J].Acta Acoust,2009,32(4):103-109.(in Chinese)

    [6]HUI Jun-ying,SUN Guo-cang,ZHAO An-bang.Normal modes acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing[J].Acta Acoust,2008,33(4):300-304.(in Chinese)

    [7]YU Yun,HUI Jun-ying,Zhao An-bang,et al.Complex acoustic intensity of normal modes in pekeris waveguide and its application[J].Acta Physica Sinica,2008,57(9):5742-5748.(in Chinese)

    [8]Chuprov S D.Interference structure of acoustic fieldin the layered ocean[M]∥Brekhovskikh L M,Andreeva I B,Ocean Acoustics Nauka,Moscow:Modern State,1982:71-91.

    [9]D’Spain G L,Kuperman W A.Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth[J].J Acoust Soc Am,1999,106(5):2454-2468.

    [10]Rouseff D,Spindel R C.Modeling the waveguide invariant as a distribution[J].AIP Conference Proceedings,2002,621(1):137-160.

    [11]Goldhahn R,Hickman G,Krolikc J.Waveguide invariant broadband target detection and reverberation estimation[J].J Acoust Soc Am,2008,124(5):2841 -2851.

    [12]Quijano J E,Zurk L M.Rouseff D.Demonstration of the invariance principle for active sonar[J].J Acoust Soc Am,2008,123(3):1329-1337.

    [13]Turgut A,Orr M,Rouseff D.Broadband source localization using horizontal-beam acoustic intensity striations[J].J Acoust Soc Am,2010,127(1):73-83.

    [14]Cockrell K L,Schmidt H.Robust passive range estimation using the waveguide invariant[J].J Acoust Soc Am,2010,127(5):2780-2789.

    [15]Brekhovskikh L M,Lysanov Y P.Fundamental of ocean acoustic[M].3rd ed.Moscow,Russia:AIP Press,2002:143-146.

    [16]Hough P VC.A method and means for recognizing complex patterns:US,3069654[P].1962-12-18.

    [17]HUI Jun-ying,HUI Juan.Fundamental theory of signal processing in acoustic vector field[M].Beijing:National Defense Industry Press,2009:10.(in Chinese)

