• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WaveletCollocation M ethods for Viscosity Solu tions to Sw ing Op tions in Natu ral Gas Storage

    2014-05-13 02:38:13LIHuaWAREAntonyandGUOLiSchoolofMathematicsandStatisticsZhengzhouUniversityZhengzhou450001China

    LIHua,WAREAntonyand GUO LiSchool ofM athematics and Statistics,Zhengzhou University,Zhengzhou 450001, China.

    2DepartmentofM athematicsand Statistics,University ofCalgary,2500University Drive,NW,Calgary,AB,Canada,T2N 1N4.

    WaveletCollocation M ethods for Viscosity Solu tions to Sw ing Op tions in Natu ral Gas Storage

    LIHua1,?,WAREAntony2and GUO Li11School ofM athematics and Statistics,Zhengzhou University,Zhengzhou 450001, China.

    2DepartmentofM athematicsand Statistics,University ofCalgary,2500University Drive,NW,Calgary,AB,Canada,T2N 1N4.

    Received 18 January 2014;Accep ted 14M ay 2014Abstract.This paper p resents the w avelet collocation m ethods for the num ericalapp roxim ation of sw ing op tions for natu ralgas storage in am ean revertingm arket.The m odel is characterized by the Ham ilton-Jacobi-Bellm an(H JB)equations w hich on ly have the viscosity solution due to the irregu larity of the sw ing op tion.The differential operator is form u lated exactly and efficiently in the second generation interpolating w aveletsetting.The convergence and stability of the num ericalschem e are studied in the fram ew ork of viscosity solu tion theory.Num erical experim ents dem onstrate the accu racy and com pu tationalefficiency of them ethods.

    AM SSub jectClassifications: 65C20,62P05,97M 30

    Chinese Lib rary Classifications:O 175.27

    Sw ing op tion;viscosity solution;w avelet;collocation.

    1 In troduction

    The aim of this paper is to investigate the app lication of adap tive w avelet collocation m ethods for Ham ilton-Jacobi-Bellm an(HJB)equations arising from p ricing sw ing options in am ean revertingm arket.

    M odelsof sw ing op tionsare an extension of the Black-Scholesm odel.Due to the uncertainty of fu ture consum p tion and the lim ited fungibility ofm any comm od ities,som e comm od ity m arkets have introduced sw ing op tionsw hich give the consum er flexibility w ith respect to both the tim ing and theam ountof comm od ity delivered.For descrip tions ofsw ing op tions,w e refer to[1,2]and the references therein.Sw ing op tionsare very comm on in energym arkets,because they p rovide consum ersw ith flexibility to vary their rateof consum p tion w ithou t being exposed to p rice fluctuations,w hich can be extrem e,especially in the case of electricity.For sw ing op tions on electricity,see[3];on gas,see[4]; on coal,see[5],for exam p le.

    Due to their im portance in the energy m arkets,the p ricing of sw ing op tions has gainedm oreand m oreatten tion over the lastdecade,andm uch efforthasbeen expanded in designing algorithm s for p ricing sw ing op tions.The d iscrete valuation of sw ing options has been stud ied by several au thors.In[1],a d iscrete forestm ethodology is developed for sw ing op tions as a dynam ically coup led system of European op tions.A lso in[2],a binom ial/trinom ial forest is built to calcu late the p rice of sw ing op tions.In[6] and[7],M onte Carlo techniques are em p loyed for p ricing sw ing op tions.Continuous tim em odels allow the use of pow erfu lm athem atical tools to analyze the p roperties of solu tions and have recently appeared in the literature.A continuous tim em odel for the p rice of the general comm od ity-based sw ing op tion is p resen ted in[8],w here the p rice function is the solution of a system of quasi-variational inequalities.In[9],a continuous tim em odel is built for p ricing sw ing op tions on naturalgas in am ean revertingm arket, w here the p rice function is the solu tion of a HJB equation.

    Them ore pow erfu l them odel is,them ore im portan t it is to develop the right com putational tools to get reliable in form ation ou t from them odel.In this paper,w e study the num erical solu tion of sw ing op tion m odels p resen ted in[9,10],w here a finite-elem en t app roach is developed to solve this class ofm odels.Fu rtherm ore,the stochasticm eshes are app lied in[11]and the op tim al exercise boundary estim ation is app lied in[12]respectively for solving sw ing op tionm odels.For fu rther su rvey abou t sw ing op tions,w e refer the readers to[13].

    Since op tim ization strategiesare involved in sw ing op tions,in regionsw here the optim al exercise strategy is a rapid ly-changing function of the p rice,the solu tion m ay exhibit less regu larity,w hich w ill be p roblem atic for nonadap tive(uniform grid)m ethods. Therefore,w e develop w avelet-based m ethods for p ricing sw ing op tions.This fram ew ork allow s for using finer resolu tion w here needed and coarser resolution in sm ooth areas,and thereby im p roves the app roxim ation efficiency.

    This paper is organized as follow s.In Section 2,w e in troduce the efficient form u lation of operators in a w avelet collocation setting.In Section 3,w e briefly introduce the sw ing op tionm odels to be stud ied in thispaper.In Section 4,w e p resentaw avelet-based num erical schem e to the p roposed HJB system.In Section 5,the convergence analysis is perform ed in the fram ew ork of viscosity solu tion theory.In Section 6,the num erical resu ltsare p resented.Conclusions are d raw n in Section 7.

