• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved histograms of oriented gradientsfor Chinese RMB currency recognition

    2014-05-12 07:57:22HuXuejuanRuanShuangchenGuoChunyuandLiuChengxiang
    深圳大學學報(理工版) 2014年5期
    關鍵詞:梯度方向深圳大學防偽

    Hu Xuejuan,Ruan Shuangchen,Guo Chunyu,and Liu Chengxiang

    Shenzhen Key Laboratory of Laser Engineering,College of Electronic Science and Technology,

    Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes,Shenzhen University,Shenzhen 518060,P.R.China

    Improved histograms of oriented gradients
    for Chinese RMB currency recognition

    Hu Xuejuan,Ruan Shuangchen?,Guo Chunyu,and Liu Chengxiang

    Shenzhen Key Laboratory of Laser Engineering,College of Electronic Science and Technology,

    Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes,Shenzhen University,Shenzhen 518060,P.R.China

    This paper presents a method to improve the histograms of oriented gradient descriptors and support vector machine classifier for Chinese RMB currency recognition.The zebra-stripe pattern of the infrared images of RMB paper currency was used for real and counterfeit classification.The dimension of histograms of oriented gradient features is decreased by feature block selection based on the Fisher criterion.Several experiments on zebra-stripe pattern recognition were conducted,and the proposed method shows its robustness against background interference and noise.

    infrared image;Chinese RMB currency recognition;histogram of oriented gradients;support vector machine;Fisher criterion;precision counterfeit detection;image feature extraction

    Special inks that absorb infrared(IR)light are used in printing paper currency,which could be an important cue for counterfeit identification.Security ink that absorbs near-IR(NIR)light is an organic functional dye made up of one or several NIR absorption materials.This ink absorbs light waves with wavelengths ranging from 700 nm to 1 100 nm.When used as a localized portion of a printed product,this ink is invisible in daylight and can only be observed with a detection apparatus[1].The NIR-absorbing material is synthesized under high temperature,which is a highly technical and costly process.Thus,NIR security ink is difficult to forge and effective for anti-counterfeit guarantee.

    IR security inks have been widely used by many banknotes.For example,local IR security is used in the dollar,euro,and Portuguese banknotes.By imaging in NIR light,part of the pattern of several different banknotes is hidden selectively.For example,the pattern in Italian banknotes is almost entirely hidden except for the serial number.The IR security pattern of the 2005 edition of the renminbi(RMB)and the Comorian franc not only disappears but also shows another pattern.

    Through IR transmission imaging,a zebra-stripe anticounterfeit pattern invisible in sunlight is presented in the security line area of the 2005 edition of the 10,20,50 and 100 RMB notes.Counterfeit paper currency has been reported to show a realistic watermark,an optical variable ink,an invisible denomination,magnetic and ultraviolet characteristics[2],but no forged IR zebra stripes.Thus,the special characteristics of the IR anti-counterfeit method bring unique advantages for paper currency discrimination.Despite that some works have addressed the problem of money recognition,to the best of our knowledge,there are only a few works dealing with the problem of the authentication of the money.

    In Ref.[3],light transmittance and an instance-based classifier by the Euclidean distance metric are used to classify the value of banknote.Feature extraction using wavelet Transform and the minimum Euclidean distance matching is described in Ref.[4]for Korean Won bill classification,where image is acquired in the visible light spectra.In Ref.[5-6],Neural network and genetic algorithm have been exploited to address the problem of banknote recognition.In Ref.[7],US banknote recognition has been proposed by sped up robust features.However,these approaches in the above references do not take into account the problem of banknote counterfeit detection,which is the main issue addressed in this paper.

    Ref.[8]addresses the problem of Sterling banknote validation through a cascade of segmentation and classification procedures.But the applicability is not straightforward in the context of the RMB,because this currency encodes different strategies to avoid forgeries.In Ref.[9],a method based on multiple-kernel support vector machines is proposed to detect counterfeit Taiwanese currency.Banknotes are firstly divided into partitions,and the luminance of histograms of the partitions is taken as the input of the system.In Ref.[10],the color domain has been considered for US banknote validation.In Ref.[11],the euro banknote image is acquired in the visible light spectrum and two types of neural networks are used for classification.While all of the approaches in Ref.[9-11]work in the visible spectrum,they are actually not robust as most of the tampered banknotes visually look like the genuine one.In Ref.[12],a NIR camera is used to acquire the Euro banknotes images.The average gray value feature and simple thresholding strategy were used for authentication.However,simple average gray value feature descriptors are not robust for geometric and photometric deformation of image.And histograms of oriented gradients(HOG)features are local and robust feature descriptors,which have a disadvantage of higher feature dimensions.

    In this paper,the NIR images of RMB currency are acquired for counterfeit detection.To represent the discriminative zebra-stripe anti-counterfeit pattern,improved histograms of oriented gradients are proposed for feature extraction.Support vector machines(SVM)are used for classification.A database with 540 images captured from 500 real notes and 40 counterfeit notes are used for training and testing and as high as 99.03%accuracy has been achieved.