    猜你喜歡
    林芳陳陽
    陳陽美術(shù)作品欣賞
    慢 慢
    那株被肆意觸碰的含羞草后來怎么樣了?
    陳陽:讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    考驗(yàn)
    上海故事(2018年8期)2018-09-06 02:18:24
    絕對(duì)有償
    樓上老公不在家
    樓上的孩子怕吵架
    Molecular Dynamic Simulation for HMX/NTO Supramolecular Explosive
    精品午夜福利在线看| 夜夜爽夜夜爽视频| 高清在线视频一区二区三区| 黄色毛片三级朝国网站| 久久影院123| 亚洲综合色网址| av又黄又爽大尺度在线免费看| 精品国产乱码久久久久久小说| 国产精品一国产av| 波多野结衣一区麻豆| 国产黄色免费在线视频| 1024视频免费在线观看| 亚洲av中文av极速乱| 国产女主播在线喷水免费视频网站| 成人毛片60女人毛片免费| 天天操日日干夜夜撸| 母亲3免费完整高清在线观看 | 一本久久精品| 亚洲精品国产av成人精品| 欧美日韩国产mv在线观看视频| 美女内射精品一级片tv| 成人无遮挡网站| 久久午夜福利片| 国产精品久久久久久av不卡| 亚洲一级一片aⅴ在线观看| 欧美亚洲 丝袜 人妻 在线| 国产女主播在线喷水免费视频网站| 天天操日日干夜夜撸| 亚洲精品乱码久久久久久按摩| 超色免费av| 91国产中文字幕| 免费高清在线观看视频在线观看| 丝袜人妻中文字幕| 视频在线观看一区二区三区| 视频在线观看一区二区三区| 亚洲激情五月婷婷啪啪| 香蕉国产在线看| 国产黄色免费在线视频| 制服诱惑二区| 波多野结衣一区麻豆| 国产精品一国产av| av福利片在线| 人人妻人人澡人人看| 国产麻豆69| 成人国产麻豆网| 一区二区av电影网| 日韩大片免费观看网站| 男女边吃奶边做爰视频| 免费不卡的大黄色大毛片视频在线观看| 色吧在线观看| 在线观看三级黄色| 一级毛片电影观看| 国产日韩一区二区三区精品不卡| 人人澡人人妻人| 男男h啪啪无遮挡| 美国免费a级毛片| 国语对白做爰xxxⅹ性视频网站| 国产精品熟女久久久久浪| 亚洲人与动物交配视频| 国产亚洲精品久久久com| 91在线精品国自产拍蜜月| 啦啦啦视频在线资源免费观看| 中文字幕av电影在线播放| 精品卡一卡二卡四卡免费| 夜夜骑夜夜射夜夜干| 人妻少妇偷人精品九色| 三级国产精品片| 亚洲av综合色区一区| 久久久久久人人人人人| 丝瓜视频免费看黄片| 少妇精品久久久久久久| av视频免费观看在线观看| 亚洲欧美色中文字幕在线| 热re99久久精品国产66热6| 亚洲欧美清纯卡通| av国产久精品久网站免费入址| 咕卡用的链子| 欧美日韩国产mv在线观看视频| 人妻少妇偷人精品九色| 婷婷成人精品国产| 婷婷成人精品国产| 国产爽快片一区二区三区| 国产亚洲av片在线观看秒播厂| 精品一区二区三卡| 欧美激情国产日韩精品一区| 成人亚洲欧美一区二区av| 国产女主播在线喷水免费视频网站| 欧美日韩成人在线一区二区| 观看av在线不卡| 亚洲成国产人片在线观看| 伦理电影免费视频| 啦啦啦中文免费视频观看日本| 中文字幕精品免费在线观看视频 | 精品人妻熟女毛片av久久网站| 十八禁网站网址无遮挡| 看十八女毛片水多多多| 大香蕉久久网| 男女下面插进去视频免费观看 | 国产成人aa在线观看| 欧美成人午夜精品| 自线自在国产av| 夜夜爽夜夜爽视频| 99re6热这里在线精品视频| 亚洲成人av在线免费| 在线看a的网站| av播播在线观看一区| 日本vs欧美在线观看视频| 国产一区亚洲一区在线观看| 激情五月婷婷亚洲| 久久97久久精品| 咕卡用的链子| 三级国产精品片| 97在线人人人人妻| 在现免费观看毛片| 亚洲人与动物交配视频| 欧美成人精品欧美一级黄| 国产深夜福利视频在线观看| 精品视频人人做人人爽| 日韩成人伦理影院| www.av在线官网国产| 纵有疾风起免费观看全集完整版| 男人操女人黄网站| av免费在线看不卡| 中文字幕最新亚洲高清| 91精品伊人久久大香线蕉| 国产精品99久久99久久久不卡 | 波野结衣二区三区在线| 亚洲经典国产精华液单| 狠狠婷婷综合久久久久久88av| 国产免费福利视频在线观看| 久久免费观看电影| 欧美人与性动交α欧美精品济南到 | 少妇的逼好多水| 综合色丁香网| 99久国产av精品国产电影| 国产精品99久久99久久久不卡 | 国产极品粉嫩免费观看在线| 中文精品一卡2卡3卡4更新| √禁漫天堂资源中文www| 美女内射精品一级片tv| 