    2 Second generation in terpolating w avelets

    2.1 Scaling functions on an in terval

    Consider the interval?=[0,1].For each level j,w e p lace a grid

    on?.A setof interpolating scaling functions{φj,k,k=0,1,···,2j}can be constructed using the interpolating subd ivision schem e and they satisfy the tw o-scale relationship

    and qjk(x)is the Lagrange interpolating polynom ial through the p points closest to xj,kon Gj.The scaling function space

    satisfiesa second-generationm u ltiresolu tion analysis in the sense that

    2.2 Wavelets

    For convenience,w e denote the filter h in Eq.(2.1)in them atrix form:

    In terpolating w aveletsw ith desired high vanishing m om en ts can be constructed by the lifting schem e[14]as follow s,

    This is done by designing the lifting filter Sjsuch that thew aveletsψj,kassociated w ith the above filtershave?p vanishingm om ents,i.e.,

    This fam ily ofw avelets is very suitable to num ericalanalysis.

    For convenience,w e denoteφj=[φj,0,φj,1,···,φj,2j]′.Sim ilarlyψj,?φjand?ψjdenote the vectors ofw avelet functions,dual scaling functions and dualw avelets respectively,and the correspond ing spacesare denoted by Wj,?Vjand?Wjrespectively.

    2.3 Projections and w avelet transform s

    Define the p rojectionsof f∈L2(?)onto Vjand Wjrespectively by

    w here vj,k=h f,?φj,ki,wj,k=h f,?ψj,ki and h·,·i denotes the L2inner p roduct.Sim ilarly w e have the dualp rojections?Pjand?Qjand the p rojections satisfy

    The fastw avelet transform s can be deduced based on the above p rojections.

    ?(Decom position:)Given vj+1,

    where

    ?(Reconstruction:)Given vjand wj,

    2.4 Wavelet collocation rep resen tations of operators

    The exact and efficient form u lation of operators in a Galerkin setting has been p roposed by Bey lkin and Coifm an[15,16]and Dahm en and M icchelli[17].In this section,w e develop an efficien t rep resen tation of operators in the collocation schem e.Let(x):= δ(x),w hereδ(x)is the Dirac d istribu tion functional.Define

    The standard form u lation can be obtained by decom posing?PJand PJ:

    w hich containsm atrix entries reflecting‘interactions’betw een allpairsofd ifferentscales. This p rocedu re resu lts in an order N log N algorithm even for such sim p le operators as m u ltip lication by a function,w here N is the totalnum ber ofw avelets used.Fortunately, this form u lation can be derived ind irectly from its nonstandard form,w hich is obtained by expand ingLPJin a telescop ic series,i.e.,

    The above entries can be com puted exactly(for details see Chap ter 3 in[18]).Theadvantage of the nonstandard rep resentation(2.10)is that it on ly involves‘interaction’on one scale j and the form u lation only resu lts in an order of N com pu tation.

    3 M odels of sw ing op tions

    In thissection,w egivea brief introduction to the sw ing op tionm odels in[9]w ith natu ral gasas the underlying comm od ity.

    Envisage a situation in w hich the net consum p tion to date qtism anaged on a continuous basis by the holder,w ho is allow ed to vary the rate of consum p tionw ithin p rescribed lim itssubject to qtalso lying in som e interval[a,b].Ifallgas is imm ed iately converted in to cash at the spot rate,the cash flow generated by‘consum ing’at the ratefor a period ofΔt,given a spotp rice of St,is

    The totald iscounted cash flow over the life of the op tion,given an exercise strategy specified by q′tis,exclud ing any penalty paym ents,

    Here and in the follow ing w e assum e a constant risk-free interest rate r.

    Supposew e are given a strategy q′t=k(t),and an underlying asset satisfying the d iffusion p rocess

    w here Wtisa standard Brow nianm otion,andμandσare su fficiently w ell-behaved functions.

    We let qtdenote the am oun t of gas stored at tim e t,constrained to be in[a,b].A positive value ofind icates that gas is being injected at a rate of,w hile a negative value connotes the w ithdrawal ofgas ata rate of.

    Itw illbenatu ral to im posea charge perunit tim e,χst(qt,St),dependenton the cu rrent levelofgas in the inventory and possibly also itsm arketvalue.Therew illalso bea charge for in jection orw ithd raw al.This chargew ill typ ically be p roportional to the ratebu tw ith d ifferentp roportionalities for each case:i.e.,itw illbeof the form

    We assum e that a borrow ing account Atism aintained in order to finance these cash flow s.Over a tim e increm ent dt,then,thenom inalvalue of thegas in storagew illchange by

    and therew illbe an associated cash flow of

    w hereμ?is the d riftof the forw ard p rocess,χstis cash flow,andχiw(k)-kS is gain.

    We seek to m axim ize the value of our hedged portfolio.The op tim al strategy that achieves this resu lts in

    4 Wavelet collocation schem e

    We em p loy a hybrid w avelet/finite d ifference sem i-Lagrangian num erical schem e to solve Eq.(3.2).Throughout this section,w e consider the casew here-μ?(S,t)=(ln S+)S,andare constants,andσ(S)=σ0S.