    The remainder of the paper is organized as follows:section 1 describes the preprocessing of NIR image of the 100 RMB paper currency and summarizes the proposed algorithms for HOG feature extraction and feature block selection.In section 2,the designed counterfeit detection method is described,whereas experimental results are presented.Finally,conclusions are given.

    1 HOG feature extraction and selection

    In this paper,the detected samples are the 2005 edition of 100 RMB paper currencies.An IR image acquisition system as described in Ref.[13]is used to capture the IR transmission image of the paper currencies,so we can distinguish the real money from the counterfeit by the recorded zebra-stripe anticounterfeit pattern of the IR imaging,including a set of alternating bright and dark rectangular blocks.Fig.1(a)shows an example of the detected pattern,which consists of a group of alternating bright and dark blocks with a cycle of 2×H,2 times of the width of the bright or dark blocks,and a black line crossing normally the zebra-stripe pattern.In our image preprocessing,if no solid security line appears in the image,the cur-rency is directly recognized as the counterfeit.Otherwise,we locate the horizontal ordinate of the region of interest(ROI)center by the security line,thus two 16-pixel wide rectangle regions were segmented from the left and right sides of the security line to produce the zebra-stripe pattern of interest.Following that,a region with size 5H × 32 can be extracted as ROI for feature extraction shown in Fig.1(b).

    Fig.1 (Color online)IR image of the security line region and region of interest圖1 安全線區(qū)域和感興趣區(qū)域的紅外圖像

    HOG was introduced by Dalal and Triggs in 2005[14]and has been successfully used in pedestrian detection.The main principle of HOG is that shape characteristics can be properly described by the density distribution of the gradient or edge direction.To extract HOG feature,the ROI region(32×128)extracted was divided into a number of blocks consisting of 2×2 cells,where each cell is composed of 8 ×8 pixels.For each cell,gradient direction and magnitude were calculated using the gradient operator[-1,0,1]shown by

    where I(x,y)is the pixel value at position(x,y)in the image,α(x,y)indicates the gradient direction of the pixel,and G(x,y)indicates the gradient amplitude.An HOG can then be calculated for each cell by weighted voting of every pixel.In this paper,Gaussian-weighted gradient amplitude and tri-linear interpolation are used to obtain the weight.The histogram vectors over the block were then normalized through L2-norm normalization:

    where υ indicates a normalized histogram vector over the block,indicates k-norm calculation,k equals 1 or 2,and ε is a minimal constant that prevents yielding infinite values.A perblock normalization scheme is intended to compensate for variations of lighting over the input image.All normalized histogram vectors were combined as a full feature vector with size n×m,where n indicates the dimension of the histogram vector over the block,and m indicates the number of blocks in the detection windows(the region of interest).In this paper,m is 45,and n is 36.The combined vectors were then fed to a SVM for object/non-object classification.

    However,feature vectors based on HOG are high dimensional.For example,when the bin number was set as 9 and the overlap rate of block set as 0.5,the dimension of the feature vector was 45×4×9=1 620.High dimensional feature brings about the complex and large calculation on feature extraction,training,and classification.As the edge directions of the Zebra stripes are mainly vertical and horizontal,we propose to use the Fisher criterion to remove redundant HOG features.According to the criterion,the feature with the better ability of discrimination shall show larger similarity within a group than that among groups.Through feature ranking,better feature blocks can be selected.

    Let ωRbe the category of the real currency and ωCbe that of the counterfeit,and NRand NCbe the number of samples belong to categories ωRand ωCrespectively.The within-class scatter Sifor ith class,the whole within-class scatter Swand between-class Sbcan be calculated as below:

    where X denotes the HOG feature extracted from a block,midenotes the mean feature for class ωRand ωC.The bigger the value of Sb/Sw,the better the discrimination capacity of the feature X.

    The HOG feature blocks that have more discrimination information can thus be identified.Given a number of N blocks for HOG feature extraction,the feature block selection process can be described as follows:

    a.Calculate the HOG feature Xifor each block.

    b.Calculate Fisher score Si(i=1,2,...,N)for each feature Xi.

    c.Sort Fisher score Si(i=1,2,...,N)in descending order.

    d.Select the maximum of Si(i=1,2,...,N)as feature to input SVM classifier and calculate classification accuracy R.

    e.Given preset classification accuracy Rtwhich meet system requirement,if R > Rt,we stopped adding Fisher score from the rest of Si.Otherwise select a next maximum from the rest of Si(i=1,2,...,N)to input SVM classifier until the new classification accuracy R is bigger than Rt.

    f.Output the selected M HOG feature blocks.

    2 Paper currency authentication and experimental results

    Once the ROI region around the security line was located,the HOG feature was extracted and input to SVM for real and counterfeit currency identification.SVM theory mainly focuses on binary class pattern recognition problems[15].Let the training set be{(x1,y1),(x2,y2),...,(xn,yn)},where xi∈Rnand yi∈ {-1,1}represent the HOG feature vectors and the class label,respectively.If the training set can be partitioned by a hyperplane,the hyperplane is expressed as W·X+b=0,where W and b determine the position of the hyperplane.The problem could then be transformed into one on solving the optimal hyperplane to obtain the optimal partition of the training set.Thus,an optimization model function was established:

    where W indicates the coefficient vector of the separating hyperplane in the feature space,and b indicates the classification threshold.The relaxation factor ξiwas introduced given the classification error.C indicates the penalty term of wrongly classified samples,and n the number of training samples.