黄色视频在线播放观看不卡| 国产爽快片一区二区三区| 午夜福利乱码中文字幕| 黄色一级大片看看| 大话2 男鬼变身卡| av福利片在线| 国产男女内射视频| 亚洲精品av麻豆狂野| 熟女人妻精品中文字幕| 狠狠精品人妻久久久久久综合| 亚洲丝袜综合中文字幕| 国产白丝娇喘喷水9色精品| 久久久久久久久久久久大奶| 少妇人妻 视频| √禁漫天堂资源中文www| 国产免费视频播放在线视频| 水蜜桃什么品种好| 中文字幕制服av| 免费人成在线观看视频色| 亚洲在久久综合| 香蕉丝袜av| 成人手机av| 中文精品一卡2卡3卡4更新| 啦啦啦中文免费视频观看日本| 欧美日韩av久久| 男人舔女人的私密视频| 国产又色又爽无遮挡免| 最近中文字幕2019免费版| 国产黄频视频在线观看| 啦啦啦在线观看免费高清www| 久久99热这里只频精品6学生| 欧美精品亚洲一区二区| 韩国精品一区二区三区 | 亚洲av福利一区| 国产成人a∨麻豆精品| 久久久久国产精品人妻一区二区| 丝袜喷水一区| 99re6热这里在线精品视频| 久久久久久久久久久久大奶| 久久久久久伊人网av| 黄色怎么调成土黄色| 水蜜桃什么品种好| 精品亚洲成国产av| 大香蕉久久网| 在线观看免费日韩欧美大片| 亚洲精品色激情综合| 看免费av毛片| 少妇 在线观看| 国产xxxxx性猛交| 欧美最新免费一区二区三区| 亚洲精品,欧美精品| 国产精品人妻久久久影院| 久久97久久精品| 日韩一区二区三区影片| 精品亚洲成a人片在线观看| 99re6热这里在线精品视频| 天天躁夜夜躁狠狠久久av| 日韩制服骚丝袜av| 亚洲色图综合在线观看| 9热在线视频观看99| 十八禁高潮呻吟视频| 少妇高潮的动态图| 国产黄频视频在线观看| 中文精品一卡2卡3卡4更新| 热re99久久国产66热| 欧美成人精品欧美一级黄| 国产午夜精品一二区理论片| 男的添女的下面高潮视频| 日韩三级伦理在线观看| 好男人视频免费观看在线| 国产成人欧美| 少妇被粗大的猛进出69影院 | 国产精品人妻久久久影院| 精品卡一卡二卡四卡免费| 美女视频免费永久观看网站| 精品视频人人做人人爽| 熟女电影av网| 七月丁香在线播放| 啦啦啦中文免费视频观看日本| 亚洲人与动物交配视频| 久久久国产欧美日韩av| 女性生殖器流出的白浆| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| 最后的刺客免费高清国语| 久久人人97超碰香蕉20202| 高清视频免费观看一区二区| 日韩av不卡免费在线播放| 各种免费的搞黄视频| 久久午夜福利片| 欧美日韩亚洲高清精品| 亚洲性久久影院| 中文天堂在线官网| 五月玫瑰六月丁香| 中文字幕av电影在线播放| 99热这里只有是精品在线观看| 日韩精品免费视频一区二区三区 | 午夜免费鲁丝| 精品一区二区三区视频在线| 久久久国产欧美日韩av| 岛国毛片在线播放| 只有这里有精品99| 高清av免费在线| 最近手机中文字幕大全| 久久精品国产a三级三级三级| www.av在线官网国产| av播播在线观看一区| av一本久久久久| 国产 精品1| 免费少妇av软件| 香蕉丝袜av| 欧美bdsm另类| 国国产精品蜜臀av免费| 热99国产精品久久久久久7| 18禁观看日本| 欧美变态另类bdsm刘玥| 美女脱内裤让男人舔精品视频| 午夜av观看不卡| 9色porny在线观看| 国产精品一区www在线观看| 亚洲少妇的诱惑av| 国产精品.久久久| av福利片在线| 欧美日韩视频高清一区二区三区二| 在线观看www视频免费| 国产成人午夜福利电影在线观看| 国产永久视频网站| 亚洲国产欧美在线一区| 在现免费观看毛片| 精品亚洲成国产av| 成人亚洲欧美一区二区av| 亚洲欧洲国产日韩| 精品少妇久久久久久888优播| 久久精品久久久久久久性| 宅男免费午夜| 国产精品国产三级专区第一集| 欧美精品av麻豆av| 黄网站色视频无遮挡免费观看| 伦精品一区二区三区| 五月伊人婷婷丁香| 啦啦啦视频在线资源免费观看| 国产在线一区二区三区精| 久久精品人人爽人人爽视色| 国产 一区精品| 黄片播放在线免费| 丝袜在线中文字幕| 日韩,欧美,国产一区二区三区| 中文字幕人妻熟女乱码| 久久 成人 亚洲| 高清毛片免费看| 大陆偷拍与自拍| 亚洲欧美成人综合另类久久久| 性色avwww在线观看| 国产精品久久久av美女十八| 国产福利在线免费观看视频| 午夜久久久在线观看| 一级黄片播放器| 熟女av电影| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 热99国产精品久久久久久7| 国产成人精品一,二区| 