    We firstapp ly tim e reverseand logarithm transform to(3.2)by(M axim ization w illbe dealtw ith later)

    We then introduce a change of variables to rem ove the d rift term in x:uxterm by

    Eq.(4.1)is reduced to

    Since there is no d iffusion term and on ly d rift term in q,w e em p loy a sem i-Lagrangian m ethod to dealw ith the d rift term in q:i.e.wτ-kwqis exp ressed as a single d irectional derivative in the d irection of the curve(Q(τ;q,τ0),τ)τpassing through the point(y,τ), w here,given q andτ0,Q(τ)satisfies

    Solving the above ord inary d ifferentialequation,

    Thus,w e obtain

    Them axim ization p roblem isas follow s.

    Prob lem 4.1.Find w such that

    For the num erical app roxim ation,w e take an im p licit finite d ifferencem ethod inτ, and a w avelet collocation m ethod in y.Then the app roxim ation p roblem to Problem 4.1 isw ritten as follow s.

    Prob lem 4.2.Givenτn=nΔτ,n=0,···,N,find am ap U:{τ0,τ1,···,τN}→Vjsuch that,for any y∈Gj,the follow ing equation holds for each m.

    Please note that the‘m ax’function is realized as follow s.For each m,find a set

    And also w e use a free boundary cond ition in the space dom ain y.

    5 Convergence rate of the schem e

    The app roxim ation of viscosity solu tions to HJB equations has been intensively stud ied by Barles and Jakobsen[19]in 2005.The theory of viscosity solutions p rovides am eans ofanalysis in thissetting.We can dem onstrate them onotonicity and p rove the regu larity and consistency of this num ericalschem e.Thus,convergence follow s from the resu ltsof Barles and Jakobsen[19].

    For convenience,w e rew rite the num ericalschem e as

    1.M onotonicity.

    For anyν≥0,h0>0 such that if|h|≤h0,u≤v are functions in Vj(Gj),andφ(τ)= eντ(a+bτ)+c for a,b,c≥0,then

    w herew eassum e that M-1φ(τn)=φ(τn).Actually this is true,since

    2.Regularity.

    We now show that,for every h andφ∈Vj(Gj),the function

    is bounded and continuous in Gjand the function r7-→Q(h,τ,x,r,φ(τn))is uniform ly continuous for bounded r,uniform ly in(τ,x)∈Gj.

    Bounded:for every h,M-1isbounded and for everyφn+1∈Vj(Gj),φn+1isbounded.

    We know f is bounded and

    The function(τ,y)7-→Q(h,τ,y,φ(τn+1),φ(τn))is bounded in Gj.

    Con tinuous:sinceφ∈Vj(Gj),for any(τ?,y?)∈[τ0,···,τN]×Gj,if

    Uniform ly con tinuous:for any bounded r1,r2,for anyδ>0,if

    then for any(τ,y)∈[τ0,···,τN]×Gj,

    w here?=δ.

    3.Consistency.

    For any h=(Δτ,Δy)>0,(τ,y)∈[τ0,···,τN]×Gj,and sm ooth functionφ:

    Fu rtherm ore,it is easy to show the stability cond ition

    It follow s imm ed iately that Problem 4.2 has a unique solution.Therefore,w e have the follow ing convergence resu lt.

    Theorem 5.1.Let U and w be the solutions to Problem 4.2 and Problem 4.1 respectively.There existsa constant C dependent only onμ,K in(K1),(A 1)such that

    in Gj,where=|u|1.

    Proof.Firstw e notice that|U0,h-w0|=0 and by Theorem 3.1 in[19]w e have

    6 Num erical tests

    We test the ability of the num ericalm ethod to solve the HJB equation w ith them odel param eters:tim e to exp iry 5 years,r=0.05,σ0=0.5,=-1.48 and=0.4.We take Δτ=T2-M.For each M,J=12,w e com pute the num erical solu tion and take it as the‘true’solu tion.Then,w e com pu te the solu tions at level J=6,···,10 w ith the sam e tim e step-size,com pare them w ith the‘true’solution and find the relative errors.Errors in the L∞norm at tim e0 are p resen ted in Table1,the convergence ratesare p resented in Table 2, from w hich w e can see that the convergence rate is about7,i.e.the order is abou t3.The op tion p ricesare show n in Fig.1(left).The sw ing ratesare show n in Fig.1(righ t),w here a negative valuem eans a strategy of selling the natu ralgasw ith this rate,and a positive valuem eans buying the natu ralgasw ith this rate.

    Table 1:Errors in the L∞norm for the swing option at time 0 and q=1.

    Table 2:Convergence rates in the L∞for the swing option computed from the data in Table 1.

    Figure 1:Left:sw ing option valuation.Right:recommended sw ing rates.

    7 Conclusion

    This paper p resented w avelet collocation m ethods for the numerical app roxim ation of viscosity solu tions of an HJB equation w hich arises in p ricing sw ing op tions in am ean

    reverting w orld.The d ifferential operator w as form u lated exactly and efficiently in the second generation interpolating w aveletspaces.Them ethodsw ere num erically dem onstrated uncond itionally stable.The convergencew as analysed in the fram ew ork of viscosity solu tion theory.The accu racy and com pu tational efficiency of them ethod w ere verified w ith the num erical resu lts.

    Append ix

    w here h=2-jand rk:=φ(2)0,m(m-k)is the nonzero second order derivative for interior scaling functions(see Table 3).

    Table 3:Nonzero second order derivatives for interior scaling functions.