    A decision function was then derived:

    The NIR images of the 2005 edition of the 100 yuan RMB banknote were acquired using the NIR light with wavelength of around 850 nm for testing.Our dataset consists of 540 images captured from 500 real notes and 40 counterfeit notes.The position,width and height of the ROI were determined in the preprocessing stage.The sizes of the IR image and ROI are 640×480 and 32 × 128 pixels,respectively.All the algorithms in this paper were implemented with MATLAB R2011b and they were practical and applicable to similar security features of banknote identification systems.

    In this experiment,the positive samples number is 500 and the negative samples number is 40.We randomly split the positive and negative samples into training and testing sets,50%as training and 50%as testing.While 250 positive and 20 negative samples were used to select HOG features and train SVM,another set of 250 positive and 20 negative samples were used for testing.We repeated the experiment 10 times,and each time used a different 50%of the sample as training and testing.

    The accuracy,miss rate,and false positive rate(FPR)were then calculated according to formulas(9)to(11),and compared with those of Ref.[16].

    where TP is the number of true positive instances;FN is the number of false negative instances;FP is the number of false positive instances,and TN is the number of true negative instances.

    We first select the most discriminative features using the algorithm presented in section 2.The selection process stopped when 20 HOG features were selected and 99.03%accuracy was achieved.Fig.2 shows the variations of classification accuracy with the number of image blocks selected for feature ex-traction.One can observe from the figure that the accuracy increase significantly at the beginning,and become stable when the number of block exceeds 20.In the region of interest,these important selected blocks were located at the area of bright and dark edge.

    Fig.2 Relation of selected block number with classification accuracy rate圖2 特征塊選取數(shù)與分類準確率的關系

    Grid search algorithm was used to determine the optimum parameters(C,γ)of C-SVM by cross-validation.Grid search required less time and had higher cross-validation accuracy.The result of the parameter selection was in Fig.3.

    Fig.3 (Color online)Results of parameter selection through grid search圖3 利用網(wǎng)格法選擇參數(shù)結(jié)果

    Table 1 shows the performance of the proposed method in terms of accuracy,miss rate,F(xiàn)PR and efficiency,together with that of approach developed in Ref.[16].An infrared feature extraction algorithm based on convolution and experience threshold classification method was proposed in Ref.[16].By using horizontal projection and selecting appropriate convolution kernels,better paper currency identification accuracy is achieved in Ref.[16].Three methods in table 1 obtain accuracy more than 99%,miss rate no more than 1%,and FPR 0%.However,the method proposed in this paper has higher efficiency.The average detection times for each image for these three methods are 0.85,0.56 and 0.25 s,respectively.Obviously,the average detection time is greatly shortened when improved HOG descriptors were used.In conclusion,the method in this paper improves efficiency of paper currency identification and achieved better accuracy.

    Table 1 Comparison of statistical results表1 統(tǒng)計結(jié)果的比較

    Conclusions

    The IR zebra-stripe anti-counterfeiting pattern is difficult to forge,so recognition of the IR zebra-stripe contributes to RMB banknotes authentication in practical application.In addition,the HOG feature has a better description of shape characteristics of object and is robust for geometric and photometric deformation of image.HOG is selected as feature descriptors in this paper.In order to reduce its dimensionality and improve identification efficiency,an optimized HOG feature was extracted and input to C-SVM for classification,which is used in new application fields.Compared to the state-of-the-art algorithms,the proposed method makes use of infrared imaging and recognizes the forgeries rather than the value.The experiments performed on real notes and counterfeit notes provided by the Chinese bank demonstrate good performance on accuracy and efficiency.Furthermore,this method is robust to low contrast and background noise.Future work will be devoted to add other security features(e.g.the great hall of the people,watermark,etc)validation to further improve the recognition accuracy.In addition to the Chinese RMB,the extension of current method to other currencies such as US Dollars and HK Dollars will also be considered.

    [1][s.n.].IR Security Inks Application on the Paper Currency [EB/OL].[2011-12-30].http://blog.jibi.net/group.asp?cmd=show&gid=4&pid=242.(in Chinese)

    佚 名.紅外防偽油墨在紙幣上的應用[EB/OL].[2011-12-30].http://blog.jibi.net/group.asp?cmd=show&gid=4&pid=242.

    [2]Liang Youjie.Security technology of RMB and identification[M].Beijing:China Financial Publishing House,2005:226-272.(in Chinese)

    梁友杰.人民幣防偽技術及真?zhèn)舞b別[M].北京:中國金融出版社,2005:226-272.

    [3]Hinwood A,Preston P,Suaning G,et al.Bank note recognition for the vision impaired [J].Australasion Physical and Engineering Science in Medicine,2006,29(2):229-233.