99国产精品免费福利视频| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图| 热re99久久精品国产66热6| 亚洲精品美女久久av网站| 亚洲欧洲国产日韩| 亚洲综合精品二区| 免费少妇av软件| 视频在线观看一区二区三区| 狂野欧美激情性xxxx在线观看| 一边摸一边做爽爽视频免费| 另类亚洲欧美激情| 国产 一区精品| 精品国产国语对白av| 国产成人精品一,二区| 男女下面插进去视频免费观看 | av在线app专区| 国产免费福利视频在线观看| 精品第一国产精品| 欧美成人午夜免费资源| 欧美日韩一区二区视频在线观看视频在线| 精品午夜福利在线看| 韩国av在线不卡| 18+在线观看网站| 亚洲美女黄色视频免费看| 黑人欧美特级aaaaaa片| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 亚洲精品色激情综合| 九色亚洲精品在线播放| 亚洲欧美成人精品一区二区| 五月伊人婷婷丁香| 男男h啪啪无遮挡| 在线观看一区二区三区激情| 一级片免费观看大全| 亚洲国产精品一区三区| 香蕉精品网在线| 午夜福利在线观看免费完整高清在| 成人国语在线视频| 丝袜脚勾引网站| 91精品三级在线观看| 99热国产这里只有精品6| 国产在视频线精品| 午夜视频国产福利| 制服诱惑二区| 一区二区三区乱码不卡18| 日韩精品免费视频一区二区三区 | 精品久久国产蜜桃| 99热这里只有是精品在线观看| 精品酒店卫生间| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡 | 久久97久久精品| 丝瓜视频免费看黄片| 最近最新中文字幕大全免费视频 | 夜夜骑夜夜射夜夜干| 午夜视频国产福利| 国产黄频视频在线观看| 成人无遮挡网站| 18+在线观看网站| 人人妻人人澡人人看| a级毛片黄视频| 久久久久精品人妻al黑| 成人国语在线视频| 国产精品国产三级国产专区5o| 久久久久精品人妻al黑| 免费大片18禁| 内地一区二区视频在线| 久久久久久久久久久久大奶| 天堂8中文在线网| 国产亚洲精品第一综合不卡 | 欧美日韩av久久| 国产在线免费精品| 国产精品人妻久久久影院| 蜜桃国产av成人99| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 日日啪夜夜爽| 免费高清在线观看视频在线观看| 国产精品久久久久久av不卡| 免费人成在线观看视频色| 午夜av观看不卡| 久久国内精品自在自线图片| 国产成人一区二区在线| 日韩三级伦理在线观看| 激情视频va一区二区三区| 黑丝袜美女国产一区| 久久影院123| av在线老鸭窝| 只有这里有精品99| 一区二区三区乱码不卡18| 亚洲精品一二三| 人人妻人人澡人人看| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 国产 一区精品| 18禁在线无遮挡免费观看视频| 午夜福利视频在线观看免费| 亚洲精品aⅴ在线观看| 777米奇影视久久| 一二三四在线观看免费中文在 | 一级毛片黄色毛片免费观看视频| 99久久中文字幕三级久久日本| 国产精品99久久99久久久不卡 | 精品久久久久久电影网| 国产精品久久久久久精品电影小说| 一区二区日韩欧美中文字幕 | 亚洲av成人精品一二三区| 国产成人a∨麻豆精品| 国产深夜福利视频在线观看| 一级毛片黄色毛片免费观看视频| 黑人高潮一二区| 少妇熟女欧美另类| 日韩在线高清观看一区二区三区| 一区二区三区精品91| 亚洲色图综合在线观看| 婷婷成人精品国产| 精品国产一区二区三区久久久樱花| 少妇的逼好多水| 欧美3d第一页| 成人亚洲欧美一区二区av| 免费av中文字幕在线| 国产乱来视频区| 精品酒店卫生间| 国产精品免费大片| 婷婷成人精品国产| 全区人妻精品视频| www.熟女人妻精品国产 | 国产在线免费精品| 国产麻豆69| 少妇人妻精品综合一区二区| 国产一区二区三区综合在线观看 | 亚洲成人一二三区av| 久久精品人人爽人人爽视色| 亚洲欧洲日产国产| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久久久久电影| av一本久久久久| 高清在线视频一区二区三区| 国产成人精品无人区| 亚洲国产精品一区三区| 国产亚洲av片在线观看秒播厂| 超色免费av| 日韩欧美精品免费久久| 久久毛片免费看一区二区三区| 街头女战士在线观看网站| 一本大道久久a久久精品| 亚洲精品一二三| 亚洲综合色惰| 中文字幕制服av| 国产精品偷伦视频观看了| 午夜老司机福利剧场| 