    A A is inverse negative in the sense that A-1≤0

    Recall that them atrix A is identical to?A excep t that the first p row s and colum ns(and the last p row s and colum ns)are d ifferent.It is obvious that A is not an M m atrix from the entriesof A,and it is notd iagonally dom inant.

    Varga(1962)and Sch roeder(1961)show ed thatam atrix M is inverse positive,if

    Ortega and Rheinbold t(1967)show ed that M is inverse positive,if

    How everw e can not find a sp litting of A satisfying either of these tw o cond itions.W hat w e can do for A is a sp litting B-C,w here B and C are both M m atrix.

    J.E.Peris(1991)defined that,a positive sp litting M=B-C of a squarem atrix M is said to be a B-sp litting if them atrix B is nonsingu lar and

    Then he p roved the follow ing theorem.

    Theorem A.1.LetM bea squarematrix such that M=B-C isa B-splitting.Then M is inverse positive ifand only ifthere exists some x>0 such that M x?0,where?means that there isat least oneentry greater than zero.

    How ever,w e cou ld not find a B-sp litting for A.We also referred to other references: Fu jim oto and Ranade[20]etc.

    A lthough w e are unable to p rove them onotonicity of A,bu tw e found that num erically it is true.We now num erically show A-1≤0(see Fig.2).Again,given the polynom ial exactness p,neither the interval[a,b]or the scale j changes inversem onotonicity of them atrix A.Therefore,w e on ly give the num erical dem onstration for j=7 and the interval[0,1]in Fig.2.

    Figure 2:Left:inverse of thewavelet collocation matrix A of d2/dx2for j=7,on the interval[0,1].Right:the maximum values of each column in A-1.

    B I-cA is inverse positive in the sense that(I-cA)-1≥0

    For an evolution p roblem,am atrix of the form I-cA is usually involved,w here c is a positive num ber less than 1.In this section,ou r aim is to num erically show that I-cA is inverse positive in the sense that(I-cA)-1≥0.As c-→0,I-cA-→I and As c-→∞, I-cA-→-cA,therefore,in these tw o cases,I-cA is inverse positive.For 0<c<∞, w e still found that I-cA is inverse positive.Fig.3 is typicalofm any experim entsw hich have been done.

    Figure 3:Left:inverse of the wavelet collocation matrix B=I-cA for the cases c=100(top),and c=0.01 (bottom)for j=7 and the interval[0,1].Right:themaximum values of each column in B-1.

    Acknow ledgm en ts

    This research w ork issupported by Foundation Projectof Henan Science and Technology Departm entunder GrantNo.112300410064 and No.122300413202.

    [1]Lari-LavassaniA.,Sim chiM.and Ware A.,A discrete valuation of sw ing op tions.Canadian Applied M athematicsQuarterly,9(1)(2001),35-74.

    [2]Jaillet P.,Ronn E.R.and Tom paid is S.,Valuation of comm od ity-based sw ing op tions.M anagement Science,50(7)(2004),909-921.

    [3]Keppo J.,Pricing of electricity sw ing contracts.JournalofDerivatives,11(2004),26-43.

    [4]Clew low L.,StricklC.,Energy Derivatives:Pricing and Risk M anagem ent,Lacim a Publications,2000.

    [5]Joskow,Contract du ration and relationship-specific investm ents:Em p irical evidence from coalm arkets.American Econom ic Review,77(1987),168-185.

    [6]D¨orr U.,Valuation of Sw ing Op tions and Exam ination of Exercise Strategiesby M onte Carlo Techniques.M asters thesis,University ofOxford,2003.

    [7]M einshausen N.,Ham bly B.M.,M onte-Carlom ethods for thevaluation ofm u ltip le-exercise op tions.M athematical Finance,14(4)(2004),557-583.

    [8]Dah lgren M.,A continuous tim em odel to p rice comm od ity-based sw ing op tions.Review of DerivativesResearch,8(2005),27-47.

    [9]Ware A.F.,Sw ing op tions in am ean-reverting w orld,Paper p resented at the conference in honor of Robert Elliott,Calgary,Ju ly 2005.

    [10]W ilhelm M.,W inter C.,Finite elem ent valuation of sw ing op tions.Journal ofComputational Finance,11(3)(2008),107-132.

    [11]M arshall T.J.,M ark Reesor R.,Forestof stochasticm eshes:A new m ethod for valuing highd im ensional sw ing op tions.Operation Research Letters,39(2011),17-21.

    [12]Turbou lt F.,You lal Y.,Sw ing op tion p ricing by op tim al exercise boundary estim ation.In Num ericalM ethods in Finance,ed.Carm ona,R.etal.,Sp ringer Proceed ings in M athem atics 12,2012.

    [13]Lem pa J.,M athem aticsof Sw ing Op tions:A Su rvey.Quantitative Energy Finance,Publisher: Sp ringer New York,115-133,2014.

    [14]Sw eldensW.,The lifting schem e:a custom-design construction of biorthogonalw avelets. Applied Computationaland Harmonic Analysis,3(1996),186-200.

    [15]Beylkin G.,Coifm an R.and Rokhlin V.,Fastw avelet transform sand num ericalalgorithm s. Comm.in Pureand Applied M ath.,44(1991),141-183.

    [16]Bey lkin G.,On the rep resentation of operators in bases of com pactly supported w avelets. SIAM Journalon Numerical Analysis,6(6)(1992),1716-1740.