    [4]Choi E,Lee J,Yoon J.Feature extraction for bank note classification using wavelet transform [C]//The 18th International Conference on Pattern Recognition.Hong Kong(China):IEEE Press,2006,2:934-937.

    [5]Takeda F,Omatu S.Bank note recognition system using neural network with random masks[C]//Proceeding of the World Congress on NeuralNetworks.Portland(USA):International Neural Network Society,1993:I-241-I-244.

    [6]Takeda F,Nishikage T,Matsumoto Y.Characteristic extraction of paper currency using symmetrical masks optimized by GA and neuro-recognition of multi-national paper currency[C]//International Conference on Neural Networks.Alaska(USA):IEEE Press,1998,1:634-639.

    [7] Hasanuzzaman F M,Yang X,Tian Y.Robust and effective component-based banknote recognition for the blind [J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2012,42(6):1021-1030.

    [8]He C,Girolami M,Ross G.Employing optimized combinations of one-class classifiers for automated currency validation [J].Pattern Recognition,2004,37(6):1085-1096.

    [9]He C,Girolami M,Ross G.Employing optimized combinations of one-class classifiers for automated currency validation [J].Pattern Recognition,2004,37(6):1085-1096.

    [10]Ionescu M,Ralescu A.Fuzzy hamming distance based banknote validator[C]//The 14th IEEE International Conference on the Fuzzy Systems.Vancouver(Canada):IEEE Press,2005:300-305.

    [11]Masato A,Tetsuo K,Yoshiyasu T.Euro banknote recognition system using a three-layered perceptron and rbf networks[J].IPSJ Transactions on Mathematical Modeling and Its Applications,2003,44:99-109.

    [12]Bruna A,F(xiàn)arinella G M,Guarnera G C,et al.Forgery detection and value identification of Euro banknotes [J].Sensors,2013,13(2):2515-2529.

    [13]Hu Xuejuan,Ruan Shuangchen,Yang Jinhui,et al.An I-dentification Device for Paper Currency or Notes:China,201120235245.4 [P].2012-02-08.

    [14]Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]//International Conference on Computer Vision and Pattern Recognition.San Diego(USA):IEEE Press,2005,1:886-893

    [15] Vapnik V N.The nature of statistical learning theory[M].New York(USA):Springer-Verlag,1995.

    [16]Hu Xuejuan,Liu Chengxiang,Yang Jinhui,et al.Convolution approach for zebra stripe feature extraction of infrared paper currency image[J].Laser& Infrared,2012,42(10):1196-1201.(in Chinese)

    胡學娟,劉承香,楊錦輝,等.基于卷積運算的紙幣紅外圖像斑馬線特征提取 [J].激光與紅外,2012,42(10):1196-1201.

    基于改進梯度方向直方圖的人民幣識別

    胡學娟,阮雙琛,郭春雨,劉承香

    深圳市激光工程重點實驗室,深圳大學電子科學與技術學院,廣東省高校先進光學精密制造技術重點實驗室,深圳518060

    提出一種基于改進梯度方向直方圖和支持向量機分類器的人民幣識別方法.利用人民幣紅外圖像中斑馬線特征進行真?zhèn)巫R別,通過Fisher準則進行特征塊選擇實現(xiàn)梯度方向直方圖特征的降維.針對斑馬線防偽圖案進行實驗.結(jié)果表明,該方法能克服紅外圖像中的背景干擾和噪聲,得到較好鑒偽結(jié)果.

    紅外圖像;人民幣紙幣識別;梯度方向直方圖;支持向量機;Fisher準則;精密鑒偽;圖像特征提取

    國家自然科學基金資助項目 (61308049);廣東省自然科學基金博士啟動資助項目 (S2013040012496)

    胡學娟 (1981—),女 (漢族),湖北省安陸市人,深圳大學助理研究員、博士.E-mail:xjhu@szu.edu.cn

    /References:

    O 439;TP 391

    A

    10.3724/SP.J.1249.2014.05487

    2014-04-01;

    2014-08-05

    Foundation:National Natural Science Foundation of China(61308049);PhD Start-up Fund of Natural Science Foundation of Guangdong Province(S2013040012496)

    ?

    Professor Ruan Shuangchen.E-mail:scruan@szu.edu.cn

    :Hu Xuejuan,Ruan Shuangchen,Guo Chunyu,et al.Improved histograms of oriented gradients for Chinese RMB currency recognition [J].Journal of Shenzhen University Science and Engineering,2014,31(5):487-492.