久久久久精品人妻al黑| √禁漫天堂资源中文www| 熟妇人妻不卡中文字幕| 亚洲av中文av极速乱| av不卡在线播放| 欧美激情极品国产一区二区三区 | 免费人成在线观看视频色| 69精品国产乱码久久久| 久久精品夜色国产| 美女脱内裤让男人舔精品视频| 中文字幕最新亚洲高清| 精品一区二区三区视频在线| 亚洲欧美色中文字幕在线| 国产不卡av网站在线观看| 久久av网站| 国产欧美亚洲国产| 久久av网站| 午夜av观看不卡| 亚洲 欧美一区二区三区| 精品人妻在线不人妻| 国产成人91sexporn| 国产精品蜜桃在线观看| 汤姆久久久久久久影院中文字幕| 老司机亚洲免费影院| 久久国产精品大桥未久av| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 精品久久蜜臀av无| 久久精品国产亚洲av天美| 成人手机av| 99热6这里只有精品| av网站免费在线观看视频| 国语对白做爰xxxⅹ性视频网站| 性高湖久久久久久久久免费观看| 久久影院123| 热99久久久久精品小说推荐| 国产亚洲欧美精品永久| 国产亚洲av片在线观看秒播厂| 搡老乐熟女国产| 日韩制服丝袜自拍偷拍| 成人手机av| 51国产日韩欧美| 在线天堂最新版资源| 中文字幕av电影在线播放| 中国美白少妇内射xxxbb| 一级a做视频免费观看| 在线观看一区二区三区激情| 99热网站在线观看| av线在线观看网站| 波多野结衣一区麻豆| 啦啦啦啦在线视频资源| 22中文网久久字幕| av电影中文网址| 国产精品.久久久| 精品少妇久久久久久888优播| 亚洲国产精品999| 午夜久久久在线观看| 国产又爽黄色视频| www.色视频.com| 三上悠亚av全集在线观看| 国产极品天堂在线| 下体分泌物呈黄色| 最近最新中文字幕大全免费视频 | 最近中文字幕高清免费大全6| 国产精品不卡视频一区二区| 国产男女内射视频| 亚洲第一av免费看| 亚洲国产av新网站| 激情视频va一区二区三区| 国产黄色免费在线视频| av女优亚洲男人天堂| 永久网站在线| 国产亚洲精品久久久com| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 国产探花极品一区二区| 中文字幕最新亚洲高清| 久热这里只有精品99| 97在线视频观看| 国产午夜精品一二区理论片| 免费av中文字幕在线| 久热这里只有精品99| 色哟哟·www| 又黄又爽又刺激的免费视频.| 日韩制服骚丝袜av| 久热久热在线精品观看| 香蕉国产在线看| 欧美成人午夜精品| 91国产中文字幕| 久久久精品区二区三区| 欧美日韩成人在线一区二区| a 毛片基地| av.在线天堂| 精品久久久精品久久久| 99国产综合亚洲精品| 丰满少妇做爰视频| 国产免费现黄频在线看| 丝袜美足系列| 人人妻人人澡人人爽人人夜夜| 久久午夜福利片| 久久国产精品大桥未久av| 久久精品国产综合久久久 | 黄色怎么调成土黄色| 99re6热这里在线精品视频| 美女xxoo啪啪120秒动态图| kizo精华| 观看美女的网站| 亚洲精品美女久久av网站| 高清不卡的av网站| 久久精品人人爽人人爽视色| 亚洲婷婷狠狠爱综合网| 人体艺术视频欧美日本| 一级毛片我不卡| 日本-黄色视频高清免费观看| 国产片特级美女逼逼视频| 久久久亚洲精品成人影院| 人妻系列 视频| 国产一区二区三区av在线| 欧美日韩亚洲高清精品| 精品国产一区二区久久| 韩国精品一区二区三区 | 久久人人97超碰香蕉20202| 久久精品国产自在天天线| 熟妇人妻不卡中文字幕| 国产精品秋霞免费鲁丝片| 高清在线视频一区二区三区| av免费在线看不卡| 国产精品久久久av美女十八| 又粗又硬又长又爽又黄的视频| 亚洲三级黄色毛片| 国国产精品蜜臀av免费| 18禁国产床啪视频网站| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 男女免费视频国产| 在线 av 中文字幕| 亚洲激情五月婷婷啪啪| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 伊人久久国产一区二区| 五月玫瑰六月丁香| 午夜福利乱码中文字幕| 欧美性感艳星| 岛国毛片在线播放| av电影中文网址| 成人毛片a级毛片在线播放| 国产精品国产三级国产专区5o| 哪个播放器可以免费观看大片| 老熟女久久久| 精品午夜福利在线看| 午夜视频国产福利| 黄色怎么调成土黄色| 色网站视频免费| 夜夜骑夜夜射夜夜干| 中文天堂在线官网| 丰满饥渴人妻一区二区三| 精品国产乱码久久久久久小说| 亚洲av在线观看美女高潮| 亚洲综合色网址| 欧美老熟妇乱子伦牲交|