    [17]Dahm enW.,M icchelliC.A.,Using refinem entequation forevaluating integralsofw avelets. SIAM Journalon Numerical Analysis,30(2)(1993),507-537.

    [18]LiH.,Adap tivew aveletcollocationm ethods forop tion p ricing PDEs,PhD thesis,University of Calgary,2006.

    [19]BarlesG.,Jakobsen E.R.,Error bounds form onotone app roxim ation schem es for Ham ilton-Jacobi-Bellm an equations.SIAM J.Numer.Anal.,43(2)(2005),540-558.

    [20]Fu jim oto T,Ranade R.R.,Tw o characterizationsof inverse-positivem atrices:the Haw kins-Sim on cond ition and the Le Chatelier-Braun p rincip le.Electronic JournalofLinearAlgebra,11 (2004),59-65.

    10.4208/jpde.v27.n3.4 Sep tem ber 2014

    ?Correspond ing au thor.Email addresses:hual i08@zzu.edu.cn(H.Li),aware@ucalgary.ca(A.Ware), 1053500513@qq.com(L.Guo)

    天堂中文最新版在线下载| 久久精品亚洲熟妇少妇任你| 日韩欧美国产一区二区入口| 国产成人精品在线电影| 亚洲色图 男人天堂 中文字幕| 亚洲avbb在线观看| 欧美激情久久久久久爽电影 | 亚洲成人精品中文字幕电影 | 精品第一国产精品| 久久久久久免费高清国产稀缺| 黄色女人牲交| 久久久久九九精品影院| 黄片播放在线免费| 麻豆久久精品国产亚洲av | 国产99久久九九免费精品| 又紧又爽又黄一区二区| 久久人人精品亚洲av| videosex国产| 桃色一区二区三区在线观看| 中文字幕精品免费在线观看视频| 久久久国产欧美日韩av| 亚洲欧美一区二区三区黑人| 人妻久久中文字幕网| 老司机深夜福利视频在线观看| 久久人人97超碰香蕉20202| 十八禁网站免费在线| 男人的好看免费观看在线视频 | 成人免费观看视频高清| 极品人妻少妇av视频| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 成在线人永久免费视频| 首页视频小说图片口味搜索| 亚洲va日本ⅴa欧美va伊人久久| 国产av在哪里看| 天天添夜夜摸| 国产国语露脸激情在线看| 日日夜夜操网爽| 老汉色∧v一级毛片| 18禁国产床啪视频网站| 国产精华一区二区三区| 亚洲 欧美一区二区三区| 老汉色∧v一级毛片| 91精品三级在线观看| 久久性视频一级片| 日日摸夜夜添夜夜添小说| 悠悠久久av| 亚洲精品美女久久久久99蜜臀| 一区二区三区精品91| 最新美女视频免费是黄的| 久久国产精品影院| 午夜免费观看网址| 久久久久九九精品影院| 日日摸夜夜添夜夜添小说| 18禁观看日本| 久久中文字幕一级| 久久久国产一区二区| 亚洲国产精品合色在线| 久久中文看片网| 亚洲人成电影观看| 中文字幕最新亚洲高清| 99久久久亚洲精品蜜臀av| 日本黄色日本黄色录像| 亚洲成a人片在线一区二区| 丝袜美足系列| 啦啦啦免费观看视频1| 在线看a的网站| 美女扒开内裤让男人捅视频| 黄网站色视频无遮挡免费观看| 久久中文看片网| 欧美乱妇无乱码| 人妻丰满熟妇av一区二区三区| 老汉色∧v一级毛片| 国产一区二区在线av高清观看| 久久香蕉激情| 一本综合久久免费| 久久精品aⅴ一区二区三区四区| 久久亚洲真实| xxxhd国产人妻xxx| 久久人人精品亚洲av| 18禁美女被吸乳视频| 成熟少妇高潮喷水视频| 天堂俺去俺来也www色官网| 黄片小视频在线播放| 午夜精品在线福利| 欧美乱码精品一区二区三区| 久久亚洲精品不卡| 成人黄色视频免费在线看| 可以在线观看毛片的网站| 91字幕亚洲| 黑丝袜美女国产一区| 国产亚洲欧美98| 欧美乱色亚洲激情| 亚洲视频免费观看视频| 桃红色精品国产亚洲av| 色播在线永久视频| 欧美黑人精品巨大| 久久香蕉激情| 久久精品国产综合久久久| 亚洲自拍偷在线| 成人精品一区二区免费| 人人妻,人人澡人人爽秒播| 欧美日韩亚洲综合一区二区三区_| 亚洲免费av在线视频| 免费日韩欧美在线观看| 免费av毛片视频| 超色免费av| 91老司机精品| av中文乱码字幕在线| av在线天堂中文字幕 | 大型黄色视频在线免费观看| 满18在线观看网站| 午夜免费鲁丝| 