    引 文:胡學娟,阮雙琛,郭春雨,等.基于改進梯度方向直方圖的人民幣識別[J].深圳大學學報理工版,2014,31(5):487-492.(英文版)

    【中文責編:方 圓;英文責編:海 潮】

    猜你喜歡
    梯度方向深圳大學防偽
    《深圳大學學報理工版》2023 年分類總目次
    INTEGRITYTM ECO100再生縫紉線引入防偽技術
    《深圳大學學報理工版》2021 年分類總目次
    你知道古代圣旨和紙鈔是怎樣防偽的嗎
    科學大眾(2021年9期)2021-07-16 07:02:42
    基于機器視覺的鋼軌接觸疲勞裂紋檢測方法
    鐵道建筑(2021年11期)2021-03-14 10:01:48
    《深圳大學學報理工版》2020年分類總目次
    基于梯度方向一致性引導的邊緣檢測研究
    科技風(2019年13期)2019-06-11 15:48:29
    基于光譜上下文特征的多光譜艦船ROI鑒別方法
    《深圳大學學報理工版》2017年征稿細則
    民國時期紙鈔上的防偽暗記
    絲路藝術(2017年5期)2017-04-17 03:12:01
    搡老乐熟女国产| 久久久久久伊人网av| 在现免费观看毛片| 能在线免费看毛片的网站| 免费久久久久久久精品成人欧美视频 | av黄色大香蕉| 性色av一级| 老司机影院成人| 国产成人a∨麻豆精品| 天堂8中文在线网| 久久99热这里只频精品6学生| av免费在线看不卡| 国产精品偷伦视频观看了| 国产高潮美女av| 亚洲性久久影院| 中文字幕人妻熟人妻熟丝袜美| 日韩一区二区三区影片| 亚洲va在线va天堂va国产| 国产精品久久久久成人av| 久久国产亚洲av麻豆专区| 国产国拍精品亚洲av在线观看| 大片电影免费在线观看免费| 欧美日韩精品成人综合77777| 2022亚洲国产成人精品| 欧美日韩视频精品一区| av播播在线观看一区| 久久婷婷青草| 国产 一区精品| 日韩欧美 国产精品| 在线看a的网站| 国产永久视频网站| 欧美日韩在线观看h| 亚洲性久久影院| 大香蕉97超碰在线| 日韩成人av中文字幕在线观看| 一级a做视频免费观看| 校园人妻丝袜中文字幕| 国产精品久久久久久精品电影小说 | 亚洲高清免费不卡视频| 国产亚洲一区二区精品| 香蕉精品网在线| 久久久久久久亚洲中文字幕| 国产精品国产av在线观看| 日本黄色日本黄色录像| 亚洲精品自拍成人| 丰满人妻一区二区三区视频av| 噜噜噜噜噜久久久久久91| 欧美日韩视频高清一区二区三区二| 成人影院久久| 美女内射精品一级片tv| 丰满乱子伦码专区| 在线观看免费日韩欧美大片 | 麻豆成人av视频| 久久精品国产亚洲av天美| 蜜桃久久精品国产亚洲av| 成年av动漫网址| a级一级毛片免费在线观看| av.在线天堂| 亚洲欧洲国产日韩| videossex国产| 亚洲精品第二区| 成人综合一区亚洲| 男人舔奶头视频| 七月丁香在线播放| 一级毛片我不卡| 国产爽快片一区二区三区| 人人妻人人爽人人添夜夜欢视频 | av在线观看视频网站免费| 久久99热这里只有精品18| 亚洲av男天堂| 少妇人妻 视频| 国产av精品麻豆| 在线观看免费视频网站a站| 97超视频在线观看视频| 亚洲精品,欧美精品| 这个男人来自地球电影免费观看 | 黄色怎么调成土黄色| 天堂俺去俺来也www色官网| 高清视频免费观看一区二区| 一区二区av电影网| 2021少妇久久久久久久久久久| 国产日韩欧美在线精品| 男女边摸边吃奶| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 国产精品不卡视频一区二区| 国产 一区精品| 久久综合国产亚洲精品| 91精品国产九色| 内射极品少妇av片p| 最黄视频免费看| 毛片一级片免费看久久久久| 国产亚洲av片在线观看秒播厂| 国产av码专区亚洲av| 日韩大片免费观看网站| 亚洲欧美一区二区三区国产| 欧美激情国产日韩精品一区| 一区二区av电影网| 日韩亚洲欧美综合| kizo精华| 成人国产麻豆网| 少妇猛男粗大的猛烈进出视频| 成人二区视频| 久久久久久久久久人人人人人人| 免费不卡的大黄色大毛片视频在线观看| 欧美成人一区二区免费高清观看| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看| 99久久中文字幕三级久久日本| 国模一区二区三区四区视频| 久久久久久久久久久丰满| av天堂中文字幕网| av又黄又爽大尺度在线免费看| 熟女人妻精品中文字幕| 亚洲国产精品999| 国产黄频视频在线观看| 卡戴珊不雅视频在线播放| 久久精品国产鲁丝片午夜精品| av天堂中文字幕网| 精品久久久久久久久av| 亚洲精品456在线播放app| 国产在线视频一区二区| 国产精品国产三级国产av玫瑰| 久久久久精品性色| 国产伦理片在线播放av一区| 免费播放大片免费观看视频在线观看| 国产精品久久久久成人av| av黄色大香蕉| 久久久久久九九精品二区国产| 国产精品三级大全| 性色av一级| 大香蕉久久网| 亚洲精品久久久久久婷婷小说| 一级a做视频免费观看| 久久久久国产精品人妻一区二区| 国产成人精品福利久久| 少妇的逼好多水| 下体分泌物呈黄色| 99re6热这里在线精品视频| 日本午夜av视频| 亚洲婷婷狠狠爱综合网| 99久久人妻综合| 男女免费视频国产| 在线观看国产h片| 亚洲精品成人av观看孕妇| 亚洲人成网站在线观看播放| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 欧美高清成人免费视频www| av免费观看日本| 91精品国产国语对白视频| 高清在线视频一区二区三区| 亚洲欧美一区二区三区黑人 | 乱系列少妇在线播放| 91精品一卡2卡3卡4卡| 一区在线观看完整版| 99九九线精品视频在线观看视频| 直男gayav资源| 肉色欧美久久久久久久蜜桃| 天堂8中文在线网| 亚洲精品国产av蜜桃| 熟女电影av网| 免费av中文字幕在线| a级毛色黄片| 看免费成人av毛片| 一边亲一边摸免费视频| 中文字幕制服av| 夫妻性生交免费视频一级片| 欧美xxⅹ黑人| 制服丝袜香蕉在线| 国产乱人偷精品视频| 久久亚洲国产成人精品v| 国产av精品麻豆| 国产精品福利在线免费观看| 一级毛片 在线播放| 永久网站在线| 在线观看免费视频网站a站| 国产精品.久久久| 深夜a级毛片| 成人18禁高潮啪啪吃奶动态图 | 亚洲在久久综合| 国产极品天堂在线| 丰满人妻一区二区三区视频av| 91精品伊人久久大香线蕉| 如何舔出高潮| 99国产精品免费福利视频| 日本黄大片高清| 观看av在线不卡| 久久鲁丝午夜福利片| 亚洲av.av天堂| 午夜福利高清视频| 高清午夜精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 免费观看的影片在线观看| 国产成人a区在线观看| 女人久久www免费人成看片| av国产免费在线观看| 午夜福利视频精品| 亚洲图色成人| 一级毛片黄色毛片免费观看视频| 国产精品人妻久久久影院| 国产 精品1| 尾随美女入室| 少妇丰满av| 91精品伊人久久大香线蕉| 成人特级av手机在线观看| 国产综合精华液| 夜夜骑夜夜射夜夜干| 亚洲不卡免费看| 欧美激情国产日韩精品一区| 亚洲精品亚洲一区二区| 亚洲一级一片aⅴ在线观看| 综合色丁香网| 性色av一级| 99国产精品免费福利视频| av播播在线观看一区| 大片免费播放器 马上看| 午夜视频国产福利| 日韩中文字幕视频在线看片 | 精品国产露脸久久av麻豆| 黑人猛操日本美女一级片| 亚洲不卡免费看| 交换朋友夫妻互换小说| 天堂8中文在线网| 高清在线视频一区二区三区| 亚洲精品乱码久久久久久按摩| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲网站| 国产男人的电影天堂91| 免费观看性生交大片5| 超碰97精品在线观看| 国产一区有黄有色的免费视频| 一级毛片我不卡| 国产在视频线精品| 一个人免费看片子| 日日啪夜夜撸| 一级二级三级毛片免费看| 国产成人a∨麻豆精品| 男人狂女人下面高潮的视频| 五月开心婷婷网| 亚洲综合色惰| 热99国产精品久久久久久7| 欧美日韩亚洲高清精品| 91狼人影院| 亚洲怡红院男人天堂| 亚洲av免费高清在线观看| 国产免费又黄又爽又色| freevideosex欧美| 男男h啪啪无遮挡| 国产色爽女视频免费观看| 在线观看av片永久免费下载| 亚洲国产精品一区三区| 国产精品久久久久久精品古装| 久久久欧美国产精品| 日本免费在线观看一区| 亚洲av福利一区| 女性被躁到高潮视频| 成年女人在线观看亚洲视频| 永久网站在线| 精品国产乱码久久久久久小说| 久久99热这里只频精品6学生| 欧美极品一区二区三区四区| 人妻制服诱惑在线中文字幕| 免费观看a级毛片全部| 亚洲av成人精品一二三区| 美女内射精品一级片tv| 亚洲精品中文字幕在线视频 | 亚洲精品久久午夜乱码| 在线免费观看不下载黄p国产| 99久久精品一区二区三区| 交换朋友夫妻互换小说| 日本午夜av视频| 日韩av免费高清视频| 亚洲av电影在线观看一区二区三区| 精品一区二区三区视频在线| 欧美 日韩 精品 国产| 久久久久久久久久久丰满| 国产毛片在线视频| 国产精品福利在线免费观看| 我的女老师完整版在线观看| 成人影院久久| 一本一本综合久久| 久热久热在线精品观看| h日本视频在线播放| 丰满人妻一区二区三区视频av| 色婷婷久久久亚洲欧美| a级一级毛片免费在线观看| av在线蜜桃| 亚洲av成人精品一二三区| 天天躁日日操中文字幕| 国产精品久久久久久精品古装| 麻豆成人av视频| 