神马国产精品三级电影在线观看 | 亚洲情色 制服丝袜| 精品国产超薄肉色丝袜足j| 19禁男女啪啪无遮挡网站| 很黄的视频免费| 欧美 亚洲 国产 日韩一| av在线播放免费不卡| 久久精品91无色码中文字幕| 久久人人爽av亚洲精品天堂| 新久久久久国产一级毛片| 亚洲一码二码三码区别大吗| 午夜免费鲁丝| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 国产1区2区3区精品| 99久久人妻综合| 亚洲熟妇熟女久久| 国产色视频综合| 窝窝影院91人妻| 成年版毛片免费区| 婷婷六月久久综合丁香| 日韩有码中文字幕| 欧美日韩av久久| 深夜精品福利| 亚洲第一欧美日韩一区二区三区| 欧美日韩黄片免| 国产午夜精品久久久久久| 色婷婷av一区二区三区视频| 九色亚洲精品在线播放| 亚洲人成77777在线视频| 精品久久蜜臀av无| 丝袜在线中文字幕| 精品福利永久在线观看| 国产99久久九九免费精品| 午夜影院日韩av| 一级片免费观看大全| 国产在线精品亚洲第一网站| 久久人人精品亚洲av| 中亚洲国语对白在线视频| xxxhd国产人妻xxx| av欧美777| 久久午夜亚洲精品久久| 亚洲va日本ⅴa欧美va伊人久久| 欧美午夜高清在线| 久久这里只有精品19| 757午夜福利合集在线观看| 亚洲,欧美精品.| 女警被强在线播放| 99国产精品一区二区三区| 国产91精品成人一区二区三区| 国产极品粉嫩免费观看在线| 9191精品国产免费久久| 精品久久久久久,| 亚洲精品美女久久av网站| 国产亚洲精品久久久久5区| 午夜成年电影在线免费观看| 亚洲欧美精品综合一区二区三区| 免费高清视频大片| 国产97色在线日韩免费| 免费在线观看影片大全网站| 一个人观看的视频www高清免费观看 | 久久久久国产一级毛片高清牌| 麻豆成人av在线观看| 女性生殖器流出的白浆| 人妻久久中文字幕网| 超碰97精品在线观看| 国内毛片毛片毛片毛片毛片| 夜夜躁狠狠躁天天躁| 最好的美女福利视频网| 18美女黄网站色大片免费观看| 在线av久久热| 欧美日韩国产mv在线观看视频| 欧美+亚洲+日韩+国产| 黄色视频不卡| tocl精华| 久久国产精品人妻蜜桃| 亚洲一区中文字幕在线| 国产成人系列免费观看| 免费高清在线观看日韩| 女警被强在线播放| xxxhd国产人妻xxx| 日韩中文字幕欧美一区二区| 久久亚洲精品不卡| 18美女黄网站色大片免费观看| 精品无人区乱码1区二区| 成人亚洲精品av一区二区 | 日韩欧美免费精品| 亚洲精品久久午夜乱码| 黄色女人牲交| 老司机午夜福利在线观看视频| 丰满饥渴人妻一区二区三| 亚洲性夜色夜夜综合| svipshipincom国产片| 天天躁夜夜躁狠狠躁躁| 青草久久国产| 午夜福利影视在线免费观看| 国产一区二区激情短视频| 成人三级做爰电影| 97碰自拍视频| 一区在线观看完整版| 免费在线观看视频国产中文字幕亚洲| 国产一区二区三区综合在线观看| www.熟女人妻精品国产| 在线观看一区二区三区激情| bbb黄色大片| 成年版毛片免费区| 欧美日韩乱码在线| 91精品国产国语对白视频| 啦啦啦免费观看视频1| 在线观看日韩欧美| 一区二区三区激情视频| 人成视频在线观看免费观看| 9191精品国产免费久久| 黄色视频不卡| 亚洲情色 制服丝袜| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码| 老汉色∧v一级毛片| 男女下面插进去视频免费观看| av国产精品久久久久影院| 男人舔女人下体高潮全视频| 亚洲免费av在线视频| 亚洲精品国产区一区二| 亚洲aⅴ乱码一区二区在线播放 | 国产成人影院久久av| 搡老熟女国产l中国老女人| 亚洲,欧美精品.| 少妇的丰满在线观看| 老汉色∧v一级毛片| 交换朋友夫妻互换小说| 国产伦一二天堂av在线观看| 国产精品一区二区三区四区久久 | 久久亚洲真实| 欧美国产精品va在线观看不卡| 国产午夜精品久久久久久| www.熟女人妻精品国产| 男女下面进入的视频免费午夜 | 99国产综合亚洲精品| 精品一区二区三区av网在线观看| 日韩欧美一区视频在线观看| 精品欧美一区二区三区在线| 村上凉子中文字幕在线| 精品熟女少妇八av免费久了| 亚洲一区二区三区色噜噜 | 午夜福利影视在线免费观看| 久久久久久大精品| 精品第一国产精品| 午夜免费观看网址| 精品日产1卡2卡| 老司机靠b影院| 亚洲黑人精品在线| 亚洲自偷自拍图片 自拍| 老汉色av国产亚洲站长工具| 级片在线观看| 日韩欧美一区视频在线观看| 成人国语在线视频| 婷婷精品国产亚洲av在线| 午夜精品在线福利| 成人特级黄色片久久久久久久| 午夜亚洲福利在线播放| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月| aaaaa片日本免费| 国产精品99久久99久久久不卡| av在线天堂中文字幕 | 久久天堂一区二区三区四区| 夫妻午夜视频| 国产精品香港三级国产av潘金莲| aaaaa片日本免费| 