免费观看a级毛片全部| av一本久久久久| 欧美xxxx性猛交bbbb| 99re6热这里在线精品视频| 精品国产乱码久久久久久小说| 亚洲av福利一区| 99久久综合免费| a级一级毛片免费在线观看| 国产黄色免费在线视频| 亚洲av电影在线观看一区二区三区| 老熟女久久久| 日本黄大片高清| 视频中文字幕在线观看| 久久久久久人妻| 国产高潮美女av| 亚洲av电影在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 高清黄色对白视频在线免费看 | 99热网站在线观看| 国模一区二区三区四区视频| 老女人水多毛片| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| av在线老鸭窝| 汤姆久久久久久久影院中文字幕| 久久97久久精品| 又黄又爽又刺激的免费视频.| 国产精品成人在线| 欧美日韩国产mv在线观看视频 | 又粗又硬又长又爽又黄的视频| 久久久久精品性色| 国产欧美亚洲国产| 国产精品一及| 亚洲精品日本国产第一区| 中文字幕久久专区| 国产精品一区二区性色av| 97在线视频观看| 国产精品久久久久久av不卡| 国产精品久久久久久久久免| 免费av不卡在线播放| 一级a做视频免费观看| 国产乱人偷精品视频| 国产一区二区三区av在线| 女性被躁到高潮视频| 久久精品国产亚洲av涩爱| 亚洲精品色激情综合| 欧美丝袜亚洲另类| 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频 | 亚洲四区av| 国产黄片美女视频| 国精品久久久久久国模美| 人妻 亚洲 视频| av又黄又爽大尺度在线免费看| 99热这里只有是精品在线观看| 身体一侧抽搐| 久久午夜福利片| 国产欧美亚洲国产| 久久 成人 亚洲| 国产精品99久久久久久久久| 一级二级三级毛片免费看| 赤兔流量卡办理| 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 纵有疾风起免费观看全集完整版| 欧美zozozo另类| 国产色婷婷99| 日本色播在线视频| 熟女人妻精品中文字幕| 99视频精品全部免费 在线| 18禁在线播放成人免费| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 国国产精品蜜臀av免费| 精品人妻一区二区三区麻豆| 午夜福利在线在线| 国产在视频线精品| 亚洲,欧美,日韩| 精品国产三级普通话版| 麻豆成人午夜福利视频| 九草在线视频观看| 高清av免费在线| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久久久按摩| 热99国产精品久久久久久7| 国产精品久久久久久久电影| 色婷婷久久久亚洲欧美| 亚洲av日韩在线播放| 老司机影院成人| 两个人的视频大全免费| 亚洲精品第二区| 这个男人来自地球电影免费观看 | 免费久久久久久久精品成人欧美视频 | 亚洲丝袜综合中文字幕| 男女国产视频网站| 日韩在线高清观看一区二区三区| 午夜免费鲁丝| 欧美激情极品国产一区二区三区 | 九九在线视频观看精品| 日韩亚洲欧美综合| 天天躁夜夜躁狠狠久久av| 简卡轻食公司| 亚洲真实伦在线观看| 免费在线观看成人毛片| 久久国产乱子免费精品| 亚洲人成网站在线播| 欧美日韩精品成人综合77777| 熟女人妻精品中文字幕| av福利片在线观看| 夫妻午夜视频| 免费黄频网站在线观看国产| 日本wwww免费看| 日韩一区二区三区影片| 22中文网久久字幕| 国产免费一区二区三区四区乱码| 人妻 亚洲 视频| 亚洲怡红院男人天堂| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看| 日韩中文字幕视频在线看片 | 中文字幕av成人在线电影| 亚洲精品国产av成人精品| 日韩国内少妇激情av| 一本—道久久a久久精品蜜桃钙片| 国产视频内射| 哪个播放器可以免费观看大片| 91精品国产九色| 3wmmmm亚洲av在线观看| 精品亚洲成a人片在线观看 | 欧美人与善性xxx| 观看美女的网站| 国产精品一区二区三区四区免费观看| 能在线免费看毛片的网站| 99精国产麻豆久久婷婷| 毛片女人毛片| 亚洲av欧美aⅴ国产| 五月天丁香电影| 日韩欧美 国产精品| 精品人妻熟女av久视频| 自拍偷自拍亚洲精品老妇| 香蕉精品网在线| 又大又黄又爽视频免费| 精品亚洲成a人片在线观看 | 亚洲欧美日韩东京热| 一二三四中文在线观看免费高清| 亚洲av二区三区四区| 成人无遮挡网站| 免费观看在线日韩| 乱系列少妇在线播放| freevideosex欧美| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| tube8黄色片| 高清av免费在线| 另类亚洲欧美激情| 免费观看性生交大片5| 女性生殖器流出的白浆| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 在线观看一区二区三区| 亚洲av成人精品一区久久| 精品少妇久久久久久888优播| 国产精品不卡视频一区二区| 国国产精品蜜臀av免费| av视频免费观看在线观看| 色视频在线一区二区三区| 尾随美女入室| 大片电影免费在线观看免费| 欧美高清性xxxxhd video| 日日啪夜夜撸| 在线观看一区二区三区| 亚洲电影在线观看av| 男男h啪啪无遮挡| 亚洲成色77777| 18禁裸乳无遮挡免费网站照片| kizo精华| 久久久久视频综合| 国产一级毛片在线| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频 | 国产免费福利视频在线观看| 久久午夜福利片| 久久久久久久久久成人| 成人特级av手机在线观看| 亚洲三级黄色毛片| 在线观看三级黄色| 国产成人精品一,二区| 日韩av免费高清视频| 成人综合一区亚洲| 国产视频首页在线观看| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| 午夜福利网站1000一区二区三区| 51国产日韩欧美| 国产精品成人在线| 国产乱来视频区| 亚洲av成人精品一二三区| 一级爰片在线观看| 多毛熟女@视频| 精品少妇黑人巨大在线播放| 日韩欧美精品免费久久| 边亲边吃奶的免费视频| 啦啦啦啦在线视频资源| 色吧在线观看| 午夜免费观看性视频| 国产精品精品国产色婷婷| 国产精品.久久久| 亚洲精品日本国产第一区| 国产午夜精品久久久久久一区二区三区| 久久久久久久国产电影| 九色成人免费人妻av| 国产探花极品一区二区| 亚洲国产最新在线播放| 日韩一本色道免费dvd| 国产精品久久久久久久久免| 大码成人一级视频| 亚洲人成网站在线观看播放| 国产精品久久久久久av不卡| 高清黄色对白视频在线免费看 | 亚洲国产毛片av蜜桃av| 国产精品一及| 久久精品国产鲁丝片午夜精品| 免费播放大片免费观看视频在线观看| 99久久中文字幕三级久久日本| 人人妻人人添人人爽欧美一区卜 | 小蜜桃在线观看免费完整版高清| 高清日韩中文字幕在线| av播播在线观看一区| 韩国高清视频一区二区三区| 免费观看在线日韩| 久久韩国三级中文字幕| 麻豆成人av视频| 日韩中文字幕视频在线看片 | 国产成人精品婷婷| 2021少妇久久久久久久久久久| 亚洲av成人精品一区久久| 午夜激情久久久久久久| a级一级毛片免费在线观看| 天堂8中文在线网| 岛国毛片在线播放| 97热精品久久久久久| 五月开心婷婷网| 中文字幕精品免费在线观看视频 | 秋霞在线观看毛片| 精品国产乱码久久久久久小说| 亚洲精品国产av成人精品| 亚洲性久久影院| 七月丁香在线播放| 国产老妇伦熟女老妇高清| 亚洲国产精品999| 2022亚洲国产成人精品| 美女内射精品一级片tv| 久久av网站| 777米奇影视久久| 尤物成人国产欧美一区二区三区| 在线观看免费日韩欧美大片 | 黑丝袜美女国产一区| 国产综合精华液| 大又大粗又爽又黄少妇毛片口| 国产亚洲5aaaaa淫片| 免费观看性生交大片5| 久久久欧美国产精品| 亚洲美女视频黄频| 国产成人aa在线观看| 久久久久久久久久成人| 激情 狠狠 欧美| 狂野欧美白嫩少妇大欣赏| 久久国产精品大桥未久av | 亚洲av男天堂| 一级av片app| 国产极品天堂在线| 日韩亚洲欧美综合| 色综合色国产| 天堂8中文在线网| 18+在线观看网站| av又黄又爽大尺度在线免费看| 中文字幕亚洲精品专区| 日韩一本色道免费dvd| 久久 成人 亚洲| 免费看光身美女| 欧美性感艳星| 久久亚洲国产成人精品v| 亚洲aⅴ乱码一区二区在线播放| 午夜福利网站1000一区二区三区| 欧美 日韩 精品 国产| 国产精品免费大片| 日韩国内少妇激情av| 热99国产精品久久久久久7| 成人黄色视频免费在线看| 亚洲国产精品国产精品| 搡老乐熟女国产| 亚洲av二区三区四区| 久久精品夜色国产| 亚洲国产av新网站| 久久毛片免费看一区二区三区| 美女内射精品一级片tv| 国产极品天堂在线| 亚洲国产毛片av蜜桃av| 在线观看美女被高潮喷水网站| 久久人妻熟女aⅴ| 性色av一级| 色吧在线观看| 高清视频免费观看一区二区| 精品一区二区三区视频在线| 看非洲黑人一级黄片| 99久久精品一区二区三区| 久久 成人 亚洲| 国产极品天堂在线| 免费少妇av软件| 女人十人毛片免费观看3o分钟| 久久热精品热| 极品少妇高潮喷水抽搐| 亚洲av电影在线观看一区二区三区| 全区人妻精品视频| 免费看日本二区| 在线观看三级黄色| 色综合色国产| 久久精品国产亚洲网站| 各种免费的搞黄视频| 久久精品国产亚洲av涩爱| 久久久久网色| 最黄视频免费看|