悠悠久久av| 又大又爽又粗| 精品少妇一区二区三区视频日本电影| 免费人成视频x8x8入口观看| 中文字幕最新亚洲高清| 另类亚洲欧美激情| 男女高潮啪啪啪动态图| 在线观看免费视频网站a站| 夜夜夜夜夜久久久久| 悠悠久久av| 日韩高清综合在线| 又紧又爽又黄一区二区| 久久久久久久精品吃奶| 久久久久国产精品人妻aⅴ院| 午夜福利在线免费观看网站| 一区二区三区国产精品乱码| 亚洲精品国产精品久久久不卡| 中文字幕最新亚洲高清| 亚洲片人在线观看| 校园春色视频在线观看| 在线观看一区二区三区激情| 久久精品国产99精品国产亚洲性色 | 亚洲色图av天堂| 免费观看人在逋| 在线观看免费高清a一片| 国产精品二区激情视频| 国产高清国产精品国产三级| 他把我摸到了高潮在线观看| 在线播放国产精品三级| 免费av毛片视频| 久久久国产一区二区| 在线视频色国产色| 女人被狂操c到高潮| 久久久久久人人人人人| 国产av又大| 日本黄色视频三级网站网址| 国产色视频综合| 久久精品亚洲熟妇少妇任你| 欧美成人性av电影在线观看| 又黄又爽又免费观看的视频| 人成视频在线观看免费观看| 成年版毛片免费区| 亚洲精华国产精华精| 国产真人三级小视频在线观看| 99热国产这里只有精品6| 精品一区二区三区视频在线观看免费 | 国产激情久久老熟女| 天天影视国产精品| 欧美一级毛片孕妇| 精品一区二区三卡| 法律面前人人平等表现在哪些方面| 欧美av亚洲av综合av国产av| 婷婷丁香在线五月| 在线观看一区二区三区| 精品久久久久久成人av| 日韩成人在线观看一区二区三区| 国产单亲对白刺激| 99re在线观看精品视频| 欧美中文综合在线视频| 精品人妻在线不人妻| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲精品第一综合不卡| 女人被狂操c到高潮| 最好的美女福利视频网| 久久精品国产99精品国产亚洲性色 | 精品一区二区三区视频在线观看免费 | 成人影院久久| 在线免费观看的www视频| 成人三级做爰电影| 亚洲精品久久成人aⅴ小说| 成人三级做爰电影| 国产av一区二区精品久久| 夫妻午夜视频| 在线观看一区二区三区| 日本一区二区免费在线视频| 激情在线观看视频在线高清| 黄色视频不卡| 亚洲欧美精品综合久久99| 成人av一区二区三区在线看| 久久久久久久精品吃奶| 精品福利观看| 国产黄色免费在线视频| 丰满饥渴人妻一区二区三| 又大又爽又粗| 国产亚洲精品久久久久久毛片| 十八禁人妻一区二区| 亚洲三区欧美一区| 久久久国产成人免费| 国产一区二区三区视频了| 久久午夜亚洲精品久久| 女人被躁到高潮嗷嗷叫费观| 国产精品秋霞免费鲁丝片| 午夜精品国产一区二区电影| 美女 人体艺术 gogo| 欧美一区二区精品小视频在线| 免费看十八禁软件| 国产99白浆流出| 欧美色视频一区免费| 欧美亚洲日本最大视频资源| 精品熟女少妇八av免费久了| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 女人高潮潮喷娇喘18禁视频| 99久久综合精品五月天人人| 91字幕亚洲| 久9热在线精品视频| 午夜视频精品福利| 97超级碰碰碰精品色视频在线观看| 好男人电影高清在线观看| 日韩高清综合在线| 看黄色毛片网站| 男女床上黄色一级片免费看| 久久 成人 亚洲| 国产免费现黄频在线看| 亚洲自偷自拍图片 自拍| 满18在线观看网站| 亚洲五月色婷婷综合| 日韩高清综合在线| 午夜视频精品福利| 桃色一区二区三区在线观看| 国产精品香港三级国产av潘金莲| 中文字幕最新亚洲高清| 亚洲熟妇熟女久久| 国产熟女xx| 精品免费久久久久久久清纯| 国产精品免费视频内射| 后天国语完整版免费观看| 12—13女人毛片做爰片一| 99久久国产精品久久久| 在线视频色国产色| 高清在线国产一区| 十八禁网站免费在线| 真人做人爱边吃奶动态| 久久人妻熟女aⅴ| a级毛片黄视频| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区mp4| 国产精品偷伦视频观看了| 12—13女人毛片做爰片一| 日本wwww免费看| 女人高潮潮喷娇喘18禁视频| 欧美另类亚洲清纯唯美| 99热只有精品国产| 91精品国产国语对白视频| 亚洲九九香蕉| 手机成人av网站| 这个男人来自地球电影免费观看| 午夜视频精品福利| 国产精品亚洲av一区麻豆| 午夜a级毛片| 久久人妻av系列| 国产午夜精品久久久久久| 黑人操中国人逼视频| 欧美成人性av电影在线观看| 中文亚洲av片在线观看爽| 欧美色视频一区免费| 亚洲av成人不卡在线观看播放网| 大码成人一级视频| 91麻豆精品激情在线观看国产 | 亚洲性夜色夜夜综合| 在线十欧美十亚洲十日本专区| 国产精品久久视频播放| 久久婷婷成人综合色麻豆| 国产成人一区二区三区免费视频网站| 欧美在线黄色| 国产日韩一区二区三区精品不卡| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品一区二区免费欧美| 国产成人精品在线电影| 亚洲午夜精品一区,二区,三区| 在线观看午夜福利视频| 三上悠亚av全集在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 国产亚洲欧美在线一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品国产av在线观看| 国产在线精品亚洲第一网站| 嫩草影院精品99| 欧美激情久久久久久爽电影 | 91麻豆av在线| 一级a爱片免费观看的视频| 色综合欧美亚洲国产小说| 他把我摸到了高潮在线观看| 伦理电影免费视频| 久久天堂一区二区三区四区| 免费在线观看日本一区| 欧美激情高清一区二区三区| 国产视频一区二区在线看| 在线观看日韩欧美| 国产又爽黄色视频| 黄色a级毛片大全视频| 90打野战视频偷拍视频| 欧美日韩精品网址| 69精品国产乱码久久久| 成人三级黄色视频| 两个人看的免费小视频| av在线天堂中文字幕 | 51午夜福利影视在线观看| 一边摸一边做爽爽视频免费| 精品无人区乱码1区二区| avwww免费| 看免费av毛片| 一夜夜www| 亚洲中文字幕日韩| 两人在一起打扑克的视频| 男女下面进入的视频免费午夜 | 一进一出抽搐动态| 国产不卡一卡二| 国产成人av激情在线播放| 99国产综合亚洲精品| 一二三四在线观看免费中文在| 波多野结衣一区麻豆| 亚洲成人精品中文字幕电影 | 一a级毛片在线观看| 精品久久久久久久久久免费视频 | 中文字幕av电影在线播放| 亚洲精品中文字幕一二三四区| 日本黄色视频三级网站网址| 最新在线观看一区二区三区| 国产一卡二卡三卡精品| 亚洲午夜理论影院| 免费看十八禁软件| 婷婷精品国产亚洲av在线| 成人18禁在线播放| 国产成人精品在线电影| 在线观看66精品国产| 一进一出抽搐动态| 一区二区日韩欧美中文字幕| 一级毛片高清免费大全| 亚洲国产欧美一区二区综合| 三上悠亚av全集在线观看| 日韩欧美三级三区| 咕卡用的链子| 超色免费av| 国产亚洲精品第一综合不卡| 最新美女视频免费是黄的| 黑丝袜美女国产一区| 黑人巨大精品欧美一区二区mp4| 日本wwww免费看| 黄色女人牲交| 黑人操中国人逼视频| 在线观看午夜福利视频| 亚洲精品一区av在线观看| 亚洲欧洲精品一区二区精品久久久| 久久精品人人爽人人爽视色| 亚洲欧美精品综合一区二区三区| 美女 人体艺术 gogo| 国产蜜桃级精品一区二区三区| 麻豆一二三区av精品| 啪啪无遮挡十八禁网站| 91字幕亚洲| 99久久综合精品五月天人人| 国产成年人精品一区二区 | 在线观看免费日韩欧美大片| 91成人精品电影| 中文字幕最新亚洲高清| 国产有黄有色有爽视频| 国产一区二区三区视频了| 欧美一级毛片孕妇| 亚洲精品粉嫩美女一区| 九色亚洲精品在线播放| 很黄的视频免费| 亚洲成人国产一区在线观看| 又黄又粗又硬又大视频| 亚洲色图 男人天堂 中文字幕| 日本欧美视频一区| 国产99久久九九免费精品| 人成视频在线观看免费观看| 亚洲全国av大片| 色尼玛亚洲综合影院| 免费高清在线观看日韩| 丰满饥渴人妻一区二区三| 亚洲第一欧美日韩一区二区三区| 啦啦啦 在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | www日本在线高清视频| 麻豆国产av国片精品| 国产精品香港三级国产av潘金莲| 成人精品一区二区免费| 久久久久国内视频| 久久国产乱子伦精品免费另类| 天堂影院成人在线观看| 免费观看人在逋| 激情视频va一区二区三区| 久久草成人影院| 欧美激情极品国产一区二区三区| 亚洲欧美精品综合一区二区三区| 亚洲成a人片在线一区二区| 99精品欧美一区二区三区四区| 欧美精品啪啪一区二区三区| 国产国语露脸激情在线看| 午夜免费观看网址| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻熟女乱码| av视频免费观看在线观看| 搡老熟女国产l中国老女人| 后天国语完整版免费观看| 亚洲片人在线观看| 91九色精品人成在线观看| 真人一进一出gif抽搐免费| 精品一品国产午夜福利视频| 久久精品国产综合久久久| 国产av又大| 日韩欧美一区视频在线观看| 91九色精品人成在线观看| 成人黄色视频免费在线看| 久热这里只有精品99| 午夜日韩欧美国产| 国产精华一区二区三区| 男女下面进入的视频免费午夜 | 成年女人毛片免费观看观看9| 亚洲精品粉嫩美女一区| 亚洲精品成人av观看孕妇| 狂野欧美激情性xxxx| 国产三级黄色录像| 黄网站色视频无遮挡免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费现黄频在线看| 精品国产超薄肉色丝袜足j| 亚洲男人的天堂狠狠| 丝袜美腿诱惑在线| 久久久久久人人人人人| 国产精品一区二区在线不卡| 在线看a的网站| av天堂在线播放| 怎么达到女性高潮| 亚洲一区二区三区欧美精品| 欧美av亚洲